首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Macronuclear chromatin from vegetative cells of one mating type (O, or E) in Paramecium tetraurelia was transferred by micropipetting into the macronucleus of vegetative cells of the opposite mating type (E, or O). A few percent (<5%) of the recipient cells gave rise to, by asexual propagation, progenies amongst which some were found to have transformed their mating type in accordance with the donor chromatin. This demonstrates the transformation of mating type during asexual propagation of the cells. In the case of E chromatin transfer to O recipients, many asexual progenies of the recipients transformed from O to E mating type nevertheless remained O after one sexual cycle. Such results indicate two distinctive macronuclear activities in mating type determination: one determining mating type of vegetative cells and the other influencing the differentiation of the developing post-zygotic macronucleus for mating type. The results are interpreted by the hypothesis that the quantity of E macronuclear chromatin required for differentiation of the developing post-zygotic macronucleus from mating type is larger than required for mating type determination in vegetative cells.  相似文献   

2.
The odd (O) or even (E) mating type in Paramecium tetraurelia is determined during the first cell cycle after new macronuclear development. The present paper demonstrates that mating type E is irreversibly determined at the end of the first cell cycle. Direct evidence comes from transplanting O macronuclear karyoplasm containing O-determining factor into E autogamous cells during a new postzygotic macronuclear development. Transplantation of O macronuclear karyoplasm into E autogamous cells at 7–8 hr after the origin of the macronucleus from a product of the synkaryon produces nearly 100% O mating type among the exautogamous cell lines but almost none 10–11 hr after the origin of the macronucleus (around the end of the first cell cycle). The macronuclear anlagen at the stage at which mating type E seems to be fixed contains about 20 times as much DNA as the vegetative G1 micronucleus. The O-determining factor shifting E cells toward O mating type by transplanting O macronuclear karyoplasm is also produced by the newly developed macronucleus in an effective concentration at 10–11 hr after the sensitive period and produced at full levels by the third cell cycle. The level of O factor in the macronucleus then gradually declines with subsequent repeated rounds of DNA synthesis and is finally lost by the eighth cell cycle.  相似文献   

3.
Paramecium caudatum loses the ability to form food vacuoles at the crescent stage of the micronucleus from 5 to 6 hr after the initiation of conjugation and regains it immediately after the third division of the zygotic nucleus. To assess the micronuclear function in the development of the oral apparatus after coniugation, prezygotic micronuclei was removed from cells at various stages of conjugation, and their ability to form food vacuoles were examined. (1) When all of the prezygotic micronuclear derivatives were eliminated before the stage of formation of the zygotic nucleus, the exconjugant did not regain its ability. (2) When a zygotic nucleus or postzygotic nuclei were removed, in some cases the cell formed as many food vacuoles as did nonoperated cells after conjugation, while in other operated cells the number of food vacuoles was subnormal. (3) When a micronucleus from a cell at vegetative phase (G1) was transplanted into a cell of an amicronucleate mating pair at the stage between 8 and 9 hr after the initiation of conjugation, the implanted cell regained the ability to form food vacuoles. However, no cell regained the ability when the implantation was carried out within 1 hr after the separation of the mates. The results show that the micronucleus plays an indispensable role in the development of the oral apparatus at the stages of exchange of gametic nuclei and fertilization and that the micronucleus transplanted from asexual cells can fulfill this function. On the other hand, removal of the macronucleus from exconjugants showed that the maternal macronucleus also has an indispensable function in regaining the ability to form food Vacuoles. © 1992 Wiley-Liss, Inc.  相似文献   

4.
A portion of the macronucleus of wild-type cells of Paramecium tetraurelia was removed and was injected into cells homozygous for the ftA mutation. The ftA mutants make defective trichocysts and are unable to perform normal trichocyst exocytosis. After injection, approx. 30% of the surviving cells show a phenotype shift from mutant to wild-type. This shift is stable during subsequent vegetative growth until clonal death. If, however, the hybrid cell lines are brought to autogamy (which discards the existing macronucleus and forms a new one from sexual products derived from a micronucleus), then the lines revert to the ftA phenotype. Since micronuclei were not transplanted, the phenotypic reversion after autogamy is to be expected, and demonstrates that the transformation affects the macronucleus only. A second series of injections involved transfer of a portion of the macronucleus from cells homozygous for the trichocyst ptA mutation into ftA host cells. These two mutations are genetically complementary, so the injection should be genetically equivalent to forming a double heterozygote. Approx. 20% of the injection survivors shift to wild-type. This shift is also vegetatively stable unless autogamy occurs; after autogamy, reversion to the ftA phenotype is seen. These results show that a portion of a macronucleus can be successfully transplanted from one cell to another and that, in the host cytoplasmic environment, normal gene expression and replication of a transplanted macronucleus does occur. The technique of macronuclear transplantation is significant to studies of the macronuclear contribution to clonal aging, and to studies on genetic control over trichocyst development.  相似文献   

