首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to their aquatic lifestyle, hippopotamuses are normally believed to have reached islands by swimming. Yet, some studies suggest they cannot swim due to their relatively high density. If so, this raises the question of how hippopotamuses would have reached some islands. Their immigration into the British Isles, Sicily, Malta, Zanzibar and Mafia can be accounted for, because these islands sit on continental shelves and were often linked to the mainland during the Pleistocene glacio‐eustatic sea‐level falls. In contrast, their occurrence in Crete, Cyprus and Madagascar would be more difficult to explain. Available geological evidence does not seem to rule out that the latter islands might have been connected with the nearest mainland areas in very recent times. This study intends to consider possibilities about how hippopotamuses reached islands and to show that more effective collaboration is required among specialists involved with the study of insular evolution, colonization and speciation.  相似文献   

2.
Aim  To investigate the validity of Simpson's model of sweepstakes dispersal, particularly as it applies to the colonization of Madagascar by African mammals. We chose lemurs as a classic case.
Location  The East African coast, the Mozambique Channel and Madagascar.
Methods  First, we investigated the assumptions underlying Simpson's statistical model as it relates to dispersal events. Second, we modelled the fate of a natural raft carrying one or several migrating mammals under a range of environmental conditions: in the absence of winds or currents, in the presence of winds and currents, and with and without a sail. Finally, we investigated the possibility of an animal being transported across the Mozambique Channel by an extreme climatic event like a tornado or a cyclone .
Results  Our investigations show that Simpson's assumptions are consistently violated when applied to scenarios of over-water dispersal by mammals. We suggest that a simple binomial probability model is an inappropriate basis for extrapolating the likelihood of dispersal events. One possible alternative is to use a geometric probability model. Our estimates of current and wind trajectories show that the most likely fate for a raft emerging from an estuary on the east coast of Africa is to follow the Mozambique current and become beached back on the African coast. Given prevailing winds and currents, transport from Madagascar to Africa is very much more likely than the reverse process. Freak transport by means of a hurricane or tornado is even less likely than rafting for mammals.
Main conclusions  Our models suggest that the scenario of sweepstakes dispersal that currently enjoys wide support is not valid at either the theoretical or the applied level when applied to the hypothetical invasion of Madagascar by African mammals. Alternative explanations should be sought.  相似文献   

3.
Madagascar harbors four large adaptive radiations of endemic terrestrial mammals: lemurs, tenrecs, carnivorans, and rodents. These rank among the most spectacular examples of evolutionary diversification, but their monophyly and origins are debated. The lack of Tertiary fossils from Madagascar leaves molecular studies as most promising to solve these controversies. We provide a simultaneous reconstruction of phylogeny and age of the four radiations based on a 3.5-kb data set from three nuclear genes (ADRA2B, vWF, and AR). The analysis supports each as a monophyletic clade, sister to African taxa, and thereby identifies four events of colonization out of Africa. To infer the time windows for colonization, we take into account both the divergence from the closest non-insular sister group and the initial intra-insular radiation, which is a novel but conservative approach in studies of the colonization history of Madagascar. We estimate that lemurs colonized Madagascar between 60 million years ago (Mya) (split from lorises) and 50 Mya (lemur radiation) (70-41 Mya taking 95% credibility intervals into account), tenrecs between 42 and 25 Mya (50-20 Mya), carnivorans between 26 and 19 Mya (33-14 Mya), and rodents between 24 and 20 Mya (30-15 Mya). These datings suggest at least two asynchronous colonization events: by lemurs in the Late Cretaceous-Middle Eocene, and by carnivorans and rodents in the Early Oligocene-Early Miocene. The colonization by tenrecs may have taken place simultaneously with either of these two events, or in a third event in the Late Eocene-Oligocene. Colonization by at least lemurs, rodents, and carnivorans appears to have occurred by overseas rafting rather than via a land bridge hypothesized to have existed between 45 and 26 Mya, but the second scenario cannot be ruled out if credibility intervals are taken into account.  相似文献   

