首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Robinson SA  Rosenzweig SA 《Biochemistry》2004,43(36):11533-11545
Activation of the insulin-like growth factor-1 (IGF)-1 receptor signaling pathways by IGF-1 and IGF-2 results in mitogenic and anabolic effects. The bioavailability of the IGFs is regulated by six soluble binding proteins, the insulin-like growth factor binding proteins (IGFBPs), which bind with approximately 0.1 nM affinity to the IGFs and often serve as endogenous antagonists of IGF action. To identify key domains of IGF-1 involved in the interaction with IGFBP-2 and IGFBP-3, we employed IGF-1 selectively biotinylated on residues Gly 1, Lys 27, Lys 65, and Lys 68. All monobiotinylated species of IGF-1 exhibited high affinity ( approximately 0.1-0.2 nM) for IGFBP-2 and IGFBP-3 in solid-phase-binding assays. However, different labeling intensities were observed in ligand blot analysis of IGFBP-2 and IGFBP-3. The N(epsilon)(Lys65/68)(biotin)-IGF-1 (N(epsilon)(Lys65/68b)-IGF-1) probe exhibited the highest signal intensity, while N(alpha)(Gly1b)-IGF-1 and N(epsilon)(Lys27b)-IGF-1 demonstrated significantly lower signals. When taken together, these results suggest that, once bound to IGFBP-2 or IGFBP-3, the biotin moieties of N(alpha)(Gly1b)-IGF-1 and N(epsilon)(Lys27b)-IGF-1 are inaccessible to NeutrAvidin-peroxidase, the secondary binding component. Ligand blots using IGF-1 derivatized with a long chain form of the N-hydroxysuccinimide biotin (NHS-biotin) to yield N(alpha)(Gly1)(LC-biotin)-IGF-1 and N(epsilon)(Lys27)(LC-biotin)-IGF-1 demonstrated increased signal intensity compared with their NHS-biotin counterparts. In BIAcore analysis, IGFBP-2 and IGFBP-3 bound only to the N(epsilon)(Lys65/68b)-IGF-1-coated flowcell of a biosensor chip, confirming the inaccessibility of Gly 1 and Lys 27 when IGF-1 is bound to IGFBP-2 and IGFBP-3. These data confirm the involvement of the IGFBP-binding domain on IGF-1 in binding to IGFBP-2 and IGFBP-3 and support involvement of the IGF-1R-binding domain in IGFBP binding.  相似文献   

2.
The insulin-like growth factor binding proteins (IGFBPs) play a major role in the regulation of the effects and the bioavailability of the insulin-like growth factors (IGFs). IGFs are released from IGFBP-IGF complexes by proteolysis of IGFBPs generating fragments with reduced ligand-binding properties. To identify naturally occurring fragments of IGFBP-2, a peptide library generated from human hemofiltrate was immunologically screened. Purification of immunoreactive IGFBP-2 fragments was performed by consecutive chromatographic steps. A total of 18 different IGFBP-2 fragments was isolated and characterized. The peptides exhibited different N-terminal amino acid residues that were located in the variable midregion of IGFBP-2. Four major cleavage sites were determined to be between Tyr103 and Gly104, Leu152 and Ala153, Arg156 and Glu157, and Gln165 and Met166. The resulting fragments were further processed by amino and/or carboxy peptidases and comprised 37-185 amino acid residues. Ligand blotting, solution binding assays, and BIAcore analyses revealed that all tested fragments retained low IGF-binding capacity. The most abundant fragment IGFBP-2 (167-279) showed 10% of IGF-II binding compared to recombinant human (rh)IGFBP-2. Furthermore, the disulfide bonding pattern of the C-terminal domain of rhIGFBP-2 was defined, indicating linkages between cysteine residues 191-225, 236-247, and 249-270. This study provides the most comprehensive molecular characterization of human IGFBP-2 fragments formed in vivo, exhibiting both residual IGF-binding capacities and the integrin-binding sequence.  相似文献   

3.
The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-1R). These actions are modulated by a family of six IGF-binding proteins (IGFBP-1-6; 22-31 kDa) that via high affinity binding to the IGFs (KD ∼ 300-700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access. In recent years, IGFBPs have been implicated in a variety of cancers. However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood. A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis. Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in Escherichia coli. Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern. The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E. coli and first structural characterization of a full-length IGFBP.  相似文献   

