首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between species can alter selection on sexual displays used in mate choice within species. Here we study the epicuticular pheromones of two Drosophila species that overlap partially in geographic range and are incompletely reproductively isolated. Drosophila subquinaria shows a pattern of reproductive character displacement against Drosophila recens, and partial behavioral isolation between conspecific sympatric versus allopatric populations, whereas D. recens shows no such variation in mate choice. First, using manipulative perfuming experiments, we show that females use pheromones as signals for mate discrimination both between species and among populations of D. subquinaria. Second, we show that patterns of variation in epicuticular compounds, both across populations and between species, are consistent with those previously shown for mating probabilities: pheromone compositions differ between populations of D. subquinaria that are allopatric versus sympatric with D. recens, but are similar across populations of D. recens regardless of overlap with D. subquinaria. We also identify differences in pheromone composition among allopatric regions of D. subquinaria. In sum, our results suggest that epicuticular compounds are key signals used by females during mate recognition, and that these traits have diverged among D. subquinaria populations in response to reinforcing selection generated by the presence of D. recens.  相似文献   

2.
Reinforcement of species boundaries may alter mate recognition in a way that also affects patterns of mate preference among conspecific populations. In the fly Drosophila subquinaria, females sympatric with the closely related species D. recens reject mating with heterospecific males as well as with conspecific males from allopatric populations. Here, we assess geographic variation in behavioral isolation within and among populations of D. subquinaria and use cline theory to understand patterns of selection on reinforced discrimination and its consequences for sexual isolation within species. We find that selection has fixed rejection of D. recens males in sympatry, while significant genetic variation in this behavior occurs within allopatric populations. In conspecific matings sexual isolation is also asymmetric and stronger in populations that are sympatric with D. recens. The clines in behavioral discrimination within and between species are similar in shape and are maintained by strong selection in the face of gene flow, and we show that some of their genetic basis may be either shared or linked. Thus, while reinforcement can drive extremely strong phenotypic divergence, the long‐term consequences for incipient speciation depend on gene flow, genetic linkage of discrimination traits, and the cost of these behaviors in allopatry.  相似文献   

3.
Several lines of evidence implicate sexual isolation in both initiating and completing the speciation process. Although its existence is straightforward to demonstrate, understanding the evolution of sexual isolation requires identifying the underlying phenotypes responsible so that we can determine how these have diverged. Here, we study geographic variation in female mate preferences for male sexual displays in the fly Drosophila subquinaria. Female D. subquinaria that are sympatric with its sister species D. recens discriminate strongly against both D. recens and allopatric conspecific males, whereas females from allopatric populations do not. Furthermore, female mate preferences target at least in part a suite of cuticular hydrocarbons (CHCs) in males and geographic variation in CHCs mirrors the pattern of mate discrimination. In this study, we quantify female mate preferences for male CHCs from populations that span the geographic range of D. subquinaria. We find that the direction of linear sexual selection varies significantly between populations that are sympatric versus allopatric with D. recens in a pattern of reproductive character displacement. Differences in preference partially align with existing differences in CHCs and patterns of sexual isolation, although discrepancies remain that suggest the involvement of additional traits and/or more complex, nonlinear preference functions.  相似文献   

4.
5.
When two species are incompletely isolated, strengthening premating isolation barriers in response to the production of low fitness hybrids may complete the speciation process. Here, we use the sister species Drosophila subquinaria and Drosophila recens to study the conditions under which this reinforcement of species boundaries occurs in natural populations. We first extend the region of known sympatry between these species, and then we conduct a fine‐scale geographic survey of mate discrimination coupled with estimates of gene flow within and admixture between species. Within D. subquinaria, reinforcement is extremely effective: we find variation in mate discrimination both against D. recens males and against conspecific allopatric males on the scale of a few kilometres and in the face of gene flow both from conspecific populations and introgression from D. recens. In D. recens, we do not find evidence for increased mate discrimination in sympatry, even where D. recens is rare, consistent with substantial gene flow throughout the species’ range. Finally, we find that introgression between species is asymmetric, with more from D. recens into D. subquinaria than vice versa. Within each species, admixture is highest in the geographic region where it is rare relative to the other species, suggesting that when hybrids are produced they are of low fitness. In sum, reinforcement within D. subquinaria is effective at maintaining species boundaries, but even when reinforcing selection is strong it may not always result in a pattern of strong reproductive character displacement due to variation in the frequency of hybridization and gene flow from neighbouring populations.  相似文献   