4.
Lying some 400 km off the coast of southeastern Africa, Madagascar is the world's largest oceanic island. It has been in roughly the same position relative to its parent continent for 120 million years, and as a consequence its mammal fauna is unusual in composition, with a low number of major taxa but a high diversity at lower taxonomic levels. Among Madagascar's native terrestrial mammals, only the orders Primates, Rodentia, Carnivora and Insectivora are represented (plus, until recently, the enigmatic and endemic Bibymalagasia, and Artiodactyla in the form of semiaquatic pygmy hippopotamuses). This reflects the fact that terrestrial mammals are notoriously poor over-water dispersers; yet at the same time the ancestors of all of Madagascar's mammals had to have crossed a wide oceanic barrier to get to the island at various points during the Tertiary. Here I examine the palaeogeographic evidence for potential land bridge or 'stepping-stone' connections with adjacent continents from the Mesozoic through the Cenozoic, and review the fossil records and phylogenies of each of Madagascar's mammalian groups in an attempt to estimate the minimum number of crossings necessary to produce the island's current faunal composition. Probable monophyletic origins for each major group, and thus a smaller rather than a larger number of crossings of the Mozambique Channel, imply that this water barrier has acted as a powerful filter; so powerful that it is unclear whether any crossings would have been possible without some form of subaerial connection, however ephemeral, at least from time to time during the Tertiary. Clarification of how Madagascar's terrestrial mammal fauna may have originated is thus as likely to emerge from the geology of the seafloor surrounding the island as it is to come from the fossil record or from the internal and external relationships of its various components.  相似文献   

5.
Aim To test hypotheses that: (1) late Pleistocene low sea‐level shorelines (rather than current shorelines) define patterns of genetic variation among mammals on oceanic Philippine islands; (2) species‐specific ecological attributes, especially forest fidelity and vagility, determine the extent to which common genetic patterns are exhibited among a set of species; (3) populations show reduced within‐population variation on small, isolated oceanic islands; (4) populations tend to be most highly differentiated on small, isolated islands; and (5) to assess the extent to which patterns of genetic differentiation among multiple species are determined by interactions of ecological traits and geological/geographic conditions. Location The Philippine Islands, a large group of oceanic islands in Southeast (SE) Asia with unusually high levels of endemism among mammals. Methods Starch‐gel electrophoresis of protein allozymes of six species of small fruit bats (Chiroptera, Pteropodidae) and one rodent (Rodentia, Muridae). Results Genetic distances between populations within all species are not correlated with distances between present‐day shorelines, but are positively correlated with distances between shorelines during the last Pleistocene period of low sea level; relatively little intraspecific variation was found within these ‘Pleistocene islands’. Island area and isolation of oceanic populations have only slight effects on standing genetic variation within populations, but populations on some isolated islands have heightened levels of genetic differentiation, and reduced levels of gene flow, relative to other islands. Species associated with disturbed habitat (all of which fly readily across open habitats) show more genetic variation within populations than species associated with primary rain forest (all of which avoid flying out from beneath forest canopy). Species associated with disturbed habitats, which tend to be widely distributed in SE Asia, also show higher rates of gene flow and less differentiation between populations than species associated with rain forest, which tend to be Philippine endemic species. One rain forest bat has levels of gene flow and heterozygosity similar to the forest‐living rodent in our study. Main conclusions The maximum limits of Philippine islands that were reached during Pleistocene periods of low sea level define areas of relative genetic homogeneity, whereas even narrow sea channels between adjacent but permanently isolated oceanic islands are associated with most genetic variation within the species. Moreover, the distance between ‘Pleistocene islands’ is correlated with the extent of genetic distances within species. The structure of genetic variation is strongly influenced by the ecology of the species, predominantly as a result of their varying levels of vagility and ability to tolerate open (non‐forested) habitat. Readily available information on ecology (habitat association and vagility) and geological circumstances (presence or absence of Pleistocene land‐bridges between islands, and distance between oceanic islands during periods of low sea level) are combined to produce a simple predictive model of likely patterns of genetic differentiation (and hence speciation) among these mammals, and probably among other organisms, in oceanic archipelagos.  相似文献   

6.
A synthetic model is presented to enlarge the evolutionary framework of the General Dynamic Model (GDM) and the Glacial Sensitive Model (GSM) of oceanic island biogeography from the terrestrial to the marine realm. The proposed ‘Sea‐Level Sensitive’ dynamic model (SLS) of marine island biogeography integrates historical and ecological biogeography with patterns of glacio‐eustasy, merging concepts from areas as diverse as taxonomy, biogeography, marine biology, volcanology, sedimentology, stratigraphy, palaeontology, geochronology and geomorphology. Fundamental to the SLS model is the dynamic variation of the littoral area of volcanic oceanic islands (defined as the area between the intertidal and the 50‐m isobath) in response to sea‐level oscillations driven by glacial–interglacial cycles. The following questions are considered by means of this revision: (i) what was the impact of (global) glacio‐eustatic sea‐level oscillations, particularly those of the Pleistocene glacial–interglacial episodes, on the littoral marine fauna and flora of volcanic oceanic islands? (ii) What are the main factors that explain the present littoral marine biodiversity on volcanic oceanic islands? (iii) How can differences in historical and ecological biogeography be reconciled, from a marine point of view? These questions are addressed by compiling the bathymetry of 11 Atlantic archipelagos/islands to obtain quantitative data regarding changes in the littoral area based on Pleistocene sea‐level oscillations, from 150 thousand years ago (ka) to the present. Within the framework of a model sensitive to changing sea levels, we discuss the principal factors affecting the geographical range of marine species; the relationships between modes of larval development, dispersal strategies and geographical range; the relationships between times of speciation, modes of larval development, ecological zonation and geographical range; the influence of sea‐surface temperatures and latitude on littoral marine species diversity; the effect of eustatic sea‐level changes and their impact on the littoral marine biota; island marine species–area relationships; and finally, the physical effects of island ontogeny and its associated submarine topography and marine substrate on littoral biota. Based on the SLS dynamic model, we offer a number of predictions for tropical, subtropical and temperate volcanic oceanic islands on how rates of immigration, colonization, in‐situ speciation, local disappearance, and extinction interact and affect the marine biodiversity around islands during glacials and interglacials, thus allowing future testing of the theory.  相似文献   

