首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological communities are increasingly faced with novel urban habitats and their response may depend on a combination of biological and habitat traits. The response of pollinator species to urban habitats are of particular importance because all species involved in the pollination mutualism may be affected. Nectarivorous bird communities worldwide show varying tolerances to urban areas, but studies from Africa are lacking. We investigated nectarivorous bird communities in a medium‐sized South African city and asked which biological and garden traits best predict the community assembly of specialist and opportunistic nectarivorous birds. Information was collected on garden traits and the frequency of nine nectarivorous bird species for 193 gardens by means of a questionnaire. Information on biological traits of birds was obtained from published literature. Habitat generalism and tree nesting were identified as the most important biological traits influencing bird occurrence in gardens. A greater diversity of indigenous bird‐pollinated plants and the presence of sugar water feeders increased the numbers of nectar specialist birds and species richness of nectarivorous birds. While bird baths increased the species richness of nectar specialist birds, opportunistic birds’ urban adjustment was further facilitated by large vegetated areas in gardens and limited by the distance to the nearest natural habitat. In conclusion, though some biological traits and dispersal barriers seem to limit urban adjustment, a combination of natural and artificial nectar resource provisioning could facilitate this adjustment.  相似文献   

2.
A long‐standing debate concerns whether nectar sugar composition evolves as an adaptation to pollinator dietary requirements or whether it is ‘phylogenetically constrained’. Here, we use a modelling approach to evaluate the hypothesis that nectar sucrose proportion (NSP) is an adaptation to pollinators. We analyse ~ 2100 species of asterids, spanning several plant families and pollinator groups (PGs), and show that the hypothesis of adaptation cannot be rejected: NSP evolves towards two optimal values, high NSP for specialist‐pollinated and low NSP for generalist‐pollinated plants. However, the inferred adaptive process is weak, suggesting that adaptation to PG only provides a partial explanation for how nectar evolves. Additional factors are therefore needed to fully explain nectar evolution, and we suggest that future studies might incorporate floral shape and size and the abiotic environment into the analytical framework. Further, we show that NSP and PG evolution are correlated – in a manner dictated by pollinator behaviour. This contrasts with the view that a plant necessarily has to adapt its nectar composition to ensure pollination but rather suggests that pollinators adapt their foraging behaviour or dietary requirements to the nectar sugar composition presented by the plants. Finally, we document unexpectedly sucrose‐poor nectar in some specialized nectarivorous bird‐pollinated plants from the Old World, which might represent an overlooked form of pollinator deception. Thus, our broad study provides several new insights into how nectar evolves and we conclude by discussing why maintaining the conceptual dichotomy between adaptation and constraint might be unhelpful for advancing this field.  相似文献   

3.
Many tropical plants are pollinated by birds and several bird phylogenetical lineages have specialised to a nectar diet. The long-assumed, intimate ecological and evolutionary relationship between ornithophilous plants and phenotypically specialised nectarivorous birds has nevertheless been questioned in recent decades, where such plant–pollinator interactions have been shown to be highly generalised. In our study, we analysed two extensive interaction datasets: bird–flower and insect–flower interactions, both collected on Mt Cameroon, west-central Africa. We tested if: 1) insects and birds interact with distinct groups of plants; 2) plants with a typical set of ornithophilous floral traits (i.e. bird pollination syndrome) interact mainly with birds; 3) birds favour plants with bird pollination syndrome and; 4) if and how the individual floral traits and plant level nectar production predict bird visitation. Bird-visited plants were typically also visited by insects, while approximately half of the plants were visited by insects only. We confirmed the validity of the bird pollination syndrome hypothesis, as plants with bird-pollination syndrome traits were visited by birds at a higher rate and mostly hosted a lower frequency of visiting insects. However, these ornithophilous plants were not more attractive than the other plants for nectar-feeding birds. Nectar production per plant individual was a better predictor of bird visitation than any other floral trait traditionally related to the bird pollination syndrome. Our study thus demonstrated the highly asymmetrical relationship between ornithophilous plants and nectarivorous birds.  相似文献   

