首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Loxosceles spider venom usually causes a typical dermonecrotic lesion in bitten patients, but it may also cause systemic effects that may be lethal. Gel filtration on Sephadex G-100 ofLoxosceles gaucho, L. laeta, orL. intermedia spider venoms resulted in three fractions (A, containing higher molecular mass components, B containing intermediate molecular mass components, and C with lower molecular mass components). The dermonecrotic and lethal activities were detected exclusively in fraction A of all three species. Analysis by SDS-PAGE showed that the major protein contained in fraction A has molecular weight approximately 35 kDa inL. gaucho andL. intermedia, but 32 kDa inL. laeta venom. These toxins were isolated from venoms ofL. gaucho, L. laeta, andL. intermedia by SDS-PAGE followed by blotting to PVDF membrane and sequencing. A database search showed a high level of identity between each toxin and a fragment of theL. reclusa (North American spider) toxin. A multiple sequence alignment of theLoxosceles toxins showed many common identical residues in their N-terminal sequences. Identities ranged from 50.0% (L. gaucho andL. reclusa) to 61.1% (L. intermedia andL. reclusa). The purified toxins were also submitted to capillary electrophoresis peptide mapping afterin situ partial hydrolysis of the blotted samples. The results obtained suggest thatL. intermedia protein is more similar toL. laeta toxin thanL. gaucho toxin and revealed a smaller homology betweenL. intermedia andL gaucho. Altogether these findings suggest that the toxins responsible for most important activities of venoms ofLoxosceles species have a molecular mass of 32–35 kDa and are probably homologous proteins.  相似文献   

2.
The most common manifestation of Loxosceles spider envenoming is a dermonecrotic lesion at the bite site. Dermonecrotic toxins from Loxosceles gaucho venom were purified and characterized by mass spectrometry (capillary liquid chromatography followed by mass spectrometry detection). Two components were purified: a major one of 31,444 Da, called loxnecrogin A, and a minor one of 31,626 Da, called loxnecrogin B, being probably two isoforms of the toxin. The N-terminal sequence of loxnecrogin A showed similarity with N termini of other sphingomyelinolytic dermonecrotic toxins isolated from venoms of different Loxosceles species. The internal sequences did not present any statistically significant hits in sequence databases searches. However, loxnecrogin A partial sequence showed high similarity to regions of L. intermedia LiD1 recombinant protein sequence, recently described in the literature but not yet deposited in databanks.  相似文献   

3.
Brown spiders have a worldwide distribution, and their venom has a complex composition containing many different molecules. Herein, we report the existence of a family of astacin-like metalloprotease toxins in Loxosceles intermedia venom, as well as in the venom of different species of Loxosceles. Using a cDNA library from the L. intermedia venom gland, we cloned two novel cDNAs encoding astacin-like metalloprotease toxins, LALP2 and LALP3. Using an anti-serum against the previously described astacin-like toxin in L. intermedia venom (LALP1), we detected the presence of immunologically-related toxins in the venoms of L. intermedia, Loxosceles laeta, and Loxosceles gaucho. Zymographic experiments showed gelatinolytic activity of crude venoms of L. intermedia, L. laeta, and L. gaucho (which could be inhibited by the divalent metal chelator 1,10-phenanthroline) at electrophoretic mobilities identical to those reported for immunological cross-reactivity. Moreover, mRNAs extracted from L. laeta and L. gaucho venom glands were screened for astacin-like metalloproteases, and cDNAs obtained using LALP1-specific primers were sequenced, and their deduced amino acid sequences confirmed they were members of the astacin family with the family signatures (HEXXHXXGXXHE and MXY), LALP4 and LALP5, respectively. Sequence comparison of deduced amino acid sequences revealed that LALP2, LALP3, LALP4, and LALP5 are related to the astacin family. This study identified the existence of gene family of astacin-like toxins in the venoms of brown spiders and raises the possibility that these molecules are involved in the deleterious effects triggered by the venom.  相似文献   