5.
Koizumi S  Kobayashi S 《Genetics》1984,107(3):367-373
The unique feature of the "B system" of mating-type determination found in Paramecium tetraurelia is the existence of a cytoplasmic difference between odd (O) and even (E) cells created and maintained by the action of their macronuclei. Thus far, the presence of a determining factor that controls the differentiation of the developing zygotic macronucleus for O mating type has not been verified. Results of crosses between cells of differing clonal age and complementary mating type suggest that, for one to two fissions after autogamy, O cells produce some factor that determines the gametic nucleus (micronucleus) as mating type O. Direct evidence for the production of O-determining factor by the young O macronucleus was obtained by transplanting young O macronuclear karyoplasm (a part of the macronucleus) into E cells: 32-35% of E exautogamous clones transformed to O; transformation of E exautogamous clones to O reached as high as 72% by transfer of young O macronuclear karyoplasm from a conjugant, 3-4 hr after mixing. This indicates that O determinants produced by the O macronucleus can also act during the sensitive period of development of the new macronucleus. These O-determining factors may be produced or activated at the sexual stage and then decrease in activity in subsequent fissions after new macronuclear reorganization.  相似文献   

6.
Mutant strain d48 of Paramecium tetraurelia lacks the gene for antigen A in the macronucleus, whereas this gene is present in the micronucleus. Transfer of macronucleoplasm from the wild type to strain d48 caused d48 to revert to the wild type after autogamy. Transfer of cytoplasm was not as effective as transfer of macronucleoplasm. It was also found that the micronucleus of d48 developed normally when it was transplanted to wild-type cells, whereas the micronucleus of the wild type formed a macronucleus that lacked the antigen A gene when this micronucleus was transplanted into d48. It was concluded that the micronucleus of d48 has a normal antigen A gene and that the hereditary determinants responsible for the d48 trait are located in the macronucleus. Molecular analysis of d48 clones that had been induced to revert to the wild type revealed that they possessed the antigen A gene in the macronucleus.  相似文献   

7.
ABSTRACT. Mutant strain d48 and d12 cannot express serotype A. In d48, the A i-antigen gene is present in the micronucleus, but not in the macronucleus. It has recently been shown that d12 contains the A gene in its micronucleus, but its macronucleus lacks the gene. Micronuclear transplantations into enucleated cells were performed to analyze those mutants. Reciprocal transplantation between wild type and d48 confirmed that d48 contains the A gene in the micronucleus and its cytoplasm is defective. Wild type 51 enucleated cells into which were transplanted d12 micronuclei could not express A. Amiccronucleate d12 cells into which were transplanted normal micronuclei from 51 or d48 showed no expression of A. These results show that even if the micronucleus of d12 contains the A gene, it must be abnormal, and its cytoplasm is also defective the same as d48. Genetic analysis showed that heterozygote of d12 and wild type 51 or d48 caused a cure of the cytoplasmic defect of d48 and d12 during the development of macronuclei.  相似文献   

8.
ABSTRACT. The germinal micronucleus divides six times during conjugation of Paramecium caudatum : this includes two meiotic divisions and one mitosis of haploid nuclei during mating, and three mitoses of a fertilization nucleus (synkaryon). Microsurgical removal of the macronucleus showed that micronuclei were able to divide repeatedly in the absence of the macronucleus, after metaphase of meiosis I of the micronucleus and also after synkaryon formation. When the macronucleus was removed after the first division of synkaryon, in an extreme case the synkaryon divided five times and produced 32 nuclei, compared to three divisions and eight nuclei produced in the presence of the macronucleus. Treatment with actinomycin D (100 μ /ml) inhibited the morphological changes of the macronucleus during conjugation and induced a multimicronucleate state in exconjugants. However, in other cells, it induced production of a few giant micronuclei. We conclude that the micronucleus is able to undergo repeated divisions at any stage of conjugation in the absence of the macronucleus once the factor(s) for induction of the micronuclear division has been produced by the macronucleus. The macronucleus may also produce a regulatory factor required to stop micronucler division.  相似文献   