4.
Aims Several bird‐pollinated or ornithophilous flowers are present on the Macaronesian archipelagos, the Canary Islands and Madeira, but absent from nearby NW Africa and Europe. In Macaronesia, no specialist nectar‐feeding birds are found, but several generalist passerine bird species visit flowers for nectar. Two hypotheses attempt to explain the origin and evolution of ornithophily in the Macaronesian flora. According to ‘the island de novo hypothesis’, bird‐flowers evolved from mainland insect‐pollinated ancestors after island colonization. Alternatively, ancestors of the ornithophilous Macaronesian plant species evolved bird‐flowers before reaching the islands (‘the relict hypothesis’). In this study we first compile information of Macaronesian bird–flower interactions from the literature and our own field observations. Secondly, we discuss the two hypotheses of origin of ornithophily in the light of evidence from recent molecular plant phylogenies, palaeontology, historical biogeography of the African avifauna and flora, and present‐day ecological patterns. Location Madeira and Canary Islands. Results At least eleven endemic Macaronesian plant species from six genera have typical ornithophilous floral traits. These genera are: Canarina and Musschia (Campanulaceae), Isoplexis (Scrophulariaceae), Echium (Boraginaceae), Lotus (Fabaceae) and Lavatera (Malvaceae). These lineages have clear affinities to the Mediterranean region, except for Canarina whose closest relatives grow in East African mountains. Six generalist passerine bird species of Sylvia, Phylloscopus (Sylviidae), Serinus (Fringillidae) and Parus (Paridae) visit this flora for nectar. Main conclusion We suggest that the origin and evolution of ornithophilous traits in these plant species took place mostly in mainland areas prior to island colonization. In Canarina and Lavatera, it is well supported that ornithophily is a relict condition, which originated in mainland areas possibly in association with specialist nectar‐feeding birds. For the remaining plant species except Echium wildpretii bird floral traits probably also are a relict condition. These species may be derived from ancestors, which were visited by specialist nectar‐feeding birds during geological periods when the Mediterranean and the Ethiopian vegetation were intermingled in mainland Africa. Probably, these mainland ancestors went extinct due to severe climatic fluctuations, while their Macaronesian descendants survived in ‘refuge’ on the islands. Finally, the island de novo hypothesis may explain the evolution of a mixed bird/insect‐pollination system in the neo‐endemic red‐flowered Echium wildpretii.  相似文献   

5.
Natural selection should reduce phenotypic variation and increase integration of floral traits involved in placement of pollen grains on stigmas. In this study, we examine the role of pollinators and breeding system on the evolution of floral traits by comparing the patterns of floral phenotypic variances and covariances in 20 Ipomoea species that differ in their level of pollination specialization and pollinator dependence incorporating phylogenetic relatedness. Plants with specialized pollination (i.e., those pollinated by one functional group or by few morphospecies) displayed less phenotypic variation and greater floral integration than generalist plants. Self‐compatible species also displayed greater floral integration than self‐incompatible species. Floral traits involved in pollen placement and pick up showed less variation and greater integration than floral traits involved in pollinator attraction. Analytical models indicate that both breeding system and the number of morphospecies had significant effects on floral integration patterns although only differences in the former were significant after accounting for phylogeny. These results suggest that specialist/self‐compatible plants experience more consistent selection on floral traits than generalist/self‐incompatible plants. Furthermore, pollinators and breeding system promote integration of floral traits involved in pollen placement and pick up rather than integration of the whole flower.  相似文献   