4.
Loxosceles venom comprises a mixture of diverse toxins that induces intense local inflammatory reaction, dermonecrotic injury, platelet aggregation, hemolytic anemia and acute renal failure. Among several toxins in the venom, phospholipases D (PLDs), also called dermonecrotic toxins, are the most important and best studied, since they account for the main effects observed in loxoscelism. Despite their importance, biological analysis of PLDs is hampered by the minute amounts normally purified from the venom, and therefore many efforts have been made to clone those toxins. However, to date, no PLD from Loxosceles gaucho has been obtained in a heterologous system. Thus, in this work we show the cloning of a PLD from L. gaucho venom gland, named LgRec1, which was successfully expressed in a bacterial system. LgRec1 evoked local reaction (edema, erythema, ecchymosis, and paleness), dermonecrosis and hemolysis. It was also able to hydrolyze sphingomyelin and promote platelet aggregation. ELISA and Western blot analysis showed that LgRec1 was recognized by an anti-L. gaucho venom serum, a commercial arachnidic antivenom as well as a monoclonal antibody raised against the dermonecrotic fraction of L. gaucho venom. In addition, LgRec1 demonstrated to be highly immunogenic and antibodies raised against this recombinant toxin inhibited local reaction (∼65%) and dermonecrosis (∼100%) elicited by L. gaucho whole venom. Since PLDs are considered the major components accounting for the local and systemic envenomation effects caused by spiders from genus Loxosceles, the information provided here may help to understand the mechanisms behind clinical symptomatology.  相似文献   

5.
Brown spiders of the Loxosceles genus are distributed worldwide. In Brazil, eight species are found in Southern states, where the envenomation by Loxosceles venom (loxoscelism) is a health problem. The mechanism of the dermonecrotic action of Loxosceles venom is not totally understood. Two isoforms of dermonecrotic toxins (loxnecrogins) from L. gaucho venom have been previously purified, and showed sequence similarities to sphingomyelinase. Herein we employed a proteomic approach to obtain a global view of the venom proteome, with a particular interest in the loxnecrogin isoforms' pattern. Proteomic two-dimensional gel electrophoresis maps for L. gaucho, L. intermedia, and L. laeta venoms showed a major protein region (30-35 kDa, pI 3-10), where at least eight loxnecrogin isoforms could be separated and identified. Their characterization used a combined approach composed of Edman chemical sequencing, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and electrospray ionization-quadropole-time of flight tandem mass spectrometry leading to the identification of sphingomyelinases D. The venom was also pre-fractionated by gel filtration on a Superose 12 fast protein liqiud chromatography column, followed by capillary liquid chromatography-mass spectrometry. Eleven possible loxnecrogin isoforms around 30-32 kDa were detected. The identification of dermonecrotic toxin isoforms in L. gaucho venom is an important step towards understanding the physiopathology of the envenomation, leading to improvements in the immunotherapy of loxoscelism.  相似文献   

6.
Envenomation by Loxosceles spider is characterized by the development of dermonecrosis. In previous studies, we have demonstrated that increased expression/secretion of matrix metalloproteinases 2 and 9, induced by Loxosceles intermedia venom Class 2 SMases D (the main toxin in the spider venom), contribute to the development of cutaneous loxoscelism. In the present study we show that the more potent venom containing the Class 1 SMase D from Loxosceles laeta, in addition to increasing the expression/secretion of MMP2 and MMP9, also stimulates the expression of MMP7 (Matrilysin-1), which was associated with keratinocyte cell death. Tetracycline, a matrix metalloproteinase inhibitor, prevented cell death and reduced MMPs expression. Considering that L. laeta venom is more potent at inducing dermonecrosis than L. intermedia venom, our results suggest that MMP7 may play an important role in the severity of dermonecrosis induced by L. laeta spider venom SMase D. In addition, the inhibition of MMPs by e.g. tetracyclines may be considered for the treatment of the cutaneous loxoscelism.  相似文献   

7.