9.
In conjugating pairs of Paramecium caudatum, the micronuclear events occur synchronously in both members of the pair. To find out whether micronuclear behavior is controlled by the somatic macronucleus or by the germinal micronucleus, and whether or not synchronization of micronuclear behavior is due to intercellular communication between conjugating cells, the behavior of the micronucleus was examined after removal of the macronuclei from either or both cells of a mating pair at various stages of conjugation. When macronuclei were removed from both cells of a pair, micronuclear development was arrested 1 to 1.5 hr after macronuclear removal. When the macronucleus of a micronucleate cell mating with an amicronucleate cell was removed later than 3 to 3.5 hr of conjugation, that is, an early stage of meiotic prophase of the micronucleus, micronuclear events occurred normally in the operated cell. These results suggest that most micronuclear events are under the control of the macronucleus and that the gene products provided by the macronucleus are transferable between mating cells. One such product is required for induction of micronuclear division and is provided just before metaphase of the first meiotic division of the micronucleus. This factor is effective at a lower concentration in the cytoplasm and/or is more transferable between mating cells than the factors required for other stages. This factor, which seems to be present at least until the stage of micronuclear disintegration, is able to induce repeated micronuclear division as long as it remains active. The factor can act on a micronucleus which has not passed through a meiotic prophase. Moreover, the results suggest the existence of a second factor which is provided by the macronucleus after the first meiotic division that inhibits further micronuclear division.  相似文献   

10.
Strain d48 of Paramecium tetraurelia contains the A i-antigen gene in the micronucleus, but the gene is lost when micronuclear products develop into the macronucleus. It has recently been shown that when injected into d48, macronucleoplasm from the wild type transforms d48 cells to wild type. It is shown here that wild-type cytoplasm can also bring about transformation, with a marked stage-specific sensitivity for both donor and recipient. It was also found that a plasmid containing the cloned A gene could transform d48 to wild type. Injection of nucleoplasm from animals in the vegetative stage of the cell cycle into the cytoplasm of recipients at various stages of autogamy caused high-frequency transformation of cells able to express the A serotype both before and after the next autogamy. Injection of nucleoplasm into vegetative macronuclei produced over 70% transformants able to express the A serotype after the next autogamy. The ability of nucleoplasm to transform was acquired at the second cell cycle after autogamy and was maintained throughout the vegetative stage. When cytoplasm was obtained from donors during autogamy and injected into the cytoplasm of recipients 1 to 2 h after the sensitive period, quite high frequencies of stable revertants were found when tested both before and after the next autogamy. Cells that were injected into the macronucleus with the cloned A plasmid expressed the A serotype after five fissions in over 20% of the lines and maintained this ability through successive fissions; all transformants except one stably expressed the A serotype even after the next autogamy.  相似文献   

11.
The micronuclei of the ciliated protozoan Pseudourostyla cristata were eliminated by amputation shortly before binary fusion. The amicronucleate cell lines derived from regenerants were maintained for more than a year. They exhibited a lower viability and reduced vigor in asexual propagation. There was some improvement in the growth of the cell lines 1 mo after operation, but the growth rate remained subnormal even up to 1 yr of culture. The exact cause of the poor growth and survival in the first 3 wk after operation, whether the loss of the micronucleus or operational damage, remains to be determined. It is nevertheless clear that the micronucleus is important for subsequent asexual propagation. The amicronucleate cell lines were permanently crippled in morphogenesis, unlike the situation in Paramecium amicronucleates in which stomatogenesis returned to near-normal during asexual propagation. They always included some cells with a characteristically defective adoral zone of membranelles, reduced number of frontal-ventral-transverse cirri, and reduced body length. They were also reluctant to encyst. It is evident that the micronucleus is important for maintaining normality of the oral apparatus. It is postulated that the permanent stomatogenic crippling of amicronucleates might be related to genomic reduction in the developing macronucleus in sexual reproduction, as exhibited by other hypotrichs. The morphological defects associated with the adoral zone of membranelles may be rationalized as arising from the spreading of a zone of degeneration in the cortex affecting the left edge of the membranelles.  相似文献   