6.
Most flowering plants depend on animal pollination. Several animal groups, including many birds, have specialized in exploiting floral nectar, while simultaneously pollinating the flowers they visit. These specialized pollinators are present in all continents except Europe and Antarctica, and thus, insects are often considered the only ecologically relevant pollinators in Europe. Nevertheless, generalist birds are also known to visit flowers, and several reports of flower visitation by birds in this continent prompted us to review available information in order to estimate its prevalence. We retrieved reports of flower–bird interactions from 62 publications. Forty‐six bird species visited the flowers of 95 plant species, 26 of these being exotic to Europe, yielding a total of 243 specific interactions. The ecological importance of bird–flower visitation in Europe is still unknown, particularly in terms of plant reproductive output, but effective pollination has been confirmed for several native and exotic plant species. We suggest nectar and pollen to be important food resources for several bird species, especially tits Cyanistes and Sylvia and Phylloscopus warblers during winter and spring. The prevalence of bird flower‐visitation, and thus potential bird pollination, is slightly more common in the Mediterranean basin, which is a stopover to many migrant bird species, which might actually increase their effectiveness as pollinators by promoting long‐distance pollen flow. We argue that research on bird pollination in Europe deserves further attention to explore its ecological and evolutionary relevance.  相似文献   

7.
Foraging theory predicts that generalist foragers should switch resources more readily, while specialist foragers should remain constant to preferred food resources. Plant‐pollinator interactions provide a convenient system to test such predictions because floral resources are often temporally patchy, thus requiring long‐lived pollinators to switch resources seasonally. Furthermore, flowering phenologies range from ‘steady‐state’ (low‐rewarding but highly reliable) to ‘big‐bang’ (high‐rewarding but ephemeral) plant species. We assessed how nectarivorous Old World bats respond to this temporally variable floral environment by examining their diets throughout the year. Over 15 months of fieldwork in southern Thailand, we simultaneously: (1) recorded the flowering phenologies of six bat‐pollinated plant taxa; and (2) assessed the diets of seven common flower‐visiting bat species. As predicted, the generalist nectarivore (Eonycteris spelaea) frequently switched diets and utilized both big‐bang and steady‐state resources, while the specialist nectarivores (Macroglossus minimus and M. sobrinus) foraged on one or two steady‐state plant species year‐round. Our results suggest that larger and faster bat species are able to fly longer distances in search of big‐bang resources, while smaller bat species rely on highly predictable food resources. This study supports the theory that generalist foragers have flexible diets, while specialist species restrict foraging to preferred floral resources even when other floral resources are more abundant. Moreover, these findings demonstrate how plant flowering phenology and pollinator diet breadth can shape the frequency and constancy of pollinator visits; we further discuss how such interactions can influence the potential extent of gene flow within a patchy floral environment.  相似文献   

8.
Pollination by nectarivorous birds is predicted to result in different patterns of pollen dispersal and plant mating compared to pollination by insects. We tested the prediction that paternal genetic diversity, outcrossing rate and realized pollen dispersal will be reduced when the primary pollinator group is excluded from bird‐pollinated plants. Pollinator exclusion experiments in conjunction with paternity analysis of progeny were applied to Eucalyptus caesia Benth. (Myrtaceae), a predominantly honeyeater‐pollinated tree that is visited by native insects and the introduced Apis mellifera (Apidae). Microsatellite genotyping at 14 loci of all adult E. caesia at two populations (n = 580 and 315), followed by paternity analysis of 705 progeny, revealed contrasting results between populations. Honeyeater exclusion did not significantly impact pollen dispersal or plant mating at Mount Caroline. In contrast, at the Chiddarcooping site, the exclusion of honeyeaters led to lower outcrossing rates, a threefold reduction in the average number of sires per fruit, a decrease in intermediate‐distance mating and an increase in near‐neighbour mating. The results from Chiddarcooping suggest that bird pollination may increase paternal genetic diversity, potentially leading to higher fitness of progeny and favouring the evolution of this strategy. However, further experimentation involving additional trees and study sites is required to test this hypothesis. Alternatively, insects may be effective pollinators in some populations of bird‐adapted plants, but ineffective in others.  相似文献   

