首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
P. S. Schnable  R. P. Wise 《Genetics》1994,136(3):1171-1185
T (Texas) cytoplasm is associated with a mitochondrial disruption that is phenotypically expressed during microsporogenesis resulting in male sterility. Restoration of pollen fertility in T-cytoplasm maize is controlled by dominant alleles at two unlinked, complementary, nuclear-encoded genes, rf1 and rf2. As a first step in the molecular isolation of the rf2 gene, 178,300 gametes derived from plants that carried the Mutator, Cy or Spm transposon families were screened for rf2 mutant alleles (rf2-m) via their inability to restore pollen fertility to T-cytoplasm male-sterile maize. Seven heritable rf2-m alleles were recovered from these transposon populations. Pedigrees and restriction fragment length polymorphism (RFLP)-based analyses indicated that all seven rf2-m alleles were derived independently. The ability to obtain rf2-m derivatives from Rf2 suggests that Rf2 alleles produce a functional product necessary to restore pollen fertility to cmsT. Molecular markers flanking the rf1 and rf2 loci were used to decipher segregation patterns in progenies segregating for the rf2-m alleles. These analyses provided preliminary evidence of a weak, third restorer gene of cmsT that can substitute for Rf1.  相似文献   

4.
5.
6.
Polyspecific antibody to a 17 amino acid synthetic peptide from the maize T-cytoplasm urf13-T mitochondrial open reading frame immunoprecipitated a 13 kD polypeptide from 35S-methionine incorporations of T cytoplasm maize. Male-fertile, toxin-insensitive mutants in which the urf13-T sequence is deleted do not synthesize the 13 kD polypeptide. A mutant designated T-4, which carries a 5 bp insertion and a premature stop codon, synthesizes a truncated polypeptide, corresponding to an open reading frame of 8.3 kD. Thus the 13 kD polypeptide is trunctated or absent in mutants expressing male fertility and toxin insensitivity in T-cytoplasm maize.USDA-ARS  相似文献   

7.
Liu F  Cui X  Horner HT  Weiner H  Schnable PS 《The Plant cell》2001,13(5):1063-1078
Some plant cytoplasms express novel mitochondrial genes that cause male sterility. Nuclear genes that disrupt the accumulation of the corresponding mitochondrial gene products can restore fertility to such plants. The Texas (T) cytoplasm mitochondrial genome of maize expresses a novel protein, URF13, which is necessary for T cytoplasm-induced male sterility. Working in concert, functional alleles of two nuclear genes, rf1 and rf2, can restore fertility to T cytoplasm plants. Rf1 alleles, but not Rf2 alleles, reduce the accumulation of URF13. Hence, Rf2 differs from typical nuclear restorers in that it does not alter the accumulation of the mitochondrial protein necessary for T cytoplasm-induced male sterility. This study established that the rf2 gene encodes a soluble protein that accumulates in the mitochondrial matrix. Three independent lines of evidence establish that the RF2 protein is an aldehyde dehydrogenase (ALDH). The finding that T cytoplasm plants that are homozygous for the rf2-R213 allele are male sterile but accumulate normal amounts of RF2 protein that lacks normal mitochondrial (mt) ALDH activity provides strong evidence that rf2-encoded mtALDH activity is required to restore male fertility to T cytoplasm maize. Detailed genetic analyses have established that the rf2 gene also is required for anther development in normal cytoplasm maize. Hence, it appears that the rf2 gene was recruited recently to function as a nuclear restorer. ALDHs typically have very broad substrate specificities. Indeed, the RF2 protein is capable of oxidizing at least three aldehydes. Hence, the specific metabolic pathway(s) within which the rf2-encoded mtALDH acts remains to be discovered.  相似文献   

