首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 628 毫秒
1.
Candida albicans hyphae grow in a highly polarized fashion from their tips. This polarized growth requires the continuous delivery of secretory vesicles to the tip region. Vesicle delivery depends on Sec2p, the Guanine Exchange Factor (GEF) for the Rab GTPase Sec4p. GTP bound Sec4p is required for the transit of secretory vesicles from the trans‐Golgi to sites of polarized growth. We previously showed that phosphorylation of Sec2p at residue S584 was necessary for Sec2p to support hyphal, but not yeast growth. Here we show that on secretory vesicles SEC2 mRNA is physically associated with Sec2p. Moreover, we show that the phosphorylation of S584 allows SEC2 mRNA to dissociate from Sec2p and we speculate that this is necessary for Sec2p function and/or translation. During hyphal extension, the growing tip may be separated from the nucleus by up to 15 μm. Transport of SEC2 mRNA on secretory vesicles to the tip localizes SEC2 translation to tip allowing a sufficient accumulation of this key protein at the site of polarized growth.  相似文献   

2.
Filamentous hyphae of the human pathogen, Candida albicans, invade mucosal layers and medical silicones. In vitro, hyphal tips reorient thigmotropically on contact with small obstacles. It is not known how surface topography is sensed but hyphae lacking the cortical marker, Rsr1/Bud1, are unresponsive. We show that, on surfaces, the morphology of hyphal tips and the position of internal polarity protein complexes are asymmetrically skewed towards the substratum and biased towards the softer of two surfaces. In nano‐fabricated chambers, the Spitzenkörper (Spk) responded to touch by translocating across the apex towards the point of contact, where its stable maintenance correlated with contour‐following growth. In the rsr1Δ mutant, the position of the Spk meandered and these responses were attenuated. Perpendicular collision caused lateral Spk oscillation within the tip until after establishment of a new growth axis, suggesting Spk position does not predict the direction of growth in C. albicans. Acute tip reorientation occurred only in cells where forward growth was countered by hyphal friction sufficient to generate a tip force of ~ 8.7 μN (1.2 MPa), more than that required to penetrate host cell membranes. These findings suggest mechanisms through which the organization of hyphal tip growth in C. albicans facilitates the probing, penetration and invasion of host tissue.  相似文献   

3.
Although exocytosis in fungal cells takes place at hyphal tips, there also seems a line of circumstantial evidence suggesting the occurrence of exocytosis at other sites of cells, such as septa. To investigate whether exocytosis takes place at fungal septa, we monitored dynamics of EGFP‐fused α‐amylase (AmyB–EGFP), the representative secretory enzyme of the filamentous fungus Aspergillus oryzae. We found that AmyB–EGFP accumulates in Spitzenkörper at hyphal tips as well as septal periplasm between the plasma membrane and cell walls. The septal accumulation of AmyB–EGFP was a rapid process, and required microtubules but not F‐actin. Thus, this process is independent of exocytosis at hyphal tips that requires both microtubules and F‐actin. In addition, fluorescence recovery after photobleaching (FRAP) analysis of EGFP‐fused AoSnc1 revealed that secretory vesicles constitutively fuse with the septal plasma membrane. These results demonstrated that exocytosis takes place at septa in addition to hyphal tips. Analysis of two plasma membrane transporters, AoUapC and AoGap1, revealed that they preferentially accumulate at septa and the lateral plasma membrane with no clear accumulation at apical Spitzenkörper, suggesting that non‐tip directed exocytosis is important for delivery of these proteins.  相似文献   

4.
Polarized growth is a fundamental property of cell growth and development. It requires the delivery of post‐Golgi secretory vesicles to the site of polarized growth. This process is mediated by Rab GTPases activated by their guanine exchange factors (GEFs). The human fungal pathogen, Candida albicans, can grow in a budded yeast form or in a highly polarized hyphal form, and thus provides a model to study this phenomenon. During hyphal, but not yeast growth, secretory vesicles accumulate in an apical body called a Spitzenkörper, which acts to focus delivery of the vesicles to the tip. Post‐Golgi transport of secretory vesicles is mediated by the Rab GTPase Sec4, activated by its GEF Sec2. Using a combination of deletion mapping, in vitro mutagenesis, an analogue‐sensitive allele of Cdc28 and an in vitro kinase assay, we show that localization of Sec2 to the Spitzenkörper and normal hyphal development requires phosphorylation of Serine 584 by the cyclin‐dependent kinase Cdc28. Thus, as well as controlling passage through the cell cycle, Cdc28 has an important function in controlling polarized secretion.  相似文献   