6.
Most animal species use distinctive courship patterns to choose among potential mates. Over time, the sensory signaling and preferences used during courtship can diverge among groups that are reproductively isolated. This divergence of signal traits and preferences is thought to be an important cause of behavioral isolation during the speciation process. Here, we examine the sensory modalities used in courtship by two closely related species, Drosophila subquinaria and Drosophila recens, which overlap in geographic range and are incompletely reproductively isolated. We use observational studies of courtship patterns and manipulation of male and female sensory modalities to determine the relative roles of visual, olfactory, gustatory, and auditory signals during conspecific mate choice. We find that sex‐specific, species‐specific, and population‐specific cues are used during mate acquisition within populations of D. subquinaria and D. recens. We identify shifts in both male and female sensory modalities between species, and also between populations of D. subquinaria. Our results indicate that divergence in mating signals and preferences have occurred on a relatively short timescale within and between these species. Finally, we suggest that because olfactory cues are essential for D. subquinaria females to mate within species, they may also underlie variation in behavioral discrimination across populations and species.  相似文献   

7.
Reinforcement refers to the evolution of increased mating discrimination against heterospecific individuals in zones of geographic overlap and can be considered a final stage in the speciation process. One the factors that may affect reinforcement is the degree to which hybrid matings result in the permanent loss of genes from a species' gene pool. Matings between females of Drosophila subquinaria and males of D. recens result in high levels of offspring mortality, due to interspecific cytoplasmic incompatibility caused by Wolbachia infection of D. recens. Such hybrid inviability is not manifested in matings between D. recens females and D. subquinaria males. Here we ask whether the asymmetrical hybrid inviability is associated with a corresponding asymmetry in the level of reinforcement. The geographic ranges of D. recens and D. subquinaria were found to overlap across a broad belt of boreal forest in central Canada. Females of D. subquinaria from the zone of sympatry exhibit much stronger levels of discrimination against males of D. recens than do females from allopatric populations. In contrast, such reproductive character displacement is not evident in D. recens, consistent with the expected effects of unidirectional cytoplasmic incompatibility. Furthermore, there is substantial behavioral isolation within D. subquinaria, because females from populations sympatric with D. recens discriminate against allopatric conspecific males, whereas females from populations allopatric with D. recens show no discrimination against any conspecific males. Patterns of general genetic differentiation among populations are not consistent with patterns of behavioral discrimination, which suggests that the behavioral isolation within D. subquinaria results from selection against mating with Wolbachia-infected D. recens. Interspecific cytoplasmic incompatibility may contribute not only to post-mating isolation, an effect already widely recognized, but also to reinforcement, particularly in the uninfected species. The resulting reproductive character displacement not only increases behavioral isolation from the Wolbachia-infected species, but may also lead to behavioral isolation between populations of the uninfected species. Given the widespread occurrence of Wolbachia among insects, it thus appears that there are multiple ways by which these endosymbionts may directly and indirectly contribute to reproductive isolation and speciation.  相似文献   