9.
Pollinator shifts are often related to speciation in angiosperms, and the relationship between them has been discussed in several plant taxa. Although limited information on plants pollinated by non-flying mammals in Central and South America and Africa is available, related research has not been conducted in Asia. Herein, I summarize the available knowledge of pollination in Asian Mucuna (Fabaceae), a genus mainly distributed in the tropics, and discuss the evolution of plants pollinated by non-flying mammals in Asia. Nineteen pollinator species have been recorded and pollination systems have been categorized into four types. An examination of the relationship between Mucuna species and their pollinators from the lineage perspective revealed that all species in Mucuna, subgenus Macrocarpa, which are distributed in Asia, are pollinated exclusively by non-flying mammals. Additionally, plants pollinated by non-flying mammals were found to have diverged from bat-pollinated and non-flying mammal-pollinated plants, while plants pollinated by non-flying mammals have evolved multiple times. This is a unique example of evolutionary transition. I hypothesize that the diversification of squirrel species in tropical Asia may have led to the speciation and diversification of Mucuna in Asia. Furthermore, the behavioural and ecological characteristics of bats and birds in Asia differ from the characteristics of those in other regions, implying that Asian Mucuna species do not rely on bat or bird pollinators. The adaptation of floral characteristics to pollinators is not well understood in Asia. Mammal-pollinated plants in Asia may have evolved differently from those in other regions and have unique pollination systems.  相似文献   

10.
  1. Plant–bird pollination interactions evolved independently on different continents. Specific adaptations can lead to their restriction when potential partners from distant evolutionary trajectories come into contact. Alternatively, these interactions can be enabled by convergent evolution and subsequent ecological fitting.
  2. We studied the interactions between New World plants from the genus Heliconia, Asian plants of genus Etlingera and African sunbirds on a local farm in Cameroon. Heliconia spp. evolved together with hummingbirds and Etlingera spp. with spiderhunters —an oriental subgroup of the sunbird family.
  3. Sunbirds fed on all studied plants and individual plant species were visited by a different sunbird spectrum. We experimentally documented a higher number of germinated pollen grains in sunbird‐visited flowers of Etlingera spp. For Heliconia spp., this experiment was not successful and pollen tubes were rarely observed, even in hand‐pollinated flowers, where enough pollen was deposited. The analyses of contacts with plant reproductive organs nevertheless confirmed that sunbirds are good pollen vectors for both Heliconia and Etlingera species.
  4. Our study demonstrated a high ecological fit between actors of distinct evolutionary history and the general validity of bird‐pollination syndrome. We moreover show that trait matching and niche differentiation are important ecological processes also in semi‐artificial plant‐pollinator systems.
  相似文献   

11.
Convergent reproductive traits in non‐related plants may be the result of similar environmental conditions and/or specialised interactions with pollinators. Here, we documented the pollination and reproductive biology of Bionia coriacea (Fabaceae), Esterhazya splendida (Orobanchaceae) and Ananas ananassoides (Bromeliaceae) as case studies in the context of hummingbird pollination in Cerrado, the Neotropical savanna of Central South America. We combined our results with a survey of hummingbird pollination studies in the region to investigate the recently suggested association of hummingbird pollination and self‐compatibility. Plant species studied here differed in their specialisation for ornithophily, from more generalist A. ananassoides to somewhat specialist B. coriacea and E. splendida. This continuum of specialisation in floral traits also translated into floral visitor composition. Amazilia fimbriata was the most frequent pollinator for all species, and the differences in floral display and nectar energy availability among plant species affect hummingbirds' behaviour. Most of the hummingbird‐pollinated Cerrado plants (60.0%, n = 20), including those studied here, were self‐incompatible, in contrast to other biomes in the Neotropics. Association to more generalist, often territorial, hummingbirds, and resulting reduced pollen flow in open savanna areas may explain predominance of self‐incompatibility. But it is possible that mating system is more associated with the predominance of woody hummingbird plants in the Cerrado plant assemblage than to the pollination system itself.  相似文献   