8.
9.
With an aim to clone the sorghum fertility restorer gene Rf1, a high-resolution genetic and physical map of the locus was constructed. The Rf1 locus was resolved to a 32-kb region spanning four open reading frames: a plasma membrane Ca2+-ATPase, a cyclin D-1, an unknown protein, and a pentatricopeptide repeat (PPR13) gene family member. An ~19-kb region spanning the cyclin D-1 and unknown protein genes was completely conserved between sterile and fertile plants as was the sequence spanning the coding region of the Ca2+-ATPase. In contrast, 19 sequence polymorphisms were located in an ~7-kb region spanning PPR13, and all markers cosegregated with the fertility restoration phenotype. PPR13 was predicted to encode a mitochondrial-targeted protein containing a single exon with 14 PPR repeats, and the protein is classified as an E-type PPR subfamily member. To permit sequence-based comparison of the sorghum and rice genomes in the Rf1 region, 0.53 Mb of sorghum chromosome 8 was sequenced and compared to the colinear region of rice chromosome 12. Genome comparison revealed a mosaic pattern of colinearity with an ~275-kb gene-poor region with little gene conservation and an adjacent, ~245-kb gene-rice region that is more highly conserved between rice and sorghum. Despite being located in a region of high gene conservation, sorghum PPR13 was not located in a colinear position on rice chromosome 12. The present results suggest that sorghum PPR13 represents a potential candidate for the sorghum Rf1 gene, and its presence in the sorghum genome indicates a single gene transposition event subsequent to the divergence of rice and sorghum ancestors.An erratum to this article can be found at  相似文献   

10.
11.
12.
To reveal the allelic differentiations at the two genes for fertility restoration (Rf) on chromosomes 1 (Rf3) and 10 (Rf4), 15 chromosome single segment substitution lines (SSSLs) with the Rf3 locus and 18 SSSLs with the Rf4 locus were crossed with Bobai A (BbA), a cytoplasmic male sterility line with wild abortive type of cytoplasm (WA-CMS), respectively. Based on the pollen and seed fertility of the F1 hybrids, the Rf3 and Rf4 genes were each classified into four alleles, namely Rf3-1, Rf3-2, Rf3-3, and Rf3-4 for Rf3, and Rf4-1, Rf4-2, Rf4-3, and Rf4-4 for Rf4. Out of the 33 SSSLs, an SSSL W23-19-06-06-11 carrying the genotype Rf3-4Rf3-4/Rf4-4Rf4-4 possessed the strongest restoring ability for BbA. To determine the genetic effects of Rf3 and Rf4 for WA-CMS, one BC3F2 population possessing the genetic background of W23-19-06-06-11 was generated from the cross between W23-19-06-06-11 and BbA by backcrossing and marker-assisted selection. In the BC3F2 population, the plants carrying the Rf3Rf3/Rf4Rf4, Rf3Rf3/rf4rf4, and rf3rf3/Rf4Rf4 genotypes were selected and their phenotyping for pollen and spikelet fertility were evaluated. The result showed that under the genetic background of SSSL W23-19-06-06-11, the effect of Rf4 appeared to be slightly larger than that of Rf3 and their effects were additive for WA-CMS system. These studies will lead to the transfer of Rf genes into adapted cultivars through marker-assisted selection in active hybrid rice breeding programs.  相似文献   

13.
Genes at two unlinked loci (Tox1A and Tox1B) are required for production of the polyketide T-toxin by Cochliobolus heterostrophus race T, a pathogenic fungus that requires T-toxin for high virulence to maize with T-cytoplasm. Previous work indicated that Tox1A encodes a polyketide synthase (PKS1) required for T-toxin biosynthesis and for high virulence. To identify genes at Tox1B, a wild-type race T cDNA library was screened for genes missing in the genome of a Tox1B deletion mutant. The library was probed, first with a 415-kb NotI restriction fragment from the genome of the Tox1B mutant, then with the corresponding 560-kb fragment from the genome of wild type. Two genes, DEC1 (similar to acetoacetate decarboxylase-encoding genes) and RED1 (similar to genes encoding members of the medium-chain dehydrogenase/reductase superfamily), were recovered. Targeted disruption of DEC1 drastically reduced both T-toxin production and virulence of race T to T-cytoplasm maize, whereas specific inactivation of RED1 had no apparent effect on T-toxin production (as determined by bioassay) or on virulence. DEC1 and RED1 map within 1.5 kb of each other on Tox1B chromosome 6;12 and are unique to the genome of race T, an observation consistent with the hypothesis that these genes were acquired by C. heterostrophus via a horizontal transfer event.  相似文献   