8.
Reinforcement refers to the evolution of increased mating discrimination against heterospecific individuals in zones of geographic overlap and can be considered a final stage in the speciation process. One the factors that may affect reinforcement is the degree to which hybrid matings result in the permanent loss of genes from a species' gene pool. Matings between females of Drosophila subquinaria and males of D. recens result in high levels of offspring mortality, due to interspecific cytoplasmic incompatibility caused by Wolbachia infection of D. recens. Such hybrid inviability is not manifested in matings between D. recens females and D. subquinaria males. Here we ask whether the asymmetrical hybrid inviability is associated with a corresponding asymmetry in the level of reinforcement. The geographic ranges of D. recens and D. subquinaria were found to overlap across a broad belt of boreal forest in central Canada. Females of D. subquinaria from the zone of sympatry exhibit much stronger levels of discrimination against males of D. recens than do females from allopatric populations. In contrast, such reproductive character displacement is not evident in D. recens, consistent with the expected effects of unidirectional cytoplasmic incompatibility. Furthermore, there is substantial behavioral isolation within D. subquinaria, because females from populations sympatric with D. recens discriminate against allopatric conspecific males, whereas females from populations allopatric with D. recens show no discrimination against any conspecific males. Patterns of general genetic differentiation among populations are not consistent with patterns of behavioral discrimination, which suggests that the behavioral isolation within D. subquinaria results from selection against mating with Wolbachia-infected D. recens. Interspecific cytoplasmic incompatibility may contribute not only to post-mating isolation, an effect already widely recognized, but also to reinforcement, particularly in the uninfected species. The resulting reproductive character displacement not only increases behavioral isolation from the Wolbachia-infected species, but may also lead to behavioral isolation between populations of the uninfected species. Given the widespread occurrence of Wolbachia among insects, it thus appears that there are multiple ways by which these endosymbionts may directly and indirectly contribute to reproductive isolation and speciation.  相似文献   

9.
Young species complexes that are widespread across ecologically disparate regions offer important insights into the process of speciation because of their relevance to how local adaptation and gene flow influence diversification. We used mitochondrial DNA and up to 28 152 genomewide single nucleotide polymorphisms from polytypic barking frogs (Craugastor augusti complex) to infer phylogenetic relationships and test for the signature of introgressive hybridization among diverging lineages. Our phylogenetic reconstructions suggest (i) a rapid Pliocene–Pleistocene radiation that produced at least nine distinct lineages and (ii) that geographic features of the arid Central Mexican Plateau contributed to two independent northward expansions. Despite clear lineage differentiation (many private alleles and high between‐lineage FST scores), D‐statistic tests, which differentiate introgression from ancestral polymorphism, allowed us to identify two putative instances of reticulate gene flow. Partitioned D‐statistics provided evidence that these events occurred in the same direction between clades but at different points in time. After correcting for geographic distance, we found that lineages involved in hybrid gene flow interactions had higher levels of genetic variation than independently evolving lineages. These findings suggest that the nature of hybrid compatibility can be conserved overlong periods of evolutionary time and that hybridization between diverging lineages may contribute to standing levels of genetic variation.  相似文献   

10.
The diversity of phenotypically different and often reproductively isolated lacustrine forms of charrs of the genus Salvelinus represents a substantial problem for taxonomists and evolutionary biologists. Based on the analysis of variability of ten microsatellite loci and two fragments of mitochondrial DNA (control region and cyt‐b gene), the evolutionary history of three charr species from Lake El'gygytgyn was reconstructed, and phylogenetic relationships between the main representatives of the genus were revealed. Three species from Lake El'gygytgyn were strongly reproductively isolated. Long‐finned charr described previously as Salvethymus svetovidovi, an ancient endemic form in the lake, originated 3.5 Mya (95% Bayesian credible intervals: 1.7, 6.1). Placement of this species in the phylogenetic tree of Salvelinus was not determined strictly, but it should be located in the basal part of the clade Salvelinus alpinus – S. malma species complex. The origin of small‐mouth charr S. elgyticus and Boganida charr S. boganidae in Lake El'gygytgyn was related to allopatric speciation. Their ancestors were represented by two glacial lineages of Taranets charr S. alpinus taranetzi from Asia. In Lake El'gygytgyn, these lineages entered into secondary contact postglacially. A revision of the main phylogenetic groups within the Salvelinus alpinus – S. malma complex is conducted. The Boganida charrs from Lakes El'gygytgyn and Lama (Taimyr) belong to different phylogenetic groups of Arctic charr and should not be regarded as a single species S. boganidae. Using the charrs from Lakes El'gygytgyn and Lama as a case study, we show that a model of sympatric speciation, which seemed more probable based on previous empirical evidence, was rejected by other data.  相似文献   