12.
Localization of genes for ribosomal RNA in the nuclei of Oxytricha fallax   总被引:1,自引:0,他引:1  
The location of ribosomal RNA (rRNA) genes in the nuclei of the ciliated protozoan, Oxytricha fallax, was analysed by in situ hybridization. The micronuclear genome of O. fallax has typical chromosomal DNA organization. Macronuclei, although derived from micronuclei, lack chromosomes and instead contain short pieces of DNA ranging from 500 to 20 000 base pairs in length. In situ hybridization was carried out to determine if specific DNA sequences are limited to certain locations within the macronucleus, or if sequences are randomly arranged. Cells were fixed, squashed and then hybridized with 3H-labelled RNA synthesized in vitro using cloned O. fallax rDNA as a template. After autoradiography, silver grains were found to be distributed uniformly over the entire macronucleus without any detectable localization to specific regions. The uniformity of hybridization indicates that rDNA molecules are randomly dispersed throughout the macronucleus and suggests that the macronuclear genetic apparatus lacks any substantial multimolecular organization. S phase macronuclei also showed a uniform distribution of rDNA molecules, irrespective of the position of the replication band at which DNA synthesis takes place. The micronuclei, in contrast, did not show any hybridization, even in cells in which macronuclei were heavily labelled. Macronuclear anlagen, in which the micronuclear chromosomes are polytenized, also do not hybridize. This absence of hybridization indicates a much lower concentration of rDNA in the micronucleus than in the macronucleus. The change in rDNA concentration of rRNA genes presumably occurs during the complicated process of development of a macronucleus from a micronucleus.  相似文献   

13.
The macronucleus of Paramecium caudatum controls most cellular activities, including sexual immaturity after conjugation. Exconjugant cells have two macronuclear forms: (1) fragments of the maternal macronucleus, and (2) the new macronuclei that develop from the division products of a fertilization micronucleus. The fragments are distributed into daughter cells without nuclear division and persist for at least eight cell cycles after conjugation. Conjugation between heterokaryons revealed that the fragmented maternal macronuclei continued to express genetic information for up to eight cell cycles. When the newly developed macronucleus was removed artificially within four cell cycles after conjugation, the clones regenerated the macronuclear fragments (macronuclear regeneration; MR) and showed mating reactivity, because they were sexually mature. However, when the new macronucleus was removed during later stages, many MR clones did not show mating reactivity. In some extreme cases, immaturity continued for more than 50 fissions after conjugation, as seen with normal clones that had new macronuclei derived from a fertilization micronucleus. These results indicate that the immaturity determined by the new macronucleus is not annulled by the regenerated maternal macronucleus. Mature macronuclear fragments may be "reprogrammed" in the presence of the new macronucleus, resulting in their expression of "immaturity."  相似文献   

14.
Macronuclear karyoplasm was transplanted from pre-autogamous donor cells (clonal age, 22 fissions) into the macronucleus of young recipient cells (2 fissions after autogamy occurred) by means of microinjection. A reciprocal experiment was carried out by injecting karyoplasm from young clonal age donors into pre-autogamous recipients. In the case of karyoplasm transfer from pre-autogamous donors to young recipients, autogamy occurred early in 67% of injected cells, whereas reciprocal injections had no influence on the onset of autogamy, and all of the injected cells underwent autogamy. Such results indicate a distinct role of pre-autogamous cells of macronucleus in the induction of autogamy.  相似文献   