Background

The spider family Sicariidae includes two genera, Sicarius and Loxosceles. Bites by Sicarius are uncommon in humans and, in Brazil, a single report is known of a 17-year old man bitten by a Sicarius species that developed a necrotic lesion similar to that caused by Loxosceles. Envenomation by Loxosceles spiders can result in dermonecrosis and severe ulceration. Sicarius and Loxosceles spider venoms share a common characteristic, i.e., the presence of Sphingomyelinases D (SMase D). We have previously shown that Loxosceles SMase D is the enzyme responsible for the main pathological effects of the venom. Recently, it was demonstrated that Sicarius species from Africa, like Loxosceles spiders from the Americas, present high venom SMase D activity. However, despite the presence of SMase D like proteins in venoms of several New World Sicarius species, they had reduced or no detectable SMase D activity. In order to contribute to a better understanding about the toxicity of New World Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from the Brazilian Sicarius ornatus spider and compare these with venoms from Loxosceles species of medical importance in Brazil.

Methodology/Principal Findings

SDS-PAGE analysis showed variations in the composition of Loxosceles spp. and Sicarius ornatus venoms. Differences in the electrophoretic profiles of male and female venoms were also observed, indicating a possible intraspecific variation in the composition of the venom of Sicarius spider. The major component in all tested venoms had a Mr of 32–35 kDa, which was recognized by antiserum raised against Loxosceles SMases D. Moreover, male and female Sicarius ornatus spiders'' venoms were able to hydrolyze sphingomyelin, thus showing an enzymatic activity similar to that determined for Loxosceles venoms. Sicarius ornatus venoms, as well as Loxosceles venoms, were able to render erythrocytes susceptible to lysis by autologous serum and to induce a significant loss of human keratinocyte cell viability; the female Sicarius ornatus venom was more efficient than male.

Conclusion

We show here, for the first time, that the Brazilian Sicarius ornatus spider contains active Sphingomyelinase D and is able to cause haemolysis and keratinocyte cell death similar to the South American Loxosceles species, harmful effects that are associated with the presence of active SMases D. These results may suggest that envenomation by this Sicarius spider has the potential to cause similar pathological events as that caused by Loxosceles envenomation. Our results also suggest that, in addition to the interspecific differences, intraspecific variations in the venoms composition may play a role in the toxic potential of the New World Sicarius venoms species.  相似文献   

8.
Brown spider (Genus Loxosceles) bites are normally associated with necrotic skin degeneration, gravitational spreading, massive inflammatory response at injured region, platelet aggregation causing thrombocytopenia and renal disturbances. Brown spider venom has a complex composition containing many different toxins, of which a well-studied component is the dermonecrotic toxin. This toxin alone may produce necrotic lesions, inflammatory response and platelet aggregation. Biochemically, dermonecrotic toxin belongs to a family of toxins with 30-35 kDa characterized as sphingomyelinase-D. Here, employing a cDNA library of Loxosceles intermedia venom gland, we cloned and expressed two recombinant isoforms of the dermonecrotic toxin LiRecDT2 (1062 bp cDNA) and LiRecDT3 (1007 bp cDNA) that encode for signal peptides and complete mature proteins. Phylogenetic tree analysis revealed a structural relationship for these toxins compared to other members of family. Recombinant molecules were expressed as N-terminal His-tag fusion proteins in Escherichia coli and were purified to homogeneity from cell lysates by Ni(2+) chelating chromatography, resulting in proteins of 33.8 kDa for LiRecDT2 and 34.0 kDa for LiRecDT3. Additional evidence for related toxins containing sequence/epitopes identity comes from antigenic cross-reactivity using antibodies against crude venom toxins and antibodies raised with a purified dermonecrotic toxin. Recombinant toxins showed differential functionality in rabbits: LiRecDT2 caused a macroscopic lesion with gravitational spreading upon intradermal injection, while LiRecDT3 evoked transient swelling and erythema upon injection site. Light microscopic analysis of skin biopsies revealed edema, a collection of inflammatory cells in and around blood vessels and a proteinaceous network at the dermis. Moreover, differential functionality for recombinant toxins was also demonstrated by a high sphingomyelinase activity for LiRecDT2 and low activity for LiRecDT3 as well as greater in vitro platelet aggregation and blood vessel permeability induced by LiRecDT2 and residual activity for LiRecDT3. Cloning and expression of two recombinant dermonecrotic toxins demonstrate an intraspecific family of homologous toxins that act in synergism for deleterious activities of the venom and open possibilities for biotechnological applications for recombinant toxins as research tools for understanding the inflammatory response, vascular integrity and platelet aggregation modulators.  相似文献   