12.
Approximately one-fourth of the more than 900 world-wide distributed Salvia species (Lamiaceae) is ornithophilous. With few exceptions they occur in the New World, being predominantly pollinated by hummingbirds. In the Old World only Salvia africana-lutea and the recently described Salvia thermarum, both from the Cape Province of South Africa, were observed to be pollinated by sunbirds and white-eyes. Among the 23 South African Salvia species Salvia lanceolata is a further candidate for being bird pollinated. For the first time we describe and illustrate its pollination by Nectarinia chalybea and Zosterops pallidus. We compare the ornithophilous syndrome of the three mentioned Salvia species and relate them to the morphological fitting of the most common nectarivorous birds of the Southwestern Cape (Cape peninsula to Worcester). We conclude that each of the birds could act as a pollinator and that the three co-occurring Salvia species are not mechanically isolated from each other. The degree of specialisation towards bird pollination, possible hybridisation events and evolution of bird pollination in South African Salvia species are discussed.  相似文献   

13.
Much research debates whether properties of ecological networks such as nestedness and connectance stabilise biological communities while ignoring key behavioural aspects of organisms within these networks. Here, we computationally assess how adaptive foraging (AF) behaviour interacts with network architecture to determine the stability of plant–pollinator networks. We find that AF reverses negative effects of nestedness and positive effects of connectance on the stability of the networks by partitioning the niches among species within guilds. This behaviour enables generalist pollinators to preferentially forage on the most specialised of their plant partners which increases the pollination services to specialist plants and cedes the resources of generalist plants to specialist pollinators. We corroborate these behavioural preferences with intensive field observations of bee foraging. Our results show that incorporating key organismal behaviours with well‐known biological mechanisms such as consumer‐resource interactions into the analysis of ecological networks may greatly improve our understanding of complex ecosystems.  相似文献   

14.
Abstract. This paper explores whether plant breeding system and pollination specialization influence the reproductive response of plants to habitat fragmentation. It is meaningful for conservation to predict a plant species’ extinction risk. We found 25 studies in the literature assessing the effects of habitat fragmentation on either pollination or reproductive success of 46 plant species to answer the following questions: 1. Are pollination and reproductive success of self‐incompatible species more likely to decline with habitat fragmentation than the pollination and reproductive success of self‐compatible species? Although most of the species showed statistically significant negative effects, the pollination and reproduction of self‐incompatible species were as likely to decline with fragmentation as those of self‐compatible species. 2. Are pollination and reproductive success of specialist plants more affected than the pollination and reproduction of generalist plants? Comparisons of fragmentation‐related changes in pollination and reproductive success between specialists and generalists do not support the hypothesis that specialization in pollination increases the risk of plant extinction. 3. Can self‐incompatible species offset their expected higher vulnerability to fragmentation by being, on average, more pollination generalist than self‐compatible species? In a larger data set on 260 species, we did not find significant differences in either the mean number or frequency distribution of numbers of flower‐visiting species or orders between self‐compatible and self‐incompatible species. Our review suggests that no generalizations can be made on susceptibility to fragmentation based on compatibility system and pollination specialization.  相似文献   

15.
The bird pollination systems of the New and Old Worlds evolved independently, and differ in many aspects. New World plants are often presented as those adapted to hovering birds while Old World plants to perching birds. Most Neotropical studies also demonstrate that in hummingbird species rich assemblages, only a small number of highly specialized birds exploits the most specialized plants with long corollas. Nevertheless, recent research on bird–plant pollination interactions suggest that sunbird pollination systems in the Old World have converged more with the highly specialized hummingbird pollination systems than previously thought. In this study we focus on the pollination systems of the bird pollination syndrome Impatiens species on Mt. Cameroon, West Africa. We show that despite the high diversity of sunbirds on Mt. Cameroon, only Cyanomitra oritis appear to be important pollinator of all Impatiens species. This asymmetry indicates the absence of pair wise co‐evolution and points to a diffuse co‐evolutionary process resulting in guilds of highly specialized plants and birds; a situation well known from hummingbirds and specialized plant communities of the New World. Additionally, the herbaceous habits of Impatiens species, the frequent adaptations to pollination by hovering birds, and the habitat preference for understory in tropical forests or epiphytic growth, resemble the highly specialized Neotropical plants. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 127–133.  相似文献   

