首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.

Background

Several studies have indicated that one of the most potent mediators involved in pulmonary vascular remodeling is vascular endothelial growth factor (VEGF). This study was designed to determine whether airway VEGF level reflects pulmonary vascular remodeling in patients with bronchitis-type of COPD.

Methods

VEGF levels in induced sputum were examined in 23 control subjects (12 non-smokers and 11 ex-smokers) and 29 patients with bronchitis-type of COPD. All bronchitis-type patients performed exercise testing with right heart catheterization.

Results

The mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR) after exercise were markedly increased in all bronchitis-type patients. However, both parameters after exercise with breathing of oxygen was significantly lower than in those with breathing of room air. To attenuate the effect of hypoxia-induced pulmonary vasoconstriction during exercise, we used the change in mPAP or PVR during exercise with breathing of oxygen as a parameter of pulmonary vascular remodeling. Change in mPAP was significantly correlated with VEGF level in induced sputum from patients with chronic bronchitis (r = 0.73, p = 0.0001). Moreover, change in PVR was also correlated with VEGF level in those patients (r = 0.57, p = 0.003).

Conclusion

A close correlation between magnitude of pulmonary hypertension with exercise and VEGF level in bronchitis-type patients could be observed. Therefore, these findings suggest the possibility that VEGF level in induced sputum is a non-invasive marker of pulmonary vascular remodeling in patients with bronchitis-type of COPD.  相似文献   

2.

Background

Vascular endothelial growth factor (VEGF) receptor-2 is the major mediator of the mitogenic, angiogenic, and vascular hyperpermeability effects of VEGF on breast tumors. Overexpression of VEGF and VEGF receptor-2 is associated with the degree of pathomorphosis of the tumor tissue and unfavorable prognosis. In this study, we demonstrate that non-invasive quantification of the degree of tumor vascular permeability to a nanoprobe correlates with the VEGF and its receptor levels and tumor growth.

Methodology/Principal Findings

We designed an imaging nanoprobe and a methodology to detect the intratumoral deposition of a 100 nm-scale nanoprobe using mammography allowing measurement of the tumor vascular permeability in a rat MAT B III breast tumor model. The tumor vascular permeability varied widely among the animals. Notably, the VEGF and VEGF receptor-2 gene expression of the tumors as measured by qRT-PCR displayed a strong correlation to the imaging-based measurements of vascular permeability to the 100 nm-scale nanoprobe. This is in good agreement with the fact that tumors with high angiogenic activity are expected to have more permeable blood vessels resulting in high intratumoral deposition of a nanoscale agent. In addition, we show that higher intratumoral deposition of the nanoprobe as imaged with mammography correlated to a faster tumor growth rate. This data suggest that vascular permeability scales to the tumor growth and that tumor vascular permeability can be a measure of underlying VEGF and VEGF receptor-2 expression in individual tumors.

Conclusions/Significance

This is the first demonstration, to our knowledge, that quantitative imaging of tumor vascular permeability to a nanoprobe represents a form of a surrogate, functional biomarker of underlying molecular markers of angiogenesis.  相似文献   

3.

Background

Angiogenesis is important in physiological and pathological conditions, as blood vessels provide nutrients and oxygen needed for tissue growth and survival. Therefore, targeting angiogenesis is a prominent strategy in both tissue engineering and cancer treatment. However, not all of the approaches to promote or inhibit angiogenesis lead to successful outcomes. Angiogenesis-based therapies primarily target pro-angiogenic factors such as vascular endothelial growth factor-A (VEGF) or fibroblast growth factor (FGF) in isolation. However, pre-clinical and clinical evidence shows these therapies often have limited effects. To improve therapeutic strategies, including targeting FGF and VEGF in combination, we need a quantitative understanding of the how the promoters combine to stimulate angiogenesis.

Results

In this study, we trained and validated a detailed mathematical model to quantitatively characterize the crosstalk of FGF and VEGF intracellular signaling. This signaling is initiated by FGF binding to the FGF receptor 1 (FGFR1) and heparan sulfate glycosaminoglycans (HSGAGs) or VEGF binding to VEGF receptor 2 (VEGFR2) to promote downstream signaling. The model focuses on FGF- and VEGF-induced mitogen-activated protein kinase (MAPK) signaling and phosphorylation of extracellular regulated kinase (ERK), which promotes cell proliferation. We apply the model to predict the dynamics of phosphorylated ERK (pERK) in response to the stimulation by FGF and VEGF individually and in combination. The model predicts that FGF and VEGF have differential effects on pERK. Additionally, since VEGFR2 upregulation has been observed in pathological conditions, we apply the model to investigate the effects of VEGFR2 density and trafficking parameters. The model predictions show that these parameters significantly influence the response to VEGF stimulation.