11.
Many conflicting hypotheses regarding the relationships among crops and wild species closely related to wheat (the genera Aegilops, Amblyopyrum, and Triticum) have been postulated. The contribution of hybridization to the evolution of these taxa is intensely discussed. To determine possible causes for this, and provide a phylogeny of the diploid taxa based on genome‐wide sequence information, independent data were obtained from genotyping‐by‐sequencing and a target‐enrichment experiment that returned 244 low‐copy nuclear loci. The data were analyzed using Bayesian, likelihood and coalescent‐based methods. D statistics were used to test if incomplete lineage sorting alone or together with hybridization is the source for incongruent gene trees. Here we present the phylogeny of all diploid species of the wheat wild relatives. We hypothesize that most of the wheat‐group species were shaped by a primordial homoploid hybrid speciation event involving the ancestral Triticum and Am. muticum lineages to form all other species except Ae. speltoides. This hybridization event was followed by multiple introgressions affecting all taxa except Triticum. Mostly progenitors of the extant species were involved in these processes, while recent interspecific gene flow seems insignificant. The composite nature of many genomes of wheat‐group taxa results in complicated patterns of diploid contributions when these lineages are involved in polyploid formation, which is, for example, the case for tetraploid and hexaploid wheats. Our analysis provides phylogenetic relationships and a testable hypothesis for the genome compositions in the basic evolutionary units within the wheat group of Triticeae.  相似文献   

12.
Endosymbiotic bacteria of the genus Wolbachia are widespread among insects and in many cases cause cytoplasmic incompatibility in crosses between infected males and uninfected females. Such findings have been used to argue that Wolbachia have played an important role in insect speciation. Theoretical models, however, indicate that Wolbachia alone are unlikely to lead to stable reproductive isolation between two formerly conspecific populations. Here we analyze the components of reproductive isolation between Drosophila recens, which is infected with Wolbachia, and its uninfected sister species Drosophila subquinaria. Laboratory pairings demonstrated that gene flow via matings between D. recens females and D. subquinaria males is hindered by behavioral isolation. Matings readily occurred in the reciprocal cross (D. quinaria females × D. recens males), but very few viable progeny were produced. The production of viable hybrids via this route was restored by antibiotic curing of D. recens of their Wolbachia symbionts, indicating that hybrid offspring production is greatly reduced by cytoplasmic incompatibility in the crosses involving infected D. recens males. Thus, behavioral isolation and Wolbachia-induced cytoplasmic incompatibility act as complementary asymmetrical isolating mechanisms between these two species. In accordance with Haldane's rule, hybrid females were fertile, whereas hybrid males invariably were sterile. Levels of mtDNA variation in D. recens are much lower than in either D. subquinaria or D. falleni, neither of which is infected with Wolbachia. The low haplotype diversity in D. recens is likely due to an mtDNA sweep associated with the spread of Wolbachia. Nevertheless, the existence of several mtDNA haplotypes in this species indicates that Wolbachia have been present as a potential isolating mechanism for a substantial period of evolutionary time. Finally, we argue that although Wolbachia by themselves are unlikely to bring about speciation, they can increase the rate of speciation in insects.  相似文献   

13.
The bat family Nycteridae contains only the genus Nycteris, which comprises 13 currently recognized species from Africa and the Arabian Peninsula, one species from Madagascar, and two species restricted to Malaysia and Indonesia in South‐East Asia. We investigated genetic variation, clade membership, and phylogenetic relationships in Nycteridae with broad sampling across Africa for most clades. We sequenced mitochondrial cytochrome b (cytb) and four independent nuclear introns (2,166 bp) from 253 individuals. Although our samples did not include all recognized species, we recovered at least 16 deeply divergent monophyletic lineages using independent mitochondrial and multilocus nuclear datasets in both gene tree and species tree analyses. Mean pairwise uncorrected genetic distances among species‐ranked Nycteris clades (17% for cytb and 4% for concatenated introns) suggest high levels of phylogenetic diversity in Nycteridae. We found a large number of designated clades whose members are distributed wholly or partly in East Africa (10 of 16 clades), indicating that Nycteris diversity has been historically underestimated and raising the possibility that additional unsampled and/or undescribed Nycteris species occur in more poorly sampled Central and West Africa. Well‐resolved mitochondrial, concatenated nuclear, and species trees strongly supported African ancestry for SE Asian species. Species tree analyses strongly support two deeply diverged subclades that have not previously been recognized, and these clades may warrant recognition as subgenera. Our analyses also strongly support four traditionally recognized species groups of Nycteris. Mitonuclear discordance regarding geographic population structure in Nycteris thebaica appears to result from male‐biased dispersal in this species. Our analyses, almost wholly based on museum voucher specimens, serve to identify species‐rank clades that can be tested with independent datasets, such as morphology, vocalizations, distributions, and ectoparasites. Our analyses highlight the need for a comprehensive revision of Nycteridae.  相似文献   