16.
Globally, bird-pollinated plants can be separated into two groups, one consisting of species pollinated by specialist nectarivores, and the other of plants pollinated by occasional nectarivores. There are marked differences in nectar properties among the two groups, implying that there has been pollinator-mediated selection on these traits. This raises the possibility that variation in bird assemblages among populations of a plant species could lead to the evolution of intraspecific variation in floral traits. We examined this hypothesis in Kniphofia linearifolia, a common and widespread plant in southern Africa. Although bees are common visitors to flowers of this species, exclusion of birds from inflorescences led to significant reductions in seed set, indicating that the species is primarily bird-pollinated. We showed that bird pollinator assemblages differ markedly between five different populations of K. linearifolia, and that variation in flower morphology and nectar properties between these populations are associated with the dominant guild of bird visitors at each population. We identified two distinct morphotypes, based on corolla length, nectar volume and nectar concentration, which reflect the bird assemblages found in each type. Further work is needed to establish if a natural geographic mosaic of bird assemblages are the ultimate cause of differentiation in floral traits in this species.  相似文献   

17.
Ambophily, the mixed mode of wind and insect pollination is still poorly understood, even though it has been known to science for over 130 years. While its presence has been repeatedly inferred, experimental data remain regrettably rare. No specific suite of morphological or ecological characteristics has yet been identified for ambophilous plants and their ecology and evolution remain uncertain. In this review we summarise and evaluate our current understanding of ambophily, primarily based on experimental studies. A total of 128 ambophilous species – including several agriculturally important crops – have been reported from most major habitat types worldwide, but this probably represents only a small subset of ambophilous species. Ambophilous species have evolved both from wind- and insect-pollinated ancestors, with insect-pollinated ancestors mostly representing pollination by small, generalist flower visitors. We compiled floral and reproductive traits for known ambophilous species and compared our results to traits of species pollinated either by wind or by small generalist insects only. Floral traits were found to be heterogeneous and strongly overlap especially with those of species pollinated by small generalist insects, which are also the prominent pollinator group for ambophilous plants. A few ambophilous species are only pollinated by specialised bees or beetles in addition to pollination by wind. The heterogeneity of floral traits and high similarity to generalist small insect-pollinated species lead us to conclude that ambophily is not a separate pollination syndrome but includes species belonging to different insect- as well as wind-pollination syndromes. Ambophily therefore should be regarded as a pollination mode. We found that a number of ecological factors promoted the evolution of ambophily, including avoidance of pollen limitation and self-pollination, spatial flower interference and population density. However, the individual ecological factors favouring the transition to ambophily vary among species depending on species distribution, habitat, population structure and reproductive system. Finally, a number of experimental studies in combination with observations of floral traits of living and fossil species and dated phylogenies may indicate evolutionary stability. In some clades ambophily has likely prevailed for millions of years, for example in the castanoid clade of the Fagaceae.  相似文献   

