首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A new D-mannose/D-glucose-specific lectin (B-SJA-II) was isolated from the bark of the Japanese pagoda tree, Sophora japonica. B-SJA-II was separated from a well known D-galactose/N-acetyl-D-galactosamine-specific lectin (B-SJA-I) by affinity chromatography on lactamyl-Sepharose, then purified by affinity chromatography on maltamyl-Sepharose. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, B-SJA-II gave four bands: subunit a-1 (Mr = 19,400), a-2 (Mr = 18,200), b-1 (Mr = 15,000), and b-2 (Mr = 13,200). Carbohydrate analysis and binding study with horseradish peroxidase-labeled lectins on the bands electroblotted onto polyvinylidene difluoride membrane showed that the three subunits other than b-2 have N-linked oligosaccharides typical of plant glycoproteins. The binding assay with horseradish peroxidase-glycoproteins revealed that all the subunits can bind sugar specifically with fetuin and asialofetuin. Furthermore, B-SJA-II aggregated to form precipitates in the absence of a specific sugar and became soluble upon addition of the specific sugar. The results indicate that each subunit has a sugar-binding site for the mannosyl core of N-linked oligosaccharide chains and recognizes each other sugar specifically to form aggregates. According to the N-terminal amino acid sequences obtained, the subunits are classified into two groups. The first group (a-1 and a-2) has an N-terminal sequence 50% identical with that of other S. japonica lectins (Hankins, C. N., Kindinger, J. I., and Shannon, L. M. (1988) Plant Physiol. 86, 67-70) and the amino acid sequence initiating at position 123 of concanavalin A (Cunningham, B. (1975) J. Biol. Chem. 250, 1503-1512), while the N-terminal sequence of the second group (b-1 and b-2) is homologous to that of concanavalin A, but completely different from that of the first group.  相似文献   

2.
A lectin was isolated from Galactia lindenii seeds and characterised. The lectin, purified by affinity chromatography, readily agglutinated O(H) human erythrocytes and interacted weakly with rabbit and rat erythrocytes. Specificity towards blood group H-type determinants was established; among them H-type 2 (alpha-L-Fuc (1-2)-beta-D-Gal (1-4)-beta-D-GlcNAc-O-R) was recognised by the lectin. The binding to the glycoconjugate was partially inhibited by GalNAc and Me-beta-Gal. The protein is an M=104,256 tetramer which dissociates into identical M=26,064 subunits under non-reducing conditions. Its amino acid composition, pI, A(1%), and N-terminal sequence (23 residues) were determined. The N-terminal region showed a unique sequence found hitherto only in some lectins (designated type-II) from the Dioclea genus. This work presents the evidence concerning a distinct type of lectin found in the Diocleinae tribe able to recognise the H-type 2 human blood group determinant and clearly different from the Glc/Man-specific lectins. The protein is a potential tool in cellular and histochemical studies.  相似文献   

3.
Dopamine beta-hydroxylase is present in the bovine adrenal medulla in two forms: soluble and membrane-bound. In a previous study, it was shown that the tetrameric, soluble form of the enzyme undergoes dissociation into two identical dimeric subunits and that this subunit dissociation is dependent on pH and ADP binding (Dhawan, S., Hensley, P., Osborne, J. C., Jr., and Fleming, P. J. (1986) J. Biol. Chem. 261, 7680-7684). Here we report the effect of pH and ADP on the dissociation of the membranous form of dopamine beta-hydroxylase into two nonidentical subunits. Negative stain electron microscopy of purified membranous hydroxylase showed largely tetrameric species together with occasional dimeric species. The tetrameric images of membranous hydroxylase were similar to, but clearly different from, previously published negative stain images of soluble hydroxylase (Duong, L. T., Fleming, P. J., and Ornberg, R. L. (1985) J. Biol. Chem. 260, 2393-2398). Quantitative binding of ADP to the membranous hydroxylase revealed the existence of two binding sites per dimeric subunit. ADP binding and low pH both promote dissociation of a hydrophilic, catalytically active subunit from the membranous enzyme reconstituted onto phospholipid vesicles. Kinetic analyses of reconstituted membranous hydroxylase activity were consistent with the existence of tetrameric and dimeric catalytic species in equilibrium. All of the hydrophilic subunits of the purified soluble hydroxylase bind to the hydrophobic subunits of the reconstituted membranous hydroxylase. We propose that, in the chromaffin granules, the soluble hydroxylase subunits are in equilibrium association with the membrane-bound hydroxylase subunits and that the hydrophilic subunits of both soluble and membranous hydroxylase are identical.  相似文献   