14.
Species complexes of widespread African vertebrates that include taxa distributed across different habitats are poorly understood in terms of their phylogenetic relationships, levels of genetic differentiation and diversification dynamics. The Fork‐tailed Drongo (Dicrurus adsimilis) species complex includes seven Afrotropical taxa with parapatric distributions, each inhabiting a particular bioregion. Various taxonomic hypotheses concerning the species limits of the Fork‐tailed Drongo have been suggested, based largely on mantle and upperpart coloration, but our understanding of diversity and diversification patterns remains incomplete. Especially given our lack of knowledge about how well these characters reflect taxonomy in a morphologically conservative group. Using a thorough sampling across Afrotropical bioregions, we suggest that the number of recognized species within the D. adsimilis superspecies complex has likely been underestimated and that mantle and upperpart coloration reflects local adaptation to different habitat structure, rather than phylogenetic relationships. Our results are consistent with recent phylogeographic studies of sub‐Saharan African vertebrates, indicating that widespread and often morphologically uniform species comprise several paraphyletic lineages, often with one or more of the lineages being closely related to phenotypically distinct forms inhabiting a different, yet geographically close, biome.  相似文献   

15.
Phylogenetic relationships of Oceanian staple yams (species of Dioscorea section Enantiophyllum) were investigated using plastid trnL‐F and rpl32‐trnL(UAG) sequences and nine nuclear co‐dominant microsatellites. Analysis of herbarium specimens, used as taxonomic references, allowed the comparison with samples collected in the field. It appears that D. alata, D. transversa and D. hastifolia are closely related species. This study does not support a direct ancestry from D. nummularia to D. alata as previously hypothesized. The dichotomy in D. nummularia previously described by farmers in semi‐perennial and annual types was reflected by molecular markers, but the genetic structure of D. nummularia appears more complex. Dioscorea nummularia displayed two haplotypes, each corresponding to a different genetic group. One, including a D. nummularia voucher from New Guinea, is closer to D. tranversa, D. alata and D. hastifolia and encompasses only semi‐perennial types. The second group is composed of semi‐perennial and annual yams. However, some of these annual yams also displayed D. alata haplotypes. Nuclear markers revealed that some annual yams shared alleles with D. alata and semi‐perennial D. nummularia, suggesting a hybrid origin, which may explain their intermediate morphotypes and the difficulty met in classifying them.  相似文献   

16.
Groundwater calcretes in arid central Western Australia contain a diverse invertebrate groundwater fauna (stygofauna). Surveys have uncovered a diverse oniscidean isopod subterranean fauna above the water table (troglofauna), including species of a recently described genus Paraplatyarthrus. The aim of this study was to investigate the biogeographic history of Paraplatyarthrus and the timing of transitions from surface to subterranean habitats. Phylogenetic relationships among the isopod troglofauna from 11 groundwater calcretes along three palaeodrainage systems were assessed using one mitochondrial gene, cytochrome c oxidase subunit 1 (COI), and two nuclear markers, lysyl‐tRNA synthetase (LysRS) and 18S rRNA (18S) genes. Phylogenetic analyses revealed multiple sister lineage relationships between troglophile and troglobite lineages and evidence for divergent mtDNA lineages within species, providing a range of nodes for dating evolutionary transitions from surface to subterranean habitats. Relaxed molecular clock analyses provided evidence that evolutionary transitions from surface to subterranean environments took place between 13.3 and 1.75 million years ago, coinciding with the onset of aridification of Australia from the late Tertiary. In cases where groundwater calcretes contained multiple species, the taxa were not closely related phylogenetically, suggesting that these calcretes were independently colonised by multiple ancestral species. The study further confirmed the role of late/post‐Miocene aridification as a key driver of the evolution of subterranean invertebrates in the calcrete islands of Western Australia, supporting the climatic relict hypothesis. Troglobites most likely evolved from the troglophile ancestors that were capable of dispersal among, and active colonisation of, calcretes.  相似文献   