4.
A family of six high affinity IGF-binding proteins (IGFBPs 1-6) plays an important role in modulating IGF activities. Recent studies suggest that some IGFBPs may have IGF-independent effects, including induction of apoptosis and modulation of cell migration. However, very little is known about possible IGF-independent actions of IGFBP-6. We have generated a non-IGF-binding IGFBP-6 mutant by substituting Ala for four amino acid residues (Pro(93)/Leu(94)/Leu(97)/Leu(98)) in its N-domain IGF-binding site. A >10,000-fold loss of binding affinity for IGF-I and IGF-II was observed using charcoal solution binding assay, BIAcore biosensor, and ligand blotting. Wild-type and mutant IGFBP-6, as well as IGF-II, induced cell migration in RD rhabdomyosarcoma and LIM 1215 colon cancer cells. Cell migration was mediated by the C-domain of IGFBP-6. Transient p38 phosphorylation was observed in RD cells after treatment with IGFBP-6, whereas no change was seen in phospho-ERK1/2 levels. Phospho-JNK was not detected. IGFBP-6-induced cell migration was inhibited by SB203580, an inhibitor of p38 MAPK, and PD98059, an inhibitor of ERK1/2 MAPK activation. In contrast, SP600125, a JNK MAPK inhibitor, had no effect on migration. Knockdown of p38 MAPK using short interfering RNA blocked IGFBP-6-induced migration of RD cells. These results indicate that p38 MAPK is involved in IGFBP-6-induced IGF-independent RD cell migration.  相似文献   

5.
Insulin-like growth factor (IGF) I is a potent mitogen for human osteosarcoma cells such as the Saos-2/B-10 cell line. IGF binding proteins (IGFBPs) prevent stimulation of DNA synthesis by IGFs. In contrast to recombinant human (rh) IGFBP-2, -3, -4, and -5, 10-100 nM rhIGFBP-6 stimulated [(3)H]thymidine incorporation into DNA and multiplication of Saos-2/B-10 cells. Upon withdrawal of serum, 30 nM IGFBP-6 also decreased apoptosis (within 4 h) and increased protein content and sodium-dependent phosphate uptake (within 24 h), but less potently than IGF I. (125)I-labeled rhIGFBP-6 did not bind to the cells, and cold IGFBP-6 did not affect (125)I-labeled IGF I binding. Production of IGF I, IGF II, and IGFBP-6 by the cells or significant degradation of rhIGFBP-6 could not be detected within 24 h of incubation. Thus, among the rhIGFBPs tested, rhIGFBP-6 is unique in stimulating osteosarcoma cell growth. Furthermore, it has an antiapoptotic effect.  相似文献   

6.
Insulin-like growth factor (IGF)-I is a pleiotropic hormone that regulates vascular smooth muscle cell (VSMC) migration, proliferation, apoptosis, and differentiation. These actions are mediated by the IGF-I receptor. How activation of the same receptor by the same ligand leads to these diverse cellular responses is not well understood. Here we describe a novel mechanism specifying VSMC responses to IGF-I stimulation, distinctive for the pivotal roles of local IGF-binding proteins (IGFBPs). The role of local IGFBPs was indicated by comparing the activities of IGF-I and des-1-3-IGF-I, an IGF-I analog with reduced binding affinity to IGFBPs. Compared with IGF-I, des-1-3-IGF-I was more potent in stimulating DNA synthesis but much less potent in inducing directed migration of VSMCs. When the effects of individual IGFBPs were tested, IGFBP-2 and IGFBP-4 were found to inhibit IGF-I-stimulated DNA synthesis and migration. IGFBP-5 had an inhibitory effect on IGF-I-stimulated DNA synthesis, but it strongly potentiated IGF-I-induced VSMC migration. By using a non-IGF-binding IGFBP-5 mutant and an IGF-I-neutralizing antibody, it was demonstrated that IGFBP-5 also stimulates VSMC migration in an IGF-independent manner. This effect of IGFBP-5 was inhibited by soluble heparin and by treating cells with heparinase. Mutation of the heparin-binding motif of IGFBP-5 reduced its migration promoting activity. These findings suggest that local IGFBPs are important determinants of cellular responses to IGF-I stimulation, and a key player in this paradigm is IGFBP-5. IGFBP-5 not only modulates IGF-I actions, but it also stimulates cell migration by interacting with cell-surface heparan sulfate proteoglycans.  相似文献   