4.
Rice (Oryza sativa) expresses different putative carbohydrate-binding proteins belonging to the class of lectins containing an Euonymus lectin (EUL)-related domain, one of them being OrysaEULS2. The OrysaEULS2 sequence consists of a 56 amino acid N-terminal domain followed by the EUL sequence. In this paper the original sequence of the EUL domain of OrysaEULS2 and some mutant forms have been expressed in Pichia pastoris. Subsequently, the recombinant proteins were purified and their carbohydrate binding properties determined. Analysis of the original protein on the glycan array revealed interaction with mannose containing structures and to a lesser extent with glycans containing lactosamine related structures. It was shown that mutation of tryptophan residue 134 into leucine resulted in an almost complete loss of carbohydrate binding activity of OrysaEULS2. Our results show that the EUL domain in OrysaEULS2 interacts with glycan structures, and hence can be considered as a lectin. However, the binding of the protein with the array is much weaker than that of other EUL-related lectins. Furthermore, our results indicate that gene divergence within the family of EUL-related lectins lead to changes in carbohydrate binding specificity.  相似文献   

5.
Collectins are animal calcium dependent lectins that target the carbohydrate structures on invading pathogens, resulting in the agglutination and enhanced clearance of the microorganism. These proteins form trimers that may assemble into larger oligomers. Each polypeptide chain consists of four regions: a relatively short N-terminal region, a collagen like region, an alpha-helical coiled-coil, and the lectin domain. Only primary structure data are available for the N-terminal region, while the most important features of the collagen-like region can be derived from its homology with collagen. The structures of the alpha-helical coiled-coil and the lectin domain are known from crystallographic studies of mannan binding protein (MBP) and lung surfactant protein D (SP-D). Carbohydrate binding has been structurally characterized in several complexes between MBP and carbohydrate; all indicate that the major interaction between carbohydrate and collectin is the binding of two adjacent carbohydrate hydroxyl group to a collectin calcium ion. In addition, these hydroxyl groups hydrogen bond to some of the calcium amino acid ligands. While each collectin trimer contains three such carbohydrate binding sites, deviation from the overall threefold symmetry has been demonstrated for SP-D, which may influence its binding properties. The protein surface between the three binding sites is positively charged in both MBP and SP-D.  相似文献   

6.
Two lectins, Leaf Lectin I and Leaf Lectin II (LLI and LLII) were purified from the leaves of Sophora japonica. Like the Sophora seed lectin, LLI and LLII are tetrameric glycoproteins containing a single subunit with respect to size. The subunits of LLI (32 kilodaltons) and LLII (34 kilodaltons) are slightly larger than those of the seed lectin (29.5 kilodaltons). The three Sophora lectins display indistinguishable specificities, amino acid compositions, specific hemagglutinin activities, and extinction coefficients. Although very closely related to the seed lectin, the leaf and seed lectins are not immunologically identical and they differ in subunit molecular weights, carbohydrate content, and in the pH sensitivity of their hemagglutinin activities. N-terminal amino acid sequence analysis shows that although they are homologous proteins, the three Sophora lectins are products of distinct genes.  相似文献   

7.
Hemagglutinating activity in fruit bodies of Pleurotus cornucopiae was separated by DEAE column chromatography into two, adsorbed and unadsorbed, fractions. From the unadsorbed fraction, three active substances were purified and characterized. The main component (PCL-a) consisted of two identical subunits with an apparent molecular mass of 16kDa and the second (PCL-b) consisted of two heterogeneous subunits of 16 and 15 kDa. The three lectins as well as the two kinds of subunits were immunologically cross-reactive with anti-PCL-a serum. Amino acid compositions of the two subunits were similar, and N-terminal residues of the subunits were blocked. Hemagglutinating activities of the three lectins were not inhibited by any monosaccharide tested but were strongly inhibited by asialo-mucin. From these results, the three lectins in P. cornucopiae were found to be isolectins.  相似文献   