9.
Brown spider bites are associated with lesions including dermonecrosis, gravitational spreading and a massive inflammatory response, along with systemic problems that may include hematological disturbances and renal failure. The mechanisms by which the venom exerts its noxious effects are currently under investigation. It is known that the venom contains a major toxin (dermonecrotic toxin, biochemically a phospholipase D) that can experimentally induce dermonecrosis, inflammatory response, animal mortality and platelet aggregation. Herein, we describe cloning, heterologous expression, purification and functionality of a novel isoform of the 33 kDa dermonecrotic toxin. Circular dichroism analysis evidenced correct folding for the toxin. The recombinant toxin was recognized by whole venom serum antibodies and by a specific antibody to a previously described dermonecrotic toxin. The identified toxin was found to display phospholipase activity and dermonecrotic properties. Additionally, the toxin caused a massive inflammatory response in rabbit skin dermis, evoked platelet aggregation, increased vascular permeability, caused edema and death in mice. These characteristics in combination with functional studies for other dermonecrotic toxins illustrate that a family of dermonecrotic toxins exists, and includes a novel member with high activity that may be useful for future structural and functional studies.  相似文献   

10.
Loxoscelism (the term used to define accidents by the bite of brown spiders) has been reported worldwide. Clinical manifestations following brown spider bites are frequently associated with skin degeneration, a massive inflammatory response at the injured region, intravascular hemolysis, platelet aggregation causing thrombocytopenia and renal disturbances. The mechanisms by which the venom exerts its noxious effects are currently under investigation. The whole venom is a complex mixture of toxins enriched with low molecular mass proteins in the range of 5–40 kDa. Toxins including alkaline phosphatase, hyaluronidase, metalloproteases (astacin-like proteases), low molecular mass (5.6–7.9 kDa) insecticidal peptides and phospholipases-D (dermonecrotic toxins) have been identified in the venom. The purpose of the present review is to describe biotechnological applications of whole venom or some toxins, with especial emphasis upon molecular biology findings obtained in the last years.  相似文献   

11.
Brown spider bites are associated with lesions including dermonecrosis, gravitational spreading and a massive inflammatory response, along with systemic problems that may include hematological disturbances and renal failure. The mechanisms by which the venom exerts its noxious effects are currently under investigation. It is known that the venom contains a major toxin (dermonecrotic toxin, biochemically a phospholipase D) that can experimentally induce dermonecrosis, inflammatory response, animal mortality and platelet aggregation. Herein, we describe cloning, heterologous expression, purification and functionality of a novel isoform of the 33 kDa dermonecrotic toxin. Circular dichroism analysis evidenced correct folding for the toxin. The recombinant toxin was recognized by whole venom serum antibodies and by a specific antibody to a previously described dermonecrotic toxin. The identified toxin was found to display phospholipase activity and dermonecrotic properties. Additionally, the toxin caused a massive inflammatory response in rabbit skin dermis, evoked platelet aggregation, increased vascular permeability, caused edema and death in mice. These characteristics in combination with functional studies for other dermonecrotic toxins illustrate that a family of dermonecrotic toxins exists, and includes a novel member with high activity that may be useful for future structural and functional studies.  相似文献   