5.
6.
Candida albicans biofilms on most medical devices are exposed to a flow of body fluids that provide water and nutrients to the fungal cells. While Calbicans biofilms grown in vitro under static conditions have been exhaustively studied, the same is not true for biofilms developed under continuous flow of replenishing nutrients. Here, we describe a simple flow biofilm (FB) model that can be built easily with materials commonly available in most microbiological laboratories. We demonstrate that Calbicans biofilms formed using this flow system show increased architectural complexity compared to biofilms grown under static conditions. Calbicans biofilms under continuous medium flow grow rapidly, and by 8 h show characteristics similar to 24 h statically grown biofilms. Biomass measurements and microscopic observations further revealed that after 24 h of incubation, FB was more than twofold thicker than biofilms grown under static conditions. Microscopic analyses revealed that the surface of these biofilms was extremely compact and wrinkled, unlike the open hyphal layer typically seen in 24 h static biofilms. Results of antifungal drug susceptibility tests showed that Calbicans cells in FB exhibited increased resistance to most clinically used antifungal agents.  相似文献   

7.
Endocytosis and exocytosis are strictly segregated at the ends of hyphal cells of filamentous fungi, with a collar of endocytic activity encircling the growing cell tip, which elongates through directed membrane fusion. It has been proposed that this separation supports an endocytic recycling pathway that maintains polar localization of proteins at the growing apex. In a search for proteins in the filamentous fungus Aspergillus nidulans that possess an NPFxD motif, which signals for endocytosis, a Type 4 P‐Type ATPase was identified and named DnfA. Interestingly, NPFxD is at a different region of DnfA than the same motif in the Saccharomyces cerevisiae ortholog, although endocytosis is dependent on this motif for both proteins. DnfA is involved in asexual sporulation and polarized growth. Additionally, it is segregated within the Spitzenkörper from another Type 4 P‐type ATPase, DnfB. Next, the phosphatidylserine marker GFP::Lact‐C2 was expressed in growing hyphae, which revealed that this phospholipid is enriched on the cytosolic face of secretory vesicles. This distribution is affected by deleting either dnfA or dnfB. These findings provide evidence for the spatial and temporal segregation of Type4‐ATPases in filamentous fungi, and the asymmetric distribution of phosphatidylserine to the Spitzenkörper in A. nidulans.  相似文献   

8.
9.
Smoking and Candida albicans (Calbicans) infection are risk factors for many oral diseases. Several studies have reported a close relationship between smoking and the occurrence of Calbicans infection. However, the exact underlying mechanism of this relationship remains unclear. We established a rat infection model and a C. albicans-Leuk1 epithelial cell co-culture model with and without smoke exposure to investigate the mechanism by which smoking contributes to Calbicans infection. Oral mucosa samples from healthy individuals and patients with oral leucoplakia were also analysed according to their smoking status. Our results indicated that smoking induced oxidative stress and redox dysfunction in the oral mucosa. Smoking-induced Nrf2 negatively regulated the NLRP3 inflammasome, impaired the oral mucosal defence response and increased the oral mucosa susceptibility to Calbicans. The results suggest that the Nrf2 pathway could be involved in the pathogenesis of oral diseases by mediating an antioxidative response to cigarette smoke exposure and suppressing host immunity against Calbicans.  相似文献   

10.
The proper characterization of individual is a basic stage in population genetic studies. In Sclerotinia sclerotiorum, genetic uniformity of an individual can be obtained by isolation of single ascospore; however, hyphal‐tip isolates are commonly used in genetic studies. The aim of this study was to assess whether hyphal‐tip isolates of S. sclerotiorum can be used as surrogate of monoascosporic (monosporic) isolates. Twenty‐eight isolates of S. sclerotiorum were collected from common bean plants with white mold symptoms and were purified by hyphal‐tip or single ascospore. The correspondence between hyphal‐tip and monosporic isolates was assessed through the allelic composition at 10 microsatellite (SSR) loci of the isolates obtained by both methods. For the SSR loci comprised of dinucleotide repeats in 92% of the cases, the difference (di) between the amplicon size values for hyphal‐tip and monosporic isolates was no more than one base pair. For the loci comprised of tetra or pentanucleotide repeats in 89% of the cases, di was no more than one base pair. The same allelic profile was found for hyphal‐tip or single ascospore isolates of S. sclerotiorum. When monosporic isolates cannot be easily obtained, hyphal‐tip can safeguard the genotypic identity of S. sclerotiorum isolates.  相似文献   