8.
Five N-acetyl-galactosamine-specific lectins were isolated from the bark of the legume tree Sophora japonica. These lectins are immunologically and structurally very similar, but not identical, to the Sophora seed and leaf lectins. The carbohydrate specificities and hemagglutinin activities of these lectins are indistinguishable at pH 8.5 but their activities differ markedly at pH values below 8. All five lectins are tetrameric glycoproteins made up of different combinations of subunits of about 30,000, 30,100, 33,000 Mr containing 3% to 5% covalently attached sugar. These lectins are the overwhelmingly dominant proteins in bark, but they do not appear to be present in other tissues. Amino terminal sequence analysis indicates that at least two distinct lectin genes are expressed in bark.  相似文献   

9.
Novel Ca2+‐independent C‐type lectins, SPL‐1 and SPL‐2, were purified from the bivalve Saxidomus purpuratus. They are composed of dimers with either identical (SPL‐2 composed of two B‐chains) or distinct (SPL‐1 composed of A‐ and B‐chains) polypeptide chains, and show affinity for N‐acetylglucosamine (GlcNAc)‐ and N‐acetylgalactosamine (GalNAc)‐containing carbohydrates, but not for glucose or galactose. A database search for sequence similarity suggested that they belong to the C‐type lectin family. X‐ray crystallographic analysis revealed definite structural similarities between their subunits and the carbohydrate‐recognition domain (CRD) of the C‐type lectin family. Nevertheless, these lectins (especially SPL‐2) showed Ca2+‐independent binding affinity for GlcNAc and GalNAc. The crystal structure of SPL‐2/GalNAc complex revealed that bound GalNAc was mainly recognized via its acetamido group through stacking interactions with Tyr and His residues and hydrogen bonds with Asp and Asn residues, while widely known carbohydrate‐recognition motifs among the C‐type CRD (the QPD [Gln‐Pro‐Asp] and EPN [Glu‐Pro‐Asn] sequences) are not involved in the binding of the carbohydrate. Carbohydrate‐binding specificities of individual A‐ and B‐chains were examined by glycan array analysis using recombinant lectins produced from Escherichia coli cells, where both subunits preferably bound oligosaccharides having terminal GlcNAc or GalNAc with α‐glycosidic linkages with slightly different specificities.  相似文献   

10.
The glucose transporter of the bacterial phosphotransferase system couples translocation with phosphorylation of the substrate in a 1:1 stoichiometry. It is a complex consisting of a transmembrane subunit (IIGlc) and a hydrophilic subunit (IIIGlc). Both subunits are transiently phosphorylated. IIIGlc is phosphorylated at a histidyl residue by the cytoplasmic phosphoryl carrier protein phospho-heat-stable phosphoryl carrier protein; IIGlc is phosphorylated at a cysteinyl residue by phospho-IIIGlc. The IIGlc subunit consists of two domains. The N-terminal hydrophobic domain is presumed to span the membrane several times; the C-terminal cytoplasmic domain includes the phosphorylation site. IIGlc phosphorylates glucose and methyl-alpha-D-glucopyranoside in transit across the inner membrane but can also phosphorylate intracellular glucose. Ten mutants resistant against extracellular toxic methyl-alpha-D-glucopyranoside yet capable of phosphorylating intracellular glucose were isolated. Strong impairment of transport activity in these mutants was accompanied by only a slight decrease of phosphorylation activity. Amino acid substitutions occurred at six sites that are clustered in three presumably hydrophilic loops in the transmembrane domain of IIGlc: M17T, M17I, G149S, K150E, S157F, H339Y, and D343G. We presume that the three polypeptide segments are directly involved in sugar translocation and/or binding but are of little importance for phosphorylation activity, folding, and membrane localization of IIGlc.  相似文献   