17.
18.
Similar morphological characters and little molecular data of Amphioctopus rex, A. neglectus and A. cf. ovulum resulted in their unknown phylogenetic statuses and equivocal relationships. In this study, the complete mitochondrial genomes of these three species collected in Chinese waters were sequenced and compared with each other to clarify the relationships among them. The lengths of the mitochondrial genomes varied from 15,646 bp to 15,814 bp, and the A + T content and GC skew for protein‐coding genes showed little variation. In contrast, both a dendrogram based on codon usage and the gene arrangements of the three octopuses showed that A. rex was more closely related to A. neglectus than to A. cf. ovulum. Five data sets and two methods (maximum likelihood and Bayesian inference) were utilized for the first time to explore the phylogenetic relationships among these three species in Octopodidae. The results indicated that a data set combining protein‐coding genes and RNA genes (PR) was optimal for analysing the relationships among 43 cephalopods. All of the phylogenetic trees divided the cephalopods into 10 taxa and supported the monophyly of Oegopsida, Myopsida, Sepiidae and Octopodidae. In this study, Idiosepiidae was classified as sister to Sepiolidae. Trees constructed using all data sets robustly supported the monophyly of the genus Amphioctopus. Notably, A. rex was more closely related to A. neglectus than to A. cf. ovulum, although these three species share the characteristic of violet rings on dark ocelli.  相似文献   

19.
Necturus beyeri (Caudata: Proteidae), as conceived by some, contains paedomorphic salamanders distributed from the Ochlockonee drainage of Florida to the Angelina drainage of Texas. Because these salamanders differ in color pattern and karyotype across their geographic range, we performed a phylogeographic analysis that included representatives from all major drainages as well as of all congeners. The mitochondrially encoded ND2 gene was used to infer phylogenetic relationships using Bayesian inference. Morphometrics of head shape were analyzed and included as an independent data set. Our work suggests that Necturus comprises 11 lineages. A basal split within the genus separates an ancestor of two Atlantic Coastal Plain species (Necturus lewisi and Necturus punctatus) from the ancestor of nine distinct Gulf Coastal Plain lineages. One lineage is consistent with Necturus alabamensis, a species currently recognized in the Black Warrior drainage of Alabama. Two lineages comprise Necturus maculosus, as historically recognized, and six lineages comprise N. beyeri, as recognized by some, each of which occupies a unique drainage. Both of these species are demonstrated to be paraphyletic. Head morphometrics show the same patterns as the mtDNA. Overall, lineages within Necturus exhibit an east‐to‐west progression of appearance on the phylogenetic trees. This pattern corroborates biogeographic hypotheses based on previous karyological work. Within N. beyeri, this progression separates a pattern class of two eastern lineages lacking bold spotting and possessing relatively small mean body lengths from a pattern class of four western lineages possessing bold spotting and larger mean body sizes. Thus, the two eastern lineages of N. beyeri are similar in color pattern and body size to N. punctatus either through retention of the ancestral color pattern and size for the genus or through convergent selection in eastern streams of the Gulf Coastal Plain.  相似文献   

20.
To investigate the phylogenetic relationships among Leymus and related diploid genera, the genome donor of Leymus, and the evolutionary history of polyploid Leymus species, chloroplast trnQ–rps16 sequences were analyzed for 36 accessions of Leymus representing 25 species, together with 11 diploid taxa from six monogenomic genera. The phylogenetic analyses (Neighbor‐Joining and MJ network) supported three major clades (Ns, St and Xm). Sequence diversity and genealogical analysis suggested that 1) Leymus species from the same areas or neighboring geographic regions are closely related; 2) most of the Eurasian Leymus species are closely related to Psathyrostachys: P. juncea might serve as the Ns genome donor of polyploid Eurasian Leymus species; 3) the Xm genome may originate from ancestral lineages of Pseudoroegneria (St), Lophopyrum (Ee), Australopyrum (W) and Agropyron (P); 4) the trnQ–rps16 sequences of Leymus are evolutionarily distinct, and may clarify parental lineages and phylogenetic relationships in Leymus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号