Conclusions

The model agrees with experimental data and is a framework to synthesize and quantitatively explain experimental studies. Ultimately, the model provides mechanistic insight into FGF and VEGF interactions needed to identify potential targets for pro- or anti-angiogenic therapies.
  相似文献   

4.

Background

Vascular endothelial growth factor (VEGF), a substance that stimulates new blood vessel formation, is an important survival factor for endothelial cells. Although overexpressed VEGF in the lung induces pulmonary edema with increased lung vascular permeability, the role of VEGF in the development of acute lung injury remains to be determined.

Methods

To evaluate the role of VEGF in the pathogenesis of acute lung injury, we first evaluated the effects of exogenous VEGF and VEGF blockade using monoclonal antibody on LPS-induced lung injury in mice. Using the lung specimens, we performed TUNEL staining to detect apoptotic cells and immunostaining to evaluate the expression of apoptosis-associated molecules, including caspase-3, Bax, apoptosis inducing factor (AIF), and cytochrome C. As a parameter of endothelial permeability, we measured the albumin transferred across human pulmonary artery endothelial cell (HPAEC) monolayers cultured on porous filters with various concentrations of VEGF. The effect of VEGF on apoptosis HPAECs was also examined by TUNEL staining and active caspase-3 immunoassay.

Results

Exogenous VEGF significantly decreased LPS-induced extravascular albumin leakage and edema formation. Treatment with anti-VEGF antibody significantly enhanced lung edema formation and neutrophil emigration after intratracheal LPS administration, whereas extravascular albumin leakage was not significantly changed by VEGF blockade. In lung pathology, pretreatment with VEGF significantly decreased the numbers of TUNEL positive cells and those with positive immunostaining of the pro-apoptotic molecules examined. VEGF attenuated the increases in the permeability of the HPAEC monolayer and the apoptosis of HPAECs induced by TNF-α and LPS. In addition, VEGF significantly reduced the levels of TNF-α- and LPS-induced active caspase-3 in HPAEC lysates.

Conclusion

These results suggest that VEGF suppresses the apoptosis induced by inflammatory stimuli and functions as a protective factor against acute lung injury.  相似文献   

5.
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis--the growth of new microvessels from existing microvasculature. Angiogenesis is a complex process involving numerous molecular species, and to better understand it, a systems biology approach is necessary. In vivo preclinical experiments in the area of angiogenesis are typically performed in mouse models; this includes drug development targeting VEGF. Thus, to quantitatively interpret such experimental results, a computational model of VEGF distribution in the mouse can be beneficial. In this paper, we present an in silico model of VEGF distribution in mice, determine model parameters from existing experimental data, conduct sensitivity analysis, and test the validity of the model. The multiscale model is comprised of two compartments: blood and tissue. The model accounts for interactions between two major VEGF isoforms (VEGF(120) and VEGF(164)) and their endothelial cell receptors VEGFR-1, VEGFR-2, and co-receptor neuropilin-1. Neuropilin-1 is also expressed on the surface of parenchymal cells. The model includes transcapillary macromolecular permeability, lymphatic transport, and macromolecular plasma clearance. Simulations predict that the concentration of unbound VEGF in the tissue is approximately 50-fold greater than in the blood. These concentrations are highly dependent on the VEGF secretion rate. Parameter estimation was performed to fit the simulation results to available experimental data, and permitted the estimation of VEGF secretion rate in healthy tissue, which is difficult to measure experimentally. The model can provide quantitative interpretation of preclinical animal data and may be used in conjunction with experimental studies in the development of pro- and anti-angiogenic agents. The model approximates the normal tissue as skeletal muscle and includes endothelial cells to represent the vasculature. As the VEGF system becomes better characterized in other tissues and cell types, the model can be expanded to include additional compartments and vascular elements.  相似文献   

6.

Introduction

This work aimed at comparing the production of inflammatory and pro- and anti-angiogenic factors by normal/reactive (N/R) or inflammatory (I) areas of the osteoarthritic synovial membrane. The effects of interleukin (IL)-1β and chondroitin sulfate (CS) on the expression of pro- and anti-angiogenic factors by synovial fibroblasts cells (SFC) were also studied.