11.
Among the sponges (Porifera), the oldest group of metazoans in phylogenetic terms, the Hexactinellida is considered to have diverged earliest from the two other sponge classes, the Demospongiae and Calcarea. The Hexactinellida are unusual among all Metazoa in possessing mostly syncytial rather than cellular tissues. Here we describe the purification of a cell adhesion molecule with a size of 34 kDa (in its native form; 24 kDa after deglycosylation) from the hexactinellid sponge Aphrocallistes vastus. This adhesion molecule was previously found to agglutinate preserved cells and membranes in a non-species-specific manner (Müller, W. E. G., Zahn, R. K, Conrad, J., Kurelec, B., and Uhlenbruck, G. [1984] Cell adhesion molecules in the haxactinellid Aphrocallistes vastus: species-unspecific aggregationfactor. Differentiation, 26, 30--35). The fact that the aggregation process required Ca(2+) and was inhibited by bird's nest glycoprotein and D-galactose but not by D-mannose or N-acetyl-D-galactosamine suggests that this cell adhesion molecule is a C-type lectin. To test this assumption, two highly similar C-type lectins were cloned from A.vastus. The deduced polypeptides of the two cDNA species isolated classified these molecules as C-type lectins. The calculated M(r) of the 191 aa long sequences were 22,022 and 22,064, respectively. The C-type lectins showed highest similarity to C-type lectins (type-II membrane proteins) from higher metazoan phyla; these molecules are absent in non-Metazoa. The two sponge C-type lectins contain the conserved domains known from other C-type lectins (e.g., disulfide bonds, the amino acids known to be involved in Ca(2+)-binding, as well as the amino acids involved in the specificity of binding to D-galactose) and a hydrophobic N-terminal region. The N-terminal part of the purified C-type lectin was identical with the corresponding region of the deduced polypeptide from the cDNA. It is proposed that the A.vastus lectins might bind to the cell membrane by their hydrophobic segment and might interact with carbohydrate units on the surface of the other cells/syncytia.  相似文献   

12.
Two novel lectins were isolated from roots and leaves of garlic. Characterization of the purified proteins indicated that the leaf lectin ASAL is a dimer of two identical subunits of 12 kDa, which closely resembles the leaf lectins from onion, leek and shallot with respect to its molecular structure and agglutination activity. In contrast, the root lectin ASARI, which is a dimer of subunits of 15 kDa, strongly differs from the leaf lectin with respect to its agglutination activity. cDNA cloning of the leaf and root lectins revealed that the deduced amino acid sequences of ASAL and ASARI are virtually identical. Since both lectins have identical N-terminal sequences the larger Mr of the ASARI subunits implies that the root lectin has an extra sequence at its C-terminus. These results not only demonstrate that virtually identical precursor polypeptides are differently processed at their C-terminus in roots and leaves but also indicate that differential processing yields mature lectins with strongly different biological activities. Further screening of the cDNA library for garlic roots also yielded a cDNA clone encoding a protein composed of two tandemly arrayed lectin domains. Since the presumed two-domain root lectin has not been isolated yet, its possible relationship to the previously described two-domain bulb lectin could not be studied at the protein level.  相似文献   

13.
Two monomeric lectins, SSA-b-3 and SSA-b-4, were purified from the bark tissue of Japanese elderberry, Sambucus sieboldiana. SDS-PAGE of the purified lectins showed the presence of single bands of 35 and 33 kDa for SSA-b-3 and SSA-b-4, respectively, irrespective of the presence of reducing agent. MS analysis as well as gel filtration of these lectins indicated that they exist mostly as monomeric lectins. Analysis of the N-terminal amino acid sequences of SSA-b-3 and SSA-b-4 yielded an identical sequence, indicating their close structural relationship. Four cDNA clones with extensive homology were obtained from the bark cDNA library and indicated to encode SSA-b-3 or SSA-b-4 from the comparison with the N-terminal sequences of these lectins. These clones were classified into two groups, three for SSA-b-3 and one for SSA-b-4, based on the predicted isoelectric points. The amino acid sequences of the encoded polypeptides were almost identical with the B-chain of a type 2 ribosome-inactivating protein from the same bark tissue, sieboldin-b, except for the absence of a small peptide containing a cystein residue, which is critical for the heteromeric dimerization with an A-subunit. Carbohydrate binding specificity and biological activity of these lectins are also reported.  相似文献   