7.
In the circulation, most of the insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), and IGFBP proteases are bound in high molecular mass complexes of > or =150 kDa. To investigate molecular interactions between proteins involved in IGF.IGFBP complexes, Cohn fraction IV of human plasma was subjected to IGF-II affinity chromatography followed by reversed-phase high pressure liquid chromatography and analysis of bound proteins. Mass spectrometry and Western blotting revealed the presence of IGFBP-3, IGFBP-5, transferrin, plasminogen, prekallikrein, antithrombin III, and the soluble IGF-II/mannose 6-phosphate receptor in the eluate. Furthermore, an IGFBP-3 protease cleaving also IGFBP-2 but not IGFBP-4 was co-purified from the IGF-II column. Inhibitor studies and IGFBP-3 zymography have demonstrated that the 92-kDa IGFBP-3 protease belongs to the class of serine-dependent proteases. IGF-II ligand blotting and surface plasmon resonance spectrometry have been used to identify plasminogen as a novel high affinity IGF-II-binding protein capable of binding to IGFBP-3 with 50-fold higher affinity than transferrin. In combination with transferrin, the overall binding constant of plasminogen/transferrin for IGF-II was reduced 7-fold. Size exclusion chromatography of the IGF-II matrix eluate revealed that transferrin, plasminogen, and the IGFBP-3 protease are present in different high molecular mass complexes of > or =440 kDa. The present data indicate that IGFs, low and high affinity IGFBPs, several IGFBP-associated proteins, and IGFBP proteases can interact, which may result in the formation of binary, ternary, and higher molecular weight complexes capable of modulating IGF binding properties and the stability of IGFBPs.  相似文献   

8.
Insulin-like growth factor 1 (IGF-1) has poor anabolic efficacy in cartilage in osteoarthritis (OA), partly because of its sequestration by abnormally high levels of extracellular IGF-binding proteins (IGFBPs). We studied the effect of NBI-31772, a small molecule that inhibits the binding of IGF-1 to IGFBPs, on the restoration of proteoglycan synthesis by human OA chondrocytes. IGFBPs secreted by human OA cartilage or cultured chondrocytes were analyzed by western ligand blot. The ability of NBI-31772 to displace IGF-1 from IGFBPs was measured by radiobinding assay. Anabolic responses in primary cultured chondrocytes were assessed by measuring the synthesis of proteoglycans in cetylpyridinium-chloride-precipitable fractions of cell-associated and secreted 35S-labeled macromolecules. The penetration of NBI-31772 into cartilage was measured by its ability to displace 125I-labeled IGF-1 from cartilage IGFBPs. We found that IGFBP-3 was the major IGFBP secreted by OA cartilage explants and cultured chondrocytes. NBI-31772 inhibited the binding of 125I-labeled IGF-1 to IGFBP-3 at nanomolar concentrations. It antagonized the inhibitory effect of IGFBP-3 on IGF-1-dependent proteoglycan synthesis by rabbit chondrocytes. The addition of NBI-31772 to human OA chondrocytes resulted in the restoration or potentiation of IGF-1-dependent proteoglycan synthesis, depending on the IGF-1 concentrations. However, NBI-31772 did not penetrate into cartilage explants. This study shows that a new pharmacological approach that uses a small molecule inhibiting IGF-1/IGFBP interaction could restore or potentiate proteoglycan synthesis in OA chondrocytes, thereby opening exciting possibilities for the treatment of OA and, potentially, of other joint-related diseases.  相似文献   