14.
15.
16.
17.
18.
Molecular markers closely linked to the Restorer of fertility (Rf) locus in petunia were sought by conducting a bulk segregant analysis. The co-segregation of markers and Rf was tested on a large BC1 population produced from two different parental lines carrying Rf. The recombination frequency between OP704 and ECCA/MACT, the two most distal markers utilized in the fine-scale mapping. was significantly different in populations derived from parents that carry different nuclear backgrounds. The fine mapping identified an amplified fragment length polymorphism (AFLP) marker that co-segregates with Rf. A petunia BIBAC library (four genome equivalents), with an average insert size of 70 kb, was constructed and screened with the linked marker. A contiguous map was constructed from three different BIBAC clones that hybridized to the marker. As a result, we have identified a 37.5-kb BIBAC clone that co-segregates with Rf.  相似文献   

19.
C J Braun  J N Siedow    C S Levings  rd 《The Plant cell》1990,2(2):153-161
Expression of the maize mitochondrial T-urf13 gene results in a sensitivity to a family of fungal pathotoxins and to methomyl, a structurally unrelated systemic insecticide. Similar effects of pathotoxins and methomyl are observed when T-urf13 is cloned and expressed in Escherichia coli. An interaction between these compounds and the membrane-bound URF13 protein permeabilizes the inner mitochondrial and bacterial plasma membranes. To understand the toxin-URF13 effects, we have investigated whether toxin specifically binds to the URF13 protein. Our studies indicate that toxin binds to the URF13 protein in maize mitochondria and in E. coli expressing URF13. Binding analysis in E. coli reveals cooperative toxin binding. A low level of specific toxin binding is also demonstrated in cms-T and cms-T-restored mitochondria; however, binding does not appear to be cooperative in maize mitochondria. Competition and displacement studies in E. coli demonstrate that toxin binding is reversible and that the toxins and methomyl compete for the same, or for overlapping, binding sites. Two toxin-insensitive URF13 mutants display a diminished capability to bind toxin in E. coli, which identifies residues of URF13 important in toxin binding. A third toxin-insensitive URF13 mutant shows considerable toxin binding in E. coli, demonstrating that toxin binding can occur without causing membrane permeabilization. Our results indicate that toxin-mediated membrane permeabilization only occurs when toxin or methomyl is bound to URF13.  相似文献   

20.
Two major nuclear genes, Rf3 and Rf4, are known to be associated with fertility restoration of wild-abortive cytoplasmic male sterility (WA-CMS) in rice. In the present study, through a comparative sequence analysis of the reported putative candidate genes, viz. PPR9-782-(M,I) and PPR762 (for Rf4) and SF21 (for Rf3), among restorer and maintainer lines of rice, we identified significant polymorphism between the two lines and developed a set of PCR-based codominant markers, which could distinguish maintainers from restorers. Among the five markers developed targeting the polymorphisms in PPR9-782-(M,I), the marker RMS-PPR9-1 was observed to show clear polymorphism between the restorer (n = 120) and maintainer lines (n = 44) analyzed. Another codominant marker, named RMS-PPR762 targeting PPR762, displayed a lower efficiency in identification of restorers and maintainers, indicating that PPR9-782-(M,I) is indeed the candidate gene for Rf4. With respect to Rf3, a codominant marker, named RMS-SF21-5 developed targeting SF21, displayed significantly lower efficiency in identification of restorers and non-restorers as compared to the Rf4-specific markers. Validation of these markers in a F2 mapping population segregating for fertility restoration indicated that Rf4 has a major influence on fertility restoration and Rf3 is a minor gene. Further, the functional marker RMS-PPR9-1 was observed to be very useful in identification of impurities in a seed lot of the popular hybrid, DRRH3. Interestingly, when RMS-PPR9-1 and RMS-SF21-5 were considered in conjunction with analysis, near-complete, marker–trait co-segregation was observed, indicating that deployment of the candidate gene-specific markers both Rf4 and Rf3, together, can be helpful in accurate identification of fertility restorer lines and can facilitate targeted transfer of the two restorer genes into elite varieties through marker-assisted breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号