14.
Legume lectins--a large family of homologous proteins   总被引:27,自引:0,他引:27  
N Sharon  H Lis 《FASEB journal》1990,4(14):3198-3208
More than 70 lectins from leguminous plants belonging to different suborders and tribes have been isolated, mostly from seeds, and characterized to varying degrees. Although they differ in their carbohydrate specificities, they resemble each other in their physicochemical properties. They usually consist of two or four subunits (25-30 kDa), each with one carbohydrate binding site. Interaction with carbohydrates requires tightly bound Ca2+ and Mn2+ (or another transition metal). The primary sequences of more than 15 legume lectins have been established by chemical or molecular genetic techniques. They exhibit remarkable homologies, with a significant number of invariant amino acid residues, among them most of those involved in metal binding. The 3-dimensional structures of the legume lectins are similar, too, and are characterized by a high content of beta-sheets and a lack of alpha-helix. The location of the metal and carbohydrate binding sites, established unequivocally in concanavalin A by high resolution X-ray crystallography, appears to be the same in the other legume lectins. Several of the lectin genes have been cloned and expressed in heterologous systems. This opens the way for the application of molecular genetics to the investigation of the atomic structure of the carbohydrate binding sites of the lectins, and of the relationship between their structure and biological activity. The new approaches may also provide information on the mechanisms that control gene expression in plants and on the role of lectins in nature.  相似文献   

15.
Human RegIV protein, which contains a sequence motif homologous to calcium-dependent (C-type) lectin-like domain, is highly expressed in mucosa cells of the gastrointestinal tract during pathogen infection and carcinogenesis and may be applied in both diagnosis and treatment of gastric and colon cancers. Here, we provide evidence that, unlike other C-type lectins, human RegIV binds to polysaccharides, mannan, and heparin in the absence of calcium. To elucidate the structural basis for carbohydrate recognition by NMR, we generated the mutant with Pro91 replaced by Ser (hRegIV-P91S) and showed that the structural property and carbohydrate binding ability of hRegIV-P91S are almost identical with those of wild-type protein. The solution structure of hRegIV-P91S was determined, showing that it adopts a typical fold of C-type lectin. Based on the chemical shift perturbations of amide resonances, two calcium-independent mannan-binding sites were proposed. One site is similar to the calcium-independent sugar-binding site on human RegIII and Langerin. Interestingly, the other site is adjacent to the conserved calcium-dependent site at position Ca-2 of typical C-type lectins. Moreover, model-free analysis of 15N relaxation parameters and simplified Carr-Purcell-Meiboom-Gill relaxation dispersion experiments showed that a slow microsecond-to-millisecond time-scale backbone motion is involved in mannan binding by this site, suggesting a potential role for specific carbohydrate recognition. Our findings shed light on the sugar-binding mode of Reg family proteins, and we postulate that Reg family proteins evolved to bind sugar without calcium to keep the carbohydrate recognition activity under low-pH environments in the gastrointestinal tract.  相似文献   

16.
The seed lectin and a stem and leaf lectin (DB58) from Dolichos biflorus have high-affinity hydrophobic sites that bind to adenine. The present study employs a centrifugal filtration assay to characterize these sites. The seed lectin contains two identical sites with Ka's of 7.31 x 10(5) L/mol whereas DB58 has a single site with a Ka of 1.07 x 10(6) L/mol. The relative affinities of these sites for a host of adenine analogs and derivatives were determined by competitive displacement assays. The most effective competitors for adenine were the cytokinins, a class of plant hormone, for which the lectins had apparent Ka's of 1.96 x 10(5)-4.90 x 10(4) L/mol. Direct binding of the cytokinin 6-(benzylamino)purine (BAP) to both lectins showed positive cooperativity for only the seed lectin, indicating the interaction of this ligand with more than one class of hydrophobic binding site. Fluorescence enhancement assays demonstrate cooperativity between hydrophobic sites of the seed lectin and also suggest that BAP binds to more than one class of site.  相似文献   