12.
Envenoming with brown spiders (Loxosceles genus) is common throughout the world. Cutaneous symptoms following spider bite accidents include dermonecrosis, erythema, itching and pain. In some cases, accidents can cause hypersensibility or even allergic reactions. These responses could be associated with histaminergic events, such as an increase in vascular permeability and vasodilatation. A protein that may be related to the effects of spider venom was identified from a previously obtained cDNA library of the L. intermedia venom gland. The amino acid sequence of this protein is homologous to proteins from the TCTP (translationally-controlled tumor protein) family, which are extracellular histamine-releasing factors (HRF) that are associated with the allergic reactions to parasites. Herein, we described the cloning, heterologous expression, purification and functional characterization of a novel member of the TCTP family from the Loxosceles intermedia venom gland. This recombinant protein, named LiRecTCTP, causes edema, enhances vascular permeability and is likely related to the inflammatory activity of the venom. Moreover, LiRecTCTP presents an immunological relationship with mammalian TCTPs.  相似文献   

13.
Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using 31P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation.  相似文献   

14.

Background

Accidents caused by Loxosceles spider may cause severe systemic reactions, including acute kidney injury (AKI). There are few experimental studies assessing Loxosceles venom effects on kidney function in vivo.

Methodology/Principal Findings

In order to test Loxosceles gaucho venom (LV) nephrotoxicity and to assess some of the possible mechanisms of renal injury, rats were studied up to 60 minutes after LV 0.24 mg/kg or saline IV injection (control). LV caused a sharp and significant drop in glomerular filtration rate, renal blood flow and urinary output and increased renal vascular resistance, without changing blood pressure. Venom infusion increased significantly serum creatine kinase and aspartate aminotransferase. In the LV group renal histology analysis found acute epithelial tubular cells degenerative changes, presence of cell debris and detached epithelial cells in tubular lumen without glomerular or vascular changes. Immunohistochemistry disclosed renal deposition of myoglobin and hemoglobin. LV did not cause injury to a suspension of fresh proximal tubules isolated from rats.

Conclusions/Significance

Loxosceles gaucho venom injection caused early AKI, which occurred without blood pressure variation. Changes in glomerular function occurred likely due to renal vasoconstriction and rhabdomyolysis. Direct nephrotoxicity could not be demonstrated in vitro. The development of a consistent model of Loxosceles venom-induced AKI and a better understanding of the mechanisms involved in the renal injury may allow more efficient ways to prevent or attenuate the systemic injury after Loxosceles bite.  相似文献   

15.
16.
Venom of Loxosceles reclusa free from impurities was expressed from venom glands collected by microdissection. Polyacrylamide gel electrophoresis of the venom at pH 8.3 demonstrated 7 or 8 major plus 3 or 4 minor components. Upon electrophoresis at pH 4.9 two major components plus 3 or 4 minor components were noted. Monophoretic hyaluronidase prepared by Sephadex gel filtration and electrophoresis at pH 8.3 exhibited optimum activity from pH 5.0 to 6.6. Sodium dodecyl sulfate gel electrophoresis of purified hyaluronidase revealed two components with estimated molecular weights of 33,000 and 63,000. The purified hyaluronidase exhibited activity against chondroitin sulfate, types A, B, and C at approximately 20–30% of that upon hyaluronic acid. The enzyme was inhibited 10–20% by the heavy metal ions, Fe+3 and Cu+2. Rabbit antivenom inhibited the spreading effect of whole venom in vivo and completely inhibited hyaluronidase in vitro.Incorporation of [14C]leucine into the spider venom led to the separation of hyaluronidase from the dermonecrotic activity of the venom.The venom demonstrated activity against carbobenzoxy-l-tyrosine-p-nitrophenyl ester and β-naphthylacetate which was inhibited approximately 65% by 2.5 × 10?3m levels of EDTA and EGTA but not by 2.5 × 10?4mo-phenanthroline. The esterase activity resisted concentrations of p-chloromercuribenzoate which totally inactivated papain. The venom appeared devoid of collagenase, dipeptidase, acetylcholinesterase, phosphodiesterase, ribonuclease A, and deoxyribonuclease.  相似文献   