Methods

Biopsies from N/R or from I areas of osteoarthritic synovial membrane were collected at the time of surgery. The inflammatory status of the synovial membrane was characterized by the surgeon according to macroscopic criteria, including the synovial vascularization, the villi formation and the hypertrophic aspect of the tissue. We assessed the expression of CD45, von Willebrand factor and vascular endothelial growth factor (VEGF) antigen by immunohistochemistry in both N/R and I biopsies. The production of IL-6, -8, VEGF and thrombospondin (TSP)-1 by N/R or I synovial cells was quantified by ELISA. SFC were cultured in the absence or in the presence of IL-1β (1 ng/ml) and with or without CS (10, 50, 200 μg/ml). Gene expression of pro-angiogenic factors (VEGF, basic fibroblast growth factor (bFGF), nerve growth factor (NGF), matrix metalloproteinase (MMP)-2 and angiopoietin (ang)-1) and anti-angiogenic factors (vascular endothelial growth inhibitor (VEGI), TSP-1 and -2) were determined by real time RT-PCR. Production of VEGI and TSP-1 was also estimated by ELISA.

Results

Immunohistochemistry showed the increase of lymphocyte infiltration, vascular density and VEGF expression in I compared to N/R synovial biopsies. Synovial cells from I areas produced more IL-6, IL-8 and VEGF but less TSP-1 than cells isolated from N/R synovial biopsies. The expression of pro-angiogenic factors by SFC was stimulated by IL-1β. A time dependent regulation of the expression of anti-angiogenic factor genes was observed. IL-1β stimulated the expression of anti-angiogenic factor genes but inhibited it after 24 h. CS reversed the inhibitory effect of IL-1β on anti-angiogenic factors, VEGI and TSP-1.

Conclusions

We demonstrated that synovial biopsies from I areas expressed a pro-angiogenic phenotype. IL-1β induced an imbalance between pro- and anti-angiogenic factors in SFC and CS tended to normalize this IL-1β-induced imbalance, providing a new possible mechanism of action of this drug.  相似文献   

7.

Objective

Melittin (MEL), a major component of bee venom, has been associated with various diseases including arthritis, rheumatism and various cancers. In this study, the anti-angiogenic effects of MEL in CaSki cells that were responsive to the epidermal growth factor (EGF) were examined.

Methodology/Principal Findings

MEL decreased the EGF-induced hypoxia-inducible factor-1α (HIF-1α) protein and significantly regulated angiogenesis and tumor progression. We found that inhibition of the HIF-1α protein level is due to the shortened half-life by MEL. Mechanistically, MEL specifically inhibited the EGF-induced HIF-1α expression by suppressing the phosphorylation of ERK, mTOR and p70S6K. It also blocked the EGF-induced DNA binding activity of HIF-1α and the secretion of the vascular endothelial growth factor (VEGF). Furthermore, the chromatin immunoprecipitation (ChIP) assay revealed that MEL reduced the binding of HIF-1α to the VEGF promoter HRE region. The anti-angiogenesis effects of MEL were confirmed through a matrigel plus assay.

Conclusions

MEL specifically suppressed EGF-induced VEGF secretion and new blood vessel formation by inhibiting HIF-1α. These results suggest that MEL may inhibit human cervical cancer progression and angiogenesis by inhibiting HIF-1α and VEGF expression.  相似文献   

8.

Background

Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development.

Methodology/Principal Findings

Cathepsin S expression and secretion from endothelial cells was characterised using RT-PCR and western blotting. We further show that cathepsin S promotes pericellular hydrolysis of extracellular matrix components in the tumour microenvironment and facilitates endothelial invasion. The cathepsin S inhibitory antibody, Fsn0503, blocks extracellular proteolysis, inhibiting endothelial invasion and tube formation in cell-based assays. The anti-angiogenic effects of Fsn0503 were also shown in vivo where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed.

Conclusions/Significance

Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis.  相似文献   

9.
10.

Introduction

Early detection, assessment of disease progression, and application of an appropriate therapeutic intervention are all important for the care of patients with type 2 diabetes. Currently, however, there is no simple test for early detection of type 2 diabetes. Established diagnostic tests for the disease including oral glucose tolerance, fasting blood glucose, and hemoglobin A1c are relatively late markers where the disease has already progressed. Since blood is in direct contact with many tissues, we hypothesized that pathological tissue changes are likely to be reflected in proteomic profiles of plasma.