17.
Aleuria aurantia lectin is a fungal protein composed of two identical 312-amino acid subunits that specifically recognizes fucosylated glycans. The crystal structure of the lectin complexed with fucose reveals that each monomer consists of a six-bladed beta-propeller fold and of a small antiparallel two-stranded beta-sheet that plays a role in dimerization. Five fucose residues were located in binding pockets between the adjacent propeller blades. Due to repeats in the amino acid sequence, there are strong similarities between the sites. Oxygen atoms O-3, O-4, and O-5 of fucose are involved in hydrogen bonds with side chains of amino acids conserved in all repeats, whereas O-1 and O-2 interact with a large number of water molecules. The nonpolar face of each fucose residue is stacked against the aromatic ring of a Trp or Tyr amino acid, and the methyl group is located in a highly hydrophobic pocket. Depending on the precise binding site geometry, the alpha- or beta-anomer of the fucose ligand is observed bound in the crystal. Surface plasmon resonance experiments conducted on a series of oligosaccharides confirm the broad specificity of the lectin, with a slight preference for alphaFuc1-2Gal disaccharide. This multivalent carbohydrate recognition fold is a new prototype of lectins that is proposed to be involved in the host recognition strategy of several pathogenic organisms including not only the fungi Aspergillus but also the phytopathogenic bacterium Ralstonia solanacearum.  相似文献   

18.
Legume lectins, despite high sequence homology, express diverse biological activities that vary in potency and efficacy. In studies reported here, the mannose-specific lectin from Cymbosema roseum (CRLI), which binds N-glycoproteins, shows both pro-inflammatory effects when administered by local injection and anti-inflammatory effects when by systemic injection. Protein sequencing was obtained by Tandem Mass Spectrometry and the crystal structure was solved by X-ray crystallography using a Synchrotron radiation source. Molecular replacement and refinement were performed using CCP4 and the carbohydrate binding properties were described by affinity assays and computational docking. Biological assays were performed in order to evaluate the lectin edematogenic activity. The crystal structure of CRLI was established to a 1.8 Å resolution in order to determine a structural basis for these differing activities. The structure of CRLI is closely homologous to those of other legume lectins at the monomer level and assembles into tetramers as do many of its homologues. The CRLI carbohydrate binding site was predicted by docking with a specific inhibitory trisaccharide. CRLI possesses a hydrophobic pocket for the binding of α-aminobutyric acid and that pocket is occupied in this structure as are the binding sites for calcium and manganese cations characteristic of legume lectins. CRLI route-dependent effects for acute inflammation are related to its carbohydrate binding domain (due to inhibition caused by the presence of α-methyl-mannoside), and are based on comparative analysis with ConA crystal structure. This may be due to carbohydrate binding site design, which differs at Tyr12 and Glu205 position.  相似文献   

19.
Synthetic peptides corresponding to selected sequences in the S2 and S3 subunits of pertussis toxin were prepared and evaluated for their ability to inhibit the binding of biotinylated pertussis toxin and three biotinylated sialic acid specific plant lectins to fetuin and asialofetuin. The screening results indicated that two regions in the S2 subunit corresponding to amino acids 78-98 and 123-154 inhibited pertussis toxin binding to fetuin at submillimolar concentrations, while S3 sequences corresponding to amino acids 87-108 and 134-154 inhibited pertussis toxin-biotin binding to asialofetuin albeit with lower affinity. These results confirm earlier findings, which suggest that the S2 subunit is responsible for binding sialylated glycoconjugates. This was further confirmed by the ability of S2 peptides to inhibit the binding of the lectins from Maackia amurensis and wheat germ to fetuin. Two additional peptides from the S2 subunit of pertussis toxin corresponding to sequences 9-23 and 1-23 were found to contain within their sequences a 6-amino acid fragment which has strong homology with a sequence in wheat germ agglutinin that has been shown to be a component of the sialic acid binding site as determined by x-ray crystallography. One of these sequences from S2 (9-23) was biotinylated and evaluated for its ability to bind to carbohydrate. Through a series of experiments using fetuin, asialofetuin, asialoagalactofetuin, and simple saccharides, the biotinylated peptide was shown to bind with high affinity to sialic acid-containing glycoconjugates indicating that these sequences within the S2 subunit of pertussis toxin also play an important role in binding sialic acid.  相似文献   

20.
It has been recently recognized that lectins exhibit other activities besides hemagglutination. Previously we have found that purified lectin from Chelidonium majus showed DNase activity (Fik, Go?dzicka-Józefiak & Kedzia, 1995, Herba Polon. 41, 84-95). Comparison of lectin and DNase from the sap from leaves and roots of Chelidonium majus proved that both these compounds are composed of 24 kDa monomer subunits which have an identical N-terminal sequence but differ in amino-acid composition and degree of glycosylation. Possible interrelationship between lectin and DNase is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号