11.
12.
13.
Phorbasin H is a diterpene acid of a bisabolane-related skeletal class isolated from the marine sponge Phorbas sp. In this study, we examined whether phorbasin H acted as a yeast-to-hypha transition inhibitor of Candida albicans. Growth experiments suggest that this compound does not inhibit yeast cell growth but inhibits filamentous growth in C. albicans. Northern blot analysis of signaling pathway components indicated that phorbasin H inhibited the expression of mRNAs related to cAMP–Efg1 pathway. The exogenous addition of db-cAMP to C. albicans cells had no influence on the frequency of hyphal formation. The expression of hypha-specific HWP1 and ALS3 mRNAs, both of which are positively regulated by the important regulator of cell wall dynamics Efg1, was significantly inhibited by the addition of phorbasin H. This compound also reduced the ability of C. albicans cells to adhere in a dose-dependent manner. Our findings suggest that phorbasin H impacts the activity of the cAMP–Efg1 pathway, thus leading to an alteration of C. albicans morphology.  相似文献   

14.
15.
Candida albicans and C. tropicalis obtained from whole saliva of patients presenting signs of oral candidosis were assayed for quantification of colony forming units, exoenzyme activity (phospholipase and proteinase) and antifungal drug sensitivity (amphotericin B, fluconazole and itraconazole) by the reference method of the Clinical and Laboratory Standards Institute. The number of colony forming units per milliliter varied according to the Candida species involved and whether a single or mixed infection was present. Proteinase activity was observed in both Calbicans and Ctropicalis, but phospholipase activity was noted only in Calbicans. In vitro resistance to antifungals was verified in both species, but Ctropicalis appears to be more resistant to the tested antifungals than Calbicans.  相似文献   

16.
T. Akashi  T. Kanbe  K. Tanaka 《Protoplasma》1997,197(1-2):45-56
Summary Candida albicans, a dimorphic yeast, has the abililty to switch its growth form between budding growth and hyphal growth. Since fungal growth involves secretory processes, spatial control of secretion should play a crucial role in such a morphogenetic transition. Brefeldin A (BFA), an inhibitor of the membrane trafficking system of eukaryotes, increases the occurrence of Golgi-like cisternae in the yeast. In the present study, BFA was used to obtain further insights into the spatial organization of secretory processes in hyphal growth ofC. albicans. BFA completely inhibited the formation and growth of germ tubes at a concentration of 35 M or higher. Electron microscopy of BFA-untreated germinated cells revealed many vesicles in the apical region and Golgi-like cisternae in the cytoplasm. In cells treated with 35 M BFA, the vesicles disappeared from the apical region, and, instead, stacked membrane cisternae and membrane-enclosed spherical dense bodies accumulated in the subapical region. These accumulated structures were positive for both polysaccharide staining and immunocytochemical staining with antibodies raised against cell surface antigens ofC. albicans, as were Golgi cisternae in BFA-untreated cells. In cells treated with a higher concentration of BFA (140 M), the structures that appeared in cells treated with 35 M BFA were no longer observed and the endoplasmic reticulum was extended and positive for polysaccharide staining. These results suggested that BFA affects different steps of membrane trafficking in a concentration-dependent manner. The accumulated structures induced by 35 M BFA seemed to be the altered forms of Golgi cisternae. Their accumulation in the subapical region of the germ tube might indicate that the step(s) in membrane trafficking that are associated with the Golgi pathway are vectorially organized in hyphal growth ofC. albicans.Abbrevations BFA brefeldin A - BSA bovine serum albumin - CBB Coomassie brilliant blue - Con A concanavalin A - HRP horseradish peroxidase  相似文献   