9.
Insulin-like growth factor-I (IGF-I) is an important stimulator of collagen and glycosaminoglycan (GAG) biosynthesis in tissues. IGF-I activity is modulated by a family of IGF-binding proteins (IGFBPs) with different IGF-I binding affinities. At least IGFBP-1 and IGFBP-2 are known as inhibitors of IGF functions. Some IGFBPs (IGFBP-1, IGFBP-3 and IGFBP-5) may undergo phosphorylation that dramatically increase their affinity for IGF. During fasting of animals there is a significant decrease of the collagen and GAG content of the skin, accompanied by a reduction of plasma IGF-I levels. However, in previous studies we showed that in the skin of fasted rats IGF-I as well as IGFBP-1 and IGFBP-2 expressions were not different, compared to control rat skin, although collagen content was significantly decreased. In the present study we show that fasted rat skin contains similar amounts of IGF-I, IGFBP-3 and IGFBP-1, although extract from fasted rat skin induced inhibition of collagen biosynthesis in cultured fibroblasts, compared to control rat skin extract. Western immunoblot analysis of control and fasted rat skin extracts, using anti-phosphoserine antibodies for immunoprecipitated IGFBP-1 and IGFBP-3, revealed that both proteins are present in phosphorylated form. Although no differences were found in the expression of phosphorylated IGFBP-3 between control and fasted rat skins, that of phosphorylated IGFBP-1 in fasted rat skin extract was higher than in control one. We suggest that there is an increased level of IGFBP-1 phosphoisoform in fasted rat skin, associated with increased affinity for IGF-I. The increase of phosphorylated IGFBP-1 in fasted rat skin tissue may augment IGF-I binding affinity for IGF and decrease its bioavailability for receptor interaction. This mechanism may prevent IGF-I dependent stimulation of fibroblasts to produce extracellular matrix components. The specific expression of IGFBPs and their phosphoisoforms in tissues may play an important role in regulation of IGF-I action during physiologic and pathologic responses.  相似文献   

10.
The mitogenic and metabolic activities of insulin-like growth factors (IGF) are modulated by a family of six high-affinity IGF-binding proteins (IGFBPs). This study describes the secretion and purification of the recombinant human IGFBP-6 expressed in methylotrophic yeast Pichia pastoris. In this research, a multicopy expression plasmid pA-O815/3xIGFBP-6 containing 3 copies of human IGFBP-6 expression cassette was constructed and transformed into P. pastoris GS115. The encoding sequence of alpha-factor leading peptide fused in-frame at the 5' end of human IGFBP-6 open reading frame and led expressed IGFBP-6 into the secretory pathway. After transformed cells were induced with methanol, medium supernatant was analyzed by SDS-PAGE and Western blotting. The two major protein bands of approximately 30 and approximately 18kDa were detected. The protein of approximately 30kDa was confirmed to be the glycosylated recombinant human IGFBP-6 (rhIGFBP-6), which was partially proteolyzed by protease Kex2 to produce a approximately 18kDa fragment. Approximately 95% homogeneity of the soluble form of 30kDa rhIGFBP-6 were achieved by two-step purification procedure using ion-exchange chromatography and then hydrophobic-interaction chromatography. The rhIGFBP-6 could be distributed to all of the cell body when cultured MDA-MB-231 cell with rhIGFBP-6 and the activities of rhIGFBP-6 were assayed by [(3)H]thymidine incorporation, which revealed that rhIGFBP-6 inhibited IGF-II-stimulated cell proliferation. Our results demonstrated that functional rhIGFBP-6 can be produced in sufficient quantities by using P. pastoris for further structural and functional studies.  相似文献   