18.
Ecosystem functionality is an increasingly important objective of ecological restoration. Despite this, a few studies have rigorously assessed reproductive functionality within restored plant populations, and it is largely assumed that pollinators follow restoration of plant communities—“build it and they will come.” Here, we applied an ecological genetic approach to determine the impact of spatial separation on mating in Banksia menziesii (Proteaceae), a dominant bird‐pollinated species of Banksia woodlands of Western Australia. All plants at three post‐mining restored sites (n = 72 [13 years old], n = 21 [8 years old], and n = 20 [9 years old]), as well as a sample from an adjacent natural reference site (n = 42), were genotyped at nine microsatellite loci. Seed set, mating system parameters, realized pollen dispersal through the assignment of paternity to seed, and avian pollinator species composition, abundance and behavior, were assessed. All patches displayed equivalent heterozygosity (He = 0.53–0.59) and very weak genetic divergence (FST ≤ 0.01). Seed of plants within restored sites showed complete outcrossing and relatively high seed set, 26% of which were sired by pollen donors located beyond the local patch. Similar abundance and movement of nectar‐feeding birds was observed in restored and natural sites, despite lower bird species diversity in the restored site, where a smaller, less aggressive species was dominant. Our results demonstrate the restitution of wide outcrossing in these restored Banksia patches within an active mine‐site, and suggest that restored bird‐pollinated Banksia populations are resilient to human impacts, due largely to their generalist pollinator requirements and highly‐mobile avian pollinators.  相似文献   

19.
Flowers show important structural variation as reproductive organs but the evolutionary forces underlying this diversity are still poorly understood. In animal‐pollinated species, flower shape is strongly fashioned by selection imposed by pollinators, which is expected to vary according to guilds of effective pollinators. Using the Antillean subtribe Gesneriinae (Gesneriaceae), we tested the hypothesis that pollination specialists pollinated by one functional type of pollinator have maintained more similar corolla shapes through time due to more constant and stronger selection constraints compared to species with more generalist pollination strategies. Using geometric morphometrics and evolutionary models, we showed that the corolla of hummingbird specialists, bat specialists, and species with a mixed‐pollination strategy (pollinated by hummingbirds and bats; thus a more generalist strategy) have distinct shapes and that these shapes have evolved under evolutionary constraints. However, we did not find support for greater disparity in corolla shape of more generalist species. This could be because the corolla shape of more generalist species in subtribe Gesneriinae, which has evolved multiple times, is finely adapted to be effectively pollinated by both bats and hummingbirds. These results suggest that ecological generalization is not necessarily associated with relaxed selection constraints.  相似文献   

20.
Clara de Vega  Carlos M. Herrera 《Oikos》2012,121(11):1878-1888
Nectar‐dwelling yeasts are emerging as widely distributed organisms playing a potentially significant and barely unexplored ecological role in plant pollinator mutualisms. Previous efforts at understanding nectar–pollinator–yeast interactions have focused on bee‐pollinated plants, while the importance of nectarivorous ants as vectors for yeast dispersal remains unexplored so far. Here we assess the abundance and composition of the nectar fungal microbiota of the ant‐pollinated plant Cytinus hypocistis, study whether yeast transmission is coupled with ant visitation, and discern whether ant‐ transported yeasts promote changes in nectar characteristics. Our results show that a high percentage of flowers (77%) and plants (94%) contained yeasts, with yeast cell density in nectar reaching up to 6.2 × 104 cells mm?3, being the highest densities associated with the presence of the nectar‐specialist yeast Metschnikowia reukaufii. The establishment of fungal microbiota in nectar required flower visitation by ants, with 70% of yeast species transported by them being also detected in nectar. Ant‐vectored yeasts diminished the nutritional quality of nectar, with flowers exposed to pollinators and yeasts containing significantly lower nectar sugar concentration than virgin flowers (13.4% and 22.8%, respectively). Nectar of flowers that harbored M. reukaufii showed the lowest quality, with nectar concentration declining significantly with increasing yeast density. Additionally, yeasts modified patterns of interpopulation variation in nectar traits, homo genizing differences between populations in some nectar attributes. We show for the first time that the outcome of the tripartite pollinator–flower–yeast interaction is highly dependent on the identity and inherent properties of the participants, even to the extent of influencing the species composition of this ternary system, and can be mediated by ecological characteristics of plant populations. Through their influence on plant functional traits, yeasts have the potential to alter nectar consumption, pollinator foraging behavior and ultimately plant reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号