17.
Rho G‐proteins are critical for polarized growth, yet little is known about the dynamics of their activation during fungal filamentous growth. We first investigated the roles of Rho1 and Rho2 during Candida albicans filamentous growth. Our results show that Rho1 is required for invasive filamentous growth and that Rho2 is not functionally redundant with Rho1. Using fluorescent reporters, we examined the dynamics of the active form of Rho1 and Cdc42 during initiation and maintenance of hyphal growth. Quantitative analyses indicated that the distribution, but not the level, of these active G‐proteins is altered during initial polarization upon germ tube emergence. A comparison of the dynamics of these active G‐proteins during budding and hyphal growth indicates that a higher concentration of active Cdc42 was recruited to the germ tube tip than to the bud tip. During hyphal elongation, active Cdc42 remained tightly restricted to the hyphal tip, whereas active Rho1 was broadly associated with the apex and subsequently recruited to the cell division site. Furthermore, our data suggest that phosphoinositide‐bis‐phosphates are critical to stabilize active Rho1 at the growth site. Together, our results point towards different regulation of Cdc42 and Rho1 activity during initiation and maintenance of filamentous growth.  相似文献   

18.
The ability of Candida albicans to cause disease is associated with its capacity to undergo morphological transition between yeast and filamentous forms, but the role of morphology in colonization and dissemination from the gastrointestinal (GI) tract remains poorly defined. To explore this, we made use of wild‐type and morphological mutants of C. albicans in an established model of GI tract colonization, induced following antibiotic treatment of mice. Our data reveal that GI tract colonization favours the yeast form of C. albicans, that there is constitutive low level systemic dissemination in colonized mice that occurs irrespective of fungal morphology, and that colonization is not controlled by Th17 immunity in otherwise immunocompetent animals. These data provide new insights into the mechanisms of pathogenesis and commensalism of C. albicans, and have implications for our understanding of human disease.  相似文献   

19.
Technical bottlenecks in protein production and secretion often limit the efficient and robust industrial use of microbial enzymes. The potential of non-thermal atmospheric pressure plasma to overcome these technical barriers was examined. Spores of the fermenting fungus Aspergillus oryzae (A. oryzae) were submerged in potato dextrose broth (PDB) (5 × 106 per ml) and treated with micro dielectric barrier discharge plasma at an input voltage of 1.2 kV and current of 50 to 63 mA using nitrogen as the feed gas. The specific activity of α-amylase in the broth was increased by 7.4 to 9.3% after 24 and 48 h of plasma treatment. Long-lived species, such as NO2 and NO3, generated in PDB after plasma treatment may have contributed to the elevated secretion of α-amylase. Observations after 24 h of plasma treatment also included increased accumulation of vesicles at the hyphal tip, hyphal membrane depolarization and higher intracellular Ca2+ levels. These results suggest that long-lived nitrogen species generated in PDB after plasma treatment can enhance the secretion of α-amylase from fungal hyphae by depolarizing the cell membrane and activating Ca2+ influx into hyphal cells, eventually leading to the accumulation of secretory vesicles near the hyphal tips.  相似文献   

20.
Polarised growth in fungi occurs through the delivery of secretory vesicles along tracks formed by cytoskeletal elements to specific sites on the cell surface where they dock with a multiprotein structure called the exocyst before fusing with the plasma membrane. The budding yeast, Saccharomyces cerevisiae has provided a useful model to investigate the mechanisms involved and their control. Cortical markers, provided by bud site selection pathways during budding, the septin ring during cytokinesis or the stimulation of the pheromone response receptors during mating, act through upstream signalling pathways to localise Cdc24p, the GEF for the rho family GTPase, Cdc42p. In its GTP-bound form, Cdc42p activates a multiprotein complex called the polarisome which nucleates actin cables along which the secretory vesicles are transported to the cell surface. Hyphae can elongate at a rate orders of magnitude faster than the extension of a yeast bud, so understanding hyphal growth will require substantial modification of the yeast paradigm. The rapid rate of hyphal growth is driven by a structure called the Spitzenkörper, located just behind the growing tip and which is rich in secretory vesicles. It is thought that secretory vesicles are delivered to the apical region where they accumulate in the Spitzenkörper. The Spitzenkörper then acts as vesicle supply centre, and it has been postulated that vesicles exit the Spitzenkörper in all directions, but because of its proximity, the tip receives a greater concentration of vesicles per unit area than subapical regions. There are no obvious equivalents to the bud site selection pathway to provide a spatial landmark for polarised growth in hyphae. However, an emerging model is the way that the site of polarised growth in the fission yeast, Schizosaccharomyces pombe, is marked by delivery of the kelch repeat protein, Tea1, along microtubules. The relationship of the Spitzenkörper to the polarisome and the mechanisms that promote its formation are key questions that form the focus of current research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号