11.
Zinc (Zn(2+)) is a multifunctional micronutrient. The list of functions for this micronutrient expanded with the recent discovery that Zn(2+) retains insulin-like growth factors binding proteins (IGFBPs) on the surface of cultured cells, lowers the affinity of cell-associated IGFBPs, and increases the affinity of the cell surface insulin-like growth factor (IGF)-type 1 receptor (IGF-1R). However, currently there is no information concerning the effect of Zn(2+) on soluble IGFBPs. In the current study, the soluble IGFBP-5 secreted by BC(3)H-1 cells is shown to bind approximately 50% more [(125)I]-IGF-II than [(125)I]-IGF-I at pH 7.4. Zn(2+) is shown to depress the binding of both IGF-I and IGF-II to soluble secreted IGFBP-5; [(125)I]-IGF-I binding is affected more so than [(125)I]-IGF-II binding. Zn(2+) acts by lowering the affinity (K(a)) of IGFBP-5 for the IGFs. Scatchard plots are non-linear indicating the presence of high and low affinity binding sites; Zn(2+) affects only binding to the high affinity site. In contrast, Zn(2+) increases the affinity by which either [(125)I]-IGF-I or [(125)I]-R(3)-IGF-I binds to the IGF-1R, but depresses [(125)I]-IGF-II binding to the IGF-type 2 receptor (IGF-2R) on BC(3)H-1 cells. By depressing the association of the IGFs with soluble IGFBPs, Zn(2+) is shown to repartition either [(125)I]-IGF-I or [(125)I]-IGF-II from soluble IGFBP-5 onto cell surface IGF receptors. Zn(2+) was active at physiological doses depressing IGF binding to IGFBP-5 and the IGF-2R at 15-20 microM. Hence, a novel mechanism is further characterized by which the trace micronutrient Zn(2+) could regulate IGF activity.  相似文献   

12.
The insulin-like growth factor binding protein (IGFBP) family comprises six structurally distinct, but highly homologous proteins. They have been identified in serum and other biological fluids, tissue extracts, and cell culture media. We have recently cloned cDNAs encoding human IGFBP-4, -5, and -6 and have now expressed these BPs in yeast as ubiquitin (Ub)-IGFBP fusion proteins. Western ligand blotting with 125I-IGF II under nonreducing conditions of recombinant human (rh) IGFBP-containing yeast lysates revealed specific binding bands for IGFBP-4, -5, and -6 at apparent molecular masses of 24-26, 30-32, and 24-26 kDa, respectively, indicating processing of the fusion proteins. High-performance liquid chromatography-purified rhIGFBPs had virually the same amino acid composition, amino acid number, and NH2-terminal sequences as the native BPs. Except for the affinity of rhIGFBP-6 for IGF I (Ka = 8.5 x 10(8) M-1), the affinity constants of the three IGFBPs for IGF I and II lie between 1.7 and 3.3 x 10(10) M-1, i.e. 25-100 times higher than the IGF I and II affinities of the type I IGF receptor. When present in excess, rhIGFBP-4, -5, and -6 inhibited IGF I- and II-stimulated DNA and glycogen synthesis in human osteoblastic cells, but rhIGFBP-6 had only a weak inhibitory effect on IGF I in agreement with its relatively lower IGF I affinity constant. The results of this study show that the primary effect of the three rhIGFBPs is the attenuation of IGF activity and suggest that IGFBPs contribute to the control of IGF-mediated cell growth and metabolism.  相似文献   

13.
Using competitive ligand-binding studies, ligand blotting, and immunoprecipitation, we have characterized the insulin-like growth factor (IGF)-binding proteins (BPs) of porcine follicular fluid. Competitive ligand-binding studies revealed a preference of ovarian IGFBPs for IGF-II over IGF-I. Follicular fluid from small, 1-3-mm follicles had nearly twice the binding capacity for IGFs as that from large, 6-10-mm follicles. Ligand blots of porcine follicular fluid resolved 5 major bands of IGF-binding activity having apparent molecular sizes of 44, 40, 34, 29, and 22 kDa. The 40-44-kDa bands were immunoprecipitated by an antibody to porcine IGFBP-3, the acid-stable subunit of the 150-kDa growth hormone-dependent IGF-binding protein complex of porcine serum. The 34-kDa band was immunoprecipitated by an antibody to rat IGFBP-2, the major IGF-binding protein found in fetal rat serum. To date we have been unable to immunoprecipitate the 29- and 22-kDa bands with any of the antibodies tested, including a panel of monoclonal antibodies to human IGFBP-1, the amniotic fluid IGF-binding protein. The 40-44-kDa species (IGFBP-3) was the predominant form and was equally abundant in fluid from large and small follicles. In contrast, the smaller forms, including IGFBP-2 and the 29- and 22-kDa forms were significantly more prominent in fluid from small follicles. In view of other studies indicating a significant effect of IGFBPs on ovarian cell function, follicular IGFBPs may play an important role in the IGF autocrine/paracrine regulatory system of the ovary.  相似文献   