Methods

Mice were reared either on regular chow or a high-fat diet at weaning and several physiological responses (i.e., weight, fasting plasma glucose and insulin, and glucose tolerance) were monitored at regular time intervals. Plasma was collected at regular intervals for proteomic analysis by two-dimensional gel electrophoresis and subsequent mass spectrometry.

Results

Onset of hyperinsulinemia with corresponding glucose intolerance was observed in 2 weeks and fasting blood glucose levels rose significantly after 4 weeks on the high-fat diet. Many proteins were found to exist in multiple forms (isoforms). Levels of some isoforms including plasma retinol binding protein, transthyretin, Apolipoprotein A1, and kininogen showed significant changes as early as 4 weeks which coincided with the very early development of glucose intolerance.

Conclusions

These results show that a proteomic approach to study the development of type 2 diabetes may uncover unknown early post-translationally modified diagnostic and/or therapeutic protein targets.  相似文献   

11.

Background  

We investigated an algorithmic approach to modelling angiogenesis controlled by vascular endothelial growth factor (VEGF), the anti-angiogenic soluble VEGF receptor 1 (sVEGFR-1) and adenosine (Ado). We explored its feasibility to test angiogenesis-relevant hypotheses. We illustrated its potential to investigate the role of Ado as an angiogenesis modulator by enhancing VEGF activity and antagonizing sVEGFR-1.  相似文献   

12.

Background

Angiogenesis, the formation of new blood vessels, has become an important target in cancer therapy. Angiogenesis plays an important role in tumor growth and metastasis. Koetjapic acid (KA) is a seco-A-ring oleanene triterpene isolated from S. koetjape. The solvent extract of this plant species was shown previously to have strong antiangiogenic activity; however the active ingredient(s) that conferred the biological activity and the mode of action was not established. Given the high concentration of KA in S. koetjape, an attempt has been made in this study to investigate the antiangiogenic properties of KA.

Results

Treatment with 10-50 μg/ml KA resulted in dose dependent inhibition of new blood vessels growth in ex vivo rat aortic ring assay. KA was found to be non-cytotoxic against HUVECs with IC50 40.97 ± 0.37 μg/ml. KA inhibited major angiogenesis process steps, endothelial cell migration and differentiation as well as VEGF expression.

Conclusions

The non-cytotoxic compound, KA, may be a potent antiangiogenic agent; its activity may be attributed to inhibition of endothelial cells migration and differentiation as well VEGF suppression.  相似文献   

13.

Background

To characterise the acute physiological and inflammatory changes induced by low-dose RSV infection in mice.

Methods

BALB/c mice were infected as adults (8 wk) or weanlings (3 wk) with 1 × 105 pfu of RSV A2 or vehicle (intranasal, 30 μl). Inflammation, cytokines and inflammatory markers in bronchoalveolar lavage fluid (BALF) and airway and tissue responses to inhaled methacholine (MCh; 0.001 – 30 mg/ml) were measured 5, 7, 10 and 21 days post infection. Responsiveness to iv MCh (6 – 96 μg/min/kg) in vivo and to electrical field stimulation (EFS) and MCh in vitro were measured at 7 d. Epithelial permeability was measured by Evans Blue dye leakage into BALF at 7 d. Respiratory mechanics were measured using low frequency forced oscillation in tracheostomised and ventilated (450 bpm, flexiVent) mice. Low frequency impedance spectra were calculated (0.5 – 20 Hz) and a model, consisting of an airway compartment [airway resistance (Raw) and inertance (Iaw)] and a constant-phase tissue compartment [coefficients of tissue damping (G) and elastance (H)] was fitted to the data.

Results

Inflammation in adult mouse BALF peaked at 7 d (RSV 15.6 (4.7 SE) vs. control 3.7 (0.7) × 104 cells/ml; p < 0.001), resolving by 21 d, with no increase in weanlings at any timepoint. RSV-infected mice were hyperresponsive to aerosolised MCh at 5 and 7 d (PC200 Raw adults: RSV 0.02 (0.005) vs. control 1.1 (0.41) mg/ml; p = 0.003) (PC200 Raw weanlings: RSV 0.19 (0.12) vs. control 10.2 (6.0) mg/ml MCh; p = 0.001). Increased responsiveness to aerosolised MCh was matched by elevated levels of cysLT at 5 d and elevated VEGF and PGE2 at 7 d in BALF from both adult and weanling mice. Responsiveness was not increased in response to iv MCh in vivo or EFS or MCh challenge in vitro. Increased epithelial permeability was not detected at 7 d.