15.
16.
The macro- and micronucleus of Tetrahymena pyriformis are formed from a common diploid synkaryon during conjugation. Shortly after the 2nd postzygotic division, distinct morphologic and physiologic differences develop between the 2 nuclei. Micronuclei remain small, presumably diploid, and electronmicroscopic observations indicate that micronuclear DNA is contained in a dense, fibrous, chromosome-like coil. Macronuclei contain considerably more DNA than micronuclei, and the DNA of the macronucleus is found largely in the chromatin bodies typical of ciliate nuclei. The functional differences between macro- and micronuclei in vegetative cells also are striking. The template activity of DNA in the micronucleus is highly restricted compared to that in the macronucleus. Micronuclei synthesize and contain little RNA, and do not contain either nucleoli or ribonucleoprotein granules. Macronuclei, on the other hand, synthesize and contain large amounts of RNA and have many nucleoli and ribonucleoprotein granules. Macro- and micronuclei also have distinct differences in the timing of DNA synthesis during the cell cycle and in the timing and mechanism of nuclear division. Finally, during conjugation the macronucleus becomes pycnotic and disappears while the micronucleus undergoes meiosis and fertilization, ultimately giving rise to new macro- and new micronuclei. In short, the macro- and micronuclei of Tetrahymena provide an excellent system for studying the molecular mechanisms by which the same (or related) genetic information is maintained in different structural and functional states. Methods have been devised to isolate and purify macro- and micronuclei of Tetrahymena in the hope of correlating differences in the nucleoprotein composition of these nuclei with differences in their structure and function. The DNAs of macro- and micronuclei have been found to differ markedly in their content of a methylated base, N6-methyl adenine, and major differences in the histones of the 2 nuclei have been observed. Macronuclei contain histones similar to those found in vertebrate nuclei, while 2 major histone fractions seem to be missing in micronuclei. In addition, histone fraction F2A1 which is found in multiple, acetylated forms in macronuclei, is present only as a single, unacetylated form in micronuclei.  相似文献   

17.
Tetrahymena thermophila has a multiple mating type system. While a sexually mature cell usually expresses only one mating type, its germline (micronucleus) carries the genetic potential for 5 to 7 mating types. The set of allowed mating types is specified by the mat locus. The choice of which particular mating type is expressed by a cell reflects a somatically inherited, developmentally programmed differentiation of the somatic nucleus (macronucleus). In this work we report that the mat locus maps to the left arm of chromosome 2, as determined by nullisomic deletion mapping. We also report a distance of 29 cM between the mat locus and the ribosomal RNA gene, previously mapped to chromosome 2L. This represents another (rare) case of meiotic linkage in Tetrahymena. © 1992 Wiley-Liss, Inc.  相似文献   

18.
An amicronucleate clone of Tetrahymena pyrijormis has been found among the asexual progeny of irradiated cells of strain EU 6000 (variety 6, mating type I). Log-phase cells of this clone, designated EU 6525, have a mean generation time (6.0 hr) longer than that of the micronucleate strain, EU 6000 (2.9 hr). Further irradiation studies of strain EU 6000 indicate that the recovery of viable amicronucleate populations is rare although many amicronucleate cells are found among surviving progeny.1 Attempts to introduce micronuclei into amicronucleate cells of strain EU 6525 by conjugation have been made. Micronucleate lines are obtained from amicronu create pair members only in low frequency. These results, considered together with those of other workers, suggest that some change in the state of the cell, additional to the physical loss (or gain) of the micronucleus, must occur before viable amicronucleate clones can be obtained from micronucleate cells, or before amicronucleate cells can produce viable micronucleate lineages. An alteration in mean generation time may be a reflection of this change, or it may simply be a direct consequence of micronuclear removal. The results further imply that the ciliate micronucleus unquestionably contributes information to the cell during asexual growth and reproduction.  相似文献   

19.
Feulgen-stained preparations of mixtures of starved Tetrahymena thermophila cells of complementary mating types have revealed an atypical form of conjugation involving cells which have completed the nuclear events of cell division, but have not undergone cytokinesis. Both micronuclei in the dividing cells are induced to undergo meiosis, but in 21 of 23 cases, the anterior micronucleus was activated 1st, suggesting that the meiotic inducer is synthesized near the mating junction and diffuses posteriad. Despite the induction of two micronuclei, “triad” conjugants appear to regulate nuclear events so as to produce a normal outcome.  相似文献   

20.
When autogamy was induced in competent cells of Paramecium tetraurelia by depriving them of food, the onset of autogamy was preceded by a critical fission which occurred in the starvation medium. When the cells were fed again immediately after the fission, they did not undergo autogamy. However, they did undergo autogamy when they were fed later than 1 hr after the critical fission. The irreversible differentiation for autogamy seems to be at about 1 hr after the critical fission. This procedure thus provides the opportunity to induce autogamy synchronously. The result of macronuclear transplantation demonstrated that autogamy was under the control of macronucleus. Moreover, the clonal age required for autogamy was found to be shortened by repetitive elimination of a part of the macronucleus. The result can be explained by the hypothesis that clonal age is measured in rounds of chromosome replication or DNA synthesis rather than cell divisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号