14.
Within the IGF axis, the insulin-like growth factor-binding proteins (IGFBPs) are known to play a pivotal role in cell proliferation and differentiation. Defined proteolysis of the IGFBPs is proposed to be an essential mechanism for regulating IGF bioavailability. The generated IGFBP fragments in part exhibit different IGF-dependent and -independent biological activities. Characterizing naturally occurring forms of IGFBPs in human plasma, we identified both a N- and a C-terminal fragment of IGFBP-4 by means of immunoreactivity screening. As a source for peptide isolation, we used large amounts of human hemofiltrate obtained from patients with chronic renal failure. Purification of the IGFBP-4 peptides from hemofiltrate was performed by consecutive cation-exchange and reverse-phase chromatographic steps. Mass spectrometric and sequence analysis revealed an M(r) of 13 233 for the purified N-terminal fragment spanning residues Asp(1)-Phe(122) of IGFBP-4 and an M(r) of 11 344 for the C-terminal fragment extending from Lys(136) to Glu(237). Proteolytic digestion and subsequent biochemical analysis showed that the six cysteines of the C-terminal IGFBP-4 fragment are linked between residues 153-183, 194-205, and 207-228 (disulfide bonding pattern, 1-2, 3-4, and 5-6). Plasmon resonance spectroscopy, ligand blot analysis, and saturation and displacement studies demonstrated a very low affinity of the C-terminal IGFBP-4 fragment for the IGFs (IGF-II, K(d) = 690 nM; IGF-I, K(d) > 60 nM), whereas the N-terminal fragment retained significant IGF binding properties (IGF-II, K(d) = 17 nM; IGF-I, K(d) = 5 nM). This study provides the first molecular characterization of circulating human IGFBP-4 fragments formed in vivo exhibiting an at least 5-fold decrease in the affinity of the N-terminal IGFBP-4 fragment for the IGFs and a very low IGF binding capacity of the C-terminal fragment.  相似文献   

15.
Proteolytic modification of insulin-like growth factor binding proteins (IGFBPs) plays an important physiological role in regulating insulin-like growth factor (IGF) bioavailability. Recently, we demonstrated that matrix metalloproteinase-7 (MMP-7)/Matrilysin produced by various cancer cells catalyzes the proteolysis of IGFBP-3 in vitro and regulates IGF bioavailability, resulting in an anti-apoptotic effect against anchorage-independent culture. In the present study, we investigated whether MMP-7 contributes to proteolysis of the other five IGFBPs, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5, and IGFBP-6, and whether this results in phosphorylation of the IGF type 1 receptor (IGF-1R). MMP-7 cleaved all six IGFBPs, resulting in IGF-mediated IGF-1R phosphorylation, which was inhibited by EDTA treatment. These results suggest that MMP-7 derived from cancer cells can regulate IGF bioavailability in the microenvironment surrounding the tumor, where various kinds of IGF/IGFBP complexes are found, thereby favoring cancer cell growth and survival during the processes of invasion and metastasis.  相似文献   

16.
Competitive binding experiments with insulin-like growth factor (IGF)-1, IGF-2 and des-(1-3)-IGF-1 have confirmed the interpretation based on limited amino-terminal sequence analysis that at least three types of IGF binding protein occur. In addition to the acid stable subunit of the large serum binding protein which exhibits des-(1-3)-IGF-1 binding only slightly less than IGF-1, the small IGF binding proteins can be separated into two classes based on differences in des-(1-3)-IGF-1 and IGF-2 binding potencies.  相似文献   