Conclusion

Infection with 1 × 105 pfu RSV induced extreme hyperresponsiveness to aerosolised MCh during the acute phase of infection in adult and weanling mice. The route-specificity of hyperresponsiveness suggests that epithelial mechanisms were important in determining the physiological effects. Inflammatory changes were dissociated from physiological changes, particularly in weanling mice.  相似文献   

14.

Background

Little is known about airway remodelling in bronchial biopsies (BB) in smokers and chronic obstructive pulmonary disease (COPD). We conducted an initial pilot study comparing BB from COPD patients with nonsmoking controls. This pilot study suggested the presence of reticular basement membrane (Rbm) fragmentation and altered vessel distribution in COPD.

Methods

To determine whether Rbm fragmentation and altered vessel distribution in BB were specific for COPD we designed a cross-sectional study and stained BB from 19 current smokers and 14 ex-smokers with mild to moderate COPD and compared these to 15 current smokers with normal lung function and 17 healthy and nonsmoking subjects.

Results

Thickness of the Rbm was not significantly different between groups; although in COPD this parameter was quite variable. The Rbm showed fragmentation and splitting in both current smoking groups and ex-smoker COPD compared with healthy nonsmokers (p < 0.02); smoking and COPD seemed to have additive effects. Rbm fragmentation correlated with smoking history in COPD but not with age. There were more vessels in the Rbm and fewer vessels in the lamina propria in current smokers compared to healthy nonsmokers (p < 0.05). The number of vessels staining for vascular endothelial growth factor (VEGF) in the Rbm was higher in both current smoker groups and ex-smoker COPD compared to healthy nonsmokers (p < 0.004). In current smoker COPD VEGF vessel staining correlated with FEV1% predicted (r = 0.61, p < 0.02).

Conclusions

Airway remodelling in smokers and mild to moderate COPD is associated with fragmentation of the Rbm and altered distribution of vessels in the airway wall. Rbm fragmentation was also present to as great an extent in ex-smokers with COPD. These characteristics may have potential physiological consequences.  相似文献   

15.
The regulation of vascular endothelial growth factor A (VEGF) is critical to neovascularization in numerous tissues under physiological and pathological conditions. VEGF has multiple isoforms, created by alternative splicing or proteolytic cleavage, and characterized by different receptor-binding and matrix-binding properties. These isoforms are known to give rise to a spectrum of angiogenesis patterns marked by differences in branching, which has functional implications for tissues. In this review, we detail the extensive extracellular regulation of VEGF and the ability of VEGF to dictate the vascular phenotype. We explore the role of VEGF-releasing proteases and soluble carrier molecules on VEGF activity. While proteases such as MMP9 can ‘release’ matrix-bound VEGF and promote angiogenesis, for example as a key step in carcinogenesis, proteases can also suppress VEGF's angiogenic effects. We explore what dictates pro- or anti-angiogenic behavior. We also seek to understand the phenomenon of VEGF gradient formation. Strong VEGF gradients are thought to be due to decreased rates of diffusion from reversible matrix binding, however theoretical studies show that this scenario cannot give rise to lasting VEGF gradients in vivo. We propose that gradients are formed through degradation of sequestered VEGF. Finally, we review how different aspects of the VEGF signal, such as its concentration, gradient, matrix-binding, and NRP1-binding can differentially affect angiogenesis. We explore how this allows VEGF to regulate the formation of vascular networks across a spectrum of high to low branching densities, and from normal to pathological angiogenesis. A better understanding of the control of angiogenesis is necessary to improve upon limitations of current angiogenic therapies.  相似文献   

16.
VEGF-receptor signal transduction   总被引:32,自引:0,他引:32  
The vascular endothelial growth factor (VEGF) family of ligands and receptors has been the focus of attention in vascular biology for more than a decade. There is now a consensus that the VEGFs are crucial for vascular development and neovascularization in physiological and pathological processes in both embryo and adult. This has facilitated a rapid transition to their use in clinical applications, for example, administration of VEGF ligands to enhance vascularization of ischaemic tissues and, conversely, inhibitors of VEGF-receptor function in anti-angiogenic therapy. More recent data indicate essential roles for the VEGFs in haematopoietic cell function and in lymphangiogenesis.  相似文献   