17.
Sphingomyelinases D (SMases D) or dermonecrotic toxins are well characterized in Loxosceles spider venoms and have been described in some strains of pathogenic microorganisms, such as Corynebacterium sp. After spider bites, the SMase D molecules cause skin necrosis and occasional severe systemic manifestations, such as acute renal failure. In this paper, we identified new SMase D amino acid sequences from various organisms belonging to 24 distinct genera, of which, 19 are new. These SMases D share a conserved active site and a C-terminal motif. We suggest that the C-terminal tail is responsible for stabilizing the entire internal structure of the SMase D Tim barrel and that it can be considered an SMase D hallmark in combination with the amino acid residues from the active site. Most of these enzyme sequences were discovered from fungi and the SMase D activity was experimentally confirmed in the fungus Aspergillus flavus. Because most of these novel SMases D are from organisms that are endowed with pathogenic properties similar to those evoked by these enzymes alone, they might be associated with their pathogenic mechanisms.  相似文献   

18.
The venoms of Loxosceles spiders cause severe dermonecrotic lesions in human tissues. The venom component sphingomyelinase D (SMD) is a contributor to lesion formation and is unknown elsewhere in the animal kingdom. This study reports comparative analyses of SMD activity and venom composition of select Loxosceles species and representatives of closely related Haplogyne genera. The goal was to identify the phylogenetic group of spiders with SMD and infer the timing of evolutionary origin of this toxin. We also preliminarily characterized variation in molecular masses of venom components in the size range of SMD. SMD activity was detected in all (10) Loxosceles species sampled and two species representing their sister taxon, Sicarius, but not in any other venoms or tissues surveyed. Mass spectrometry analyses indicated that all Loxosceles and Sicarius species surveyed had multiple (at least four to six) molecules in the size range corresponding to known SMD proteins (31-35 kDa), whereas other Haplogynes analyzed had no molecules in this mass range in their venom. This suggests SMD originated in the ancestors of the Loxosceles/Sicarius lineage. These groups of proteins varied in molecular mass across species with North American Loxosceles having 31-32 kDa, African Loxosceles having 32-33.5 kDa and Sicarius having 32-33 kDa molecules.  相似文献   

19.
Structure and pharmacology of spider venom neurotoxins   总被引:16,自引:0,他引:16  
Escoubas P  Diochot S  Corzo G 《Biochimie》2000,82(9-10):893-907
Spider venoms are complex mixtures of neurotoxic peptides, proteins and low molecular mass organic molecules. Their neurotoxic activity is due to the interaction of the venom components with cellular receptors, in particular ion channels. Spider venoms have proven to be a rich source of highly specific peptide ligands for selected subtypes of potassium, sodium and calcium channels, and these toxins have been used to elucidate the structure and physiological roles of the channels in excitable and non-excitable cells. Spider peptides show great variability in their pharmacological activity and primary structure but relative homogeneity in their secondary structure. Following diverse molecular evolution mechanisms, and in particular selective hypermutation, short spider peptides appear to have functionally diversified while retaining a conserved molecular scaffold. This paper reviews the composition and pharmacology of spider venoms with emphasis on polypeptide toxin structure, mode of action and molecular evolution.  相似文献   

20.
Spider venoms are an important source of novel molecules with different pharmacological properties. Recent technological developments of proteomics, especially mass spectrometry, have greatly promoted the systematic analysis of spider venom. The enormous diversity of venom components between spider species and the lack of complete genome sequence, and the limited database of protein and peptide sequences make spider venom profiling a challenging task and special considerations for technical strategies are required. This review highlights recently used methods for spider venom profiling. In general, spider venom profiling can be achieved in two parts: proteome profiling of the components with molecular weights above 10 kDa, and peptidome profiling of the components with a molecular weight of 10 kDa or under through the use of different methods. Venom proteomes are rich in various enzymes, hemocyanins, toxin-like proteins and many unknown proteins. Peptidomes are dominated by peptides with a mass of 3-6 kDa with three to five disulfide bonds. Although there are some similarities in peptide superfamily types of venoms from different spider species, the venom profile of each species is unique. The linkage of the peptidomic data with that of the cDNA approach is discussed briefly. Future challenges and perspectives are also highlighted in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号