17.
Binding proteins for insulin-like growth factors (IGFs) IGF-I and IGF-II, known as IGFBPs, control the distribution, function and activity of IGFs in various cell tissues and body fluids. Insulin-like growth factor-binding protein-5 (IGFBP-5) is known to modulate the stimulatory effects of IGFs and is the major IGF-binding protein in bone tissue. We have expressed two N-terminal fragments of IGFBP-5 in Escherichia coli; the first encodes the N-terminal domain of the protein (residues 1-104) and the second, mini-IGFBP-5, comprises residues Ala40 to Ile92. We show that the entire IGFBP-5 protein contains only one high-affinity binding site for IGFs, located in mini-IGFBP-5. The solution structure of mini-IGFBP-5, determined by nuclear magnetic resonance spectroscopy, discloses a rigid, globular structure that consists of a centrally located three-stranded anti-parallel beta-sheet. Its scaffold is stabilized further by two inside packed disulfide bridges. The binding to IGFs, which is in the nanomolar range, involves conserved Leu and Val residues localized in a hydrophobic patch on the surface of the IGFBP-5 protein. Remarkably, the IGF-I receptor binding assays of IGFBP-5 showed that IGFBP-5 inhibits the binding of IGFs to the IGF-I receptor, resulting in reduction of receptor stimulation and autophosphorylation. Compared with the full-length IGFBP-5, the smaller N-terminal fragments were less efficient inhibitors of the IGF-I receptor binding of IGFs.  相似文献   

18.
We have previously reported that two highly conserved amino acids in the C-terminal domain of rat insulin-like growth factor-binding protein (IGFBP)-5, Gly(203) and Gln(209), are involved in binding to insulin-like growth factor (IGF)-1. Here we report that mutagenesis of both amino acids simultaneously (C-Term mutant) results in a cumulative effect and an even greater reduction in IGF-I binding: 30-fold measured by solution phase IGF binding assay and 10-fold by biosensor analysis. We compared these reductions in ligand binding to the effects of specific mutations of five amino acids in the N-terminal domain (N-Term mutant), which had previously been shown by others to cause a very large reduction in IGF-I binding (). Our results confirm this as the major IGF-binding site. To prove that the mutations in either N- or C-Term were specific for IGF-I binding, we carried out CD spectroscopy and showed that these alterations did not lead to gross conformational changes in protein structure for either mutant. Combining these mutations in both domains (N+C-Term mutant) has a cumulative effect and leads to a 126-fold reduction in IGF-I binding as measured by biosensor. Furthermore, the equivalent mutations in the C terminus of rat IGFBP-2 (C-Term 2) also results in a significant reduction in IGF-I binding, suggesting that the highly conserved Gly and Gln residues have a conserved IGF-I binding function in all six IGFBPs. Finally, although these residues lie within a major heparin-binding site in IGFBP-5 and -3, we also show that the mutations in C-Term have no effect on heparin binding.  相似文献   

19.
The insulin-like growth factor-binding proteins (IGFBPs) are evolutionarily conserved components of the insulin-like growth factor (IGF) system. The six forms of IGFBPs (IGFBP-1–6) bind the IGF ligands (IGF-1 and -2) with high affinity and regulate the IGFs available to their receptors, therefore providing additional flexibilities in regulating IGF signalling. IGFBP-1, the first identified member of the IGFBP family is highly inducible under a variety of catabolic conditions, such as food deprivation, malnutrition, stress, injury and hypoxia. Recent in vivo studies have indicated that the induced IGFBP-1 serves as a molecular switch by restricting IGF signalling and diverts the limited energy resources away from growth and development towards those metabolic processes essential for survival. This article reviews the recent understandings of the molecular basis of IGFBP-1 regulation and its biological functions, as revealed through research in mammalian and fish models.  相似文献   

20.
The insulin-like growth factor (IGF)-binding proteins (IGFBPs) are a family of six homologous proteins with high binding affinity for IGF-I and IGF-II. Information from NMR and mutagenesis studies is advancing knowledge of the key residues involved in these interactions. IGF binding may be modulated by IGFBP modifications, such as phosphorylation and proteolysis, and by cell or matrix association of the IGFBPs. All six IGFBPs have been shown to inhibit IGF action, but stimulatory effects have also been established for IGFBP-1, -3, and -5. These generally involve a decrease in IGFBP affinity and may require cell association of the IGFBP, but precise mechanisms are unknown. The same three IGFBPs have well established effects that are independent of type I IGF receptor signaling. IGFBP-1 exerts these effects by signaling through alpha(5)beta(1)-integrin, whereas IGFBP-3 and -5 may have specific cell-surface receptors with serine kinase activity. The regulation of cell sensitivity to inhibitory IGFBP signaling may play a role in the growth control of malignant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号