17.
Angiogenesis and microvascular leakage are features of chronic inflammatory diseases of which molecular mechanisms are poorly understood. We investigated the effects of interleukin-1β (IL-1β) on the expression and secretion of vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF) in porcine airway smooth muscle cells (PASMC) in relation to a nitric oxide (NO) pathway. Serum-deprived (48 h) PASMC were stimulated with IL-1β alone or with NO donor, l-arginine and/or NO synthase inhibitor l-NAME for 4 and 24 h. IL-1β did not affect PlGF release, but augmented VEGF release (2.4-fold) after 24 h. VEGF release was inhibited by l-NAME (531.8 ± 52 pg/ml), but restored and further elevated by l-arginine (1,529 ± 287 pg/ml). IL-1β up-regulated VEGF mRNA (1.8-fold) and this response was attenuated by l-NAME (1.1-fold) and augmented by l-arginine (3.8-fold) at 4 h. Restoration of a NO pathway by l-arginine in l-NAME-treated cells resulted in elevated VEGF mRNA levels (2.2-fold). [3H]Thymidine incorporation assay revealed enhanced porcine pulmonary artery endothelial cell proliferation in response to IL-1β, VEGF and PlGF, and this mitogenic effect was not influenced via the NO pathway. Our results suggest that a NO pathway modulates VEGF synthesis during inflammation contributing to bronchial angiogenesis and vascular leakage.  相似文献   

18.

[Purpose]

The purpose of this study was to investigate the effects of aquatic exercise and CES treatment on the cognitive function by using K-WAB and BDNF, IGF-1, and VEGF of persons with intellectual disabilities.

[Methods]

All subjects were 15 male with intellectual disabilities who were participating in the aquatic training program and CES treatment during 12 weeks at rehabilitation center. The subjects were divided into control group, exercise group, and exercise+CES group. Blood samples for BDNF, IGF-1, and VEGF were taken from brachial vein at rest between before and after treatment.

[Results]

The results are summarized as follows: Cognitive function level increased significantly in the exercise+CES group compared to those in the exercise and control group. The changes of blood IGF-1 concentration were no significant difference among groups. The changes of blood BDNF and VEGF concentration were significantly increased in exercise group and exercise+CES group than control group. However, blood BDNF and VEGF concentration were significantly difference between exercise group and exercise+CES group.

[Conclusion]

In conclusion, it can be concluded that CES treatment with exercise can amend cognitive function of persons with intellectual disabilities more effectively and increase of BDNF and VEGF by exercise can explain the cognitive function improvement of persons with intellectual disabilities.  相似文献   

19.
Angiogenesis has an essential role in many important pathological and physiological settings. It has been shown that vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), a potent cytokine expressed by most malignant tumors, has critical roles in vasculogenesis and both physiological and pathological angiogenesis. We report here that at non-toxic levels, the neurotransmitter dopamine strongly and selectively inhibited the vascular permeabilizing and angiogenic activities of VPF/VEGF. Dopamine acted through D2 dopamine receptors to induce endocytosis of VEGF receptor 2, which is critical for promoting angiogenesis, thereby preventing VPF/VEGF binding, receptor phosphorylation and subsequent signaling steps. The action of dopamine was specific for VPF/VEGF and did not affect other mediators of microvascular permeability or endothelial-cell proliferation or migration. These results reveal a new link between the nervous system and angiogenesis and indicate that dopamine and other D2 receptors, already in clinical use for other purposes, might have value in anti-angiogenesis therapy.  相似文献   

20.
Many proliferative diseases, most typically cancer, are driven by uncontrolled blood vessel growth. Genetic studies have been very helpful in unraveling the cellular and molecular players in pathological blood vessel formation and have provided opportunities to reduce tumor growth and metastasis. The fact that tumor vessels and normal blood vessels have distinct properties may help in designing more specific--and therefore safer--anti-angiogenic strategies. Such strategies may interfere with angiogenesis at the cellular or molecular level. Possible molecular targets include angiogenic growth factors and their receptors, proteinases, coagulation factors, junctional/adhesion molecules and extracellular matrix (ECM) components. Some anti-angiogenic drugs, i.e., vascular endothelial growth factor (VEGF) antibodies and VEGF receptor-2 (VEGFR-2) inhibitors, have progressed into clinical cancer trials. While the results of these trials support the potential of anti-angiogenic therapy to treat cancer, they also demonstrate the need for more effective and safer alternatives. Targeting placental growth factor (PlGF) or VEGFR-1 may constitute such an alternative since animal studies have proven their pleiotropic working mechanism and attractive safety profile. Together, these insights may bring anti-angiogenic drugs closer from bench to bedside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号