7.
Tests of hypotheses about the biogeographical consequences of long-distance dispersal have long eluded biologists, largely because of the rarity and presumed unpredictability of such events. Here, we examine data for terrestrial (including littoral) organisms in the Pacific to show that knowledge of dispersal by wind, birds and oceanic drift or rafting, coupled with information about the natural environment and biology of the organisms, can be used to generate broad biogeographic predictions. We then examine the predictions in the context of the origin, frequency of arrival and location of establishment of dispersed organisms, as well as subsequent patterns of endemism and diversification on remote islands. The predicted patterns are being increasingly supported by phylogenetic data for both terrestrial and littoral organisms.  相似文献   

8.
Comparative biogeography of mammals on islands   总被引:1,自引:0,他引:1  
Insular faunas of terrestrial mammals and bats are examined on a worldwide basis to test the adequacy of equilibrium and historical legacy models as explanations for species-area relationships. Species numbers of bats on islands conform to predictions from equilibrium theory, whereby recurrent immigrations and extinctions influence species richness. By contrast, species numbers of terrestrial mammals on islands result from a historical legacy of very low immigration rates on oceanic islands (the faunas are colonization-limited) and by the fragmentation of once contiguous continental faunas to form relictual populations, which subsequently undergo extinctions, on landbridge islands (the faunas are extinction-limited). This explanation is supported by several lines of evidence: (1) z values (slopes of species-area curves) are lower for non-volant mammals on oceanic islands than for those on landbridge islands, but are the opposite for bats; (2) z values for non-volant mammals are lower than those for bats on oceanic islands, but are higher than those for bats on landbridge islands; and (3) landbridge island faunas are attenuated mainland faunas, whereas those on oceanic islands are ecologically incomplete. No support is found for alternative hypotheses to explain low species-area slopes for terrestrial mammals on oceanic islands.  相似文献   

9.
During their 120 to 165 million years of isolation, the flora and fauna of Madagascar evolved, to a large extent, independently of the African mainland.1 In contrast to other oceanic islands, Madagascar is large enough to house the major components of tropical ecosystems, allowing tests of evolutionary hypotheses on the level of complete communities. Taking lemurs, the primates of Madagascar, as an example, evolutionary hypotheses correctly predict the organization of their community structure with respect to ecological correlates. Lemur social systems and their morphological correlates, on the other hand, deviate in some respects from those of other primates. Apparently, lemur social systems are influenced by several selection pressures that are weak or rare in other primates. These include variable activity patterns and avoidance of infanticide. The interspecific variation in lemur social systems therefore offers a unique opportunity for a comprehensive study of the determinants of primate social systems.  相似文献   

10.
Terrestrial plants and animals on oceanic islands occupy zones of volcanism found at intraplate localities and along island arcs at subduction zones. The organisms often survive as metapopulations, or populations of separate sub‐populations connected by dispersal. Although the individual islands and their local subpopulations are ephemeral and unstable, the ecosystem dynamism enables metapopulations to persist in a region, more or less in situ, for periods of up to tens of millions of years. As well as surviving on systems of young volcanic islands, metapopulations can also evolve there; tectonic changes can break up widespread insular metapopulations and produce endemics restricted to fewer islands or even a single island. These processes explain the presence of old endemic clades on young islands, which is often reported in molecular clock studies, and the many distribution patterns in island life that are spatially correlated with tectonic features. Metapopulations can be ruptured by sea floor subsidence, and this occurs with volcanic loading in zones of active volcanism and with sea floor cooling following its production at mid‐ocean ridges. Metapopulation vicariance will also result if an active zone of volcanism is rifted apart. This can be caused by the migration of an arc (by slab rollback) away from a continent or from another subduction zone, by the offset of an arc at transform faults and by sea floor spreading at mid‐ocean ridges. These mechanisms are illustrated with examples from islands in the Caribbean and the Pacific. Endemism on oceanic islands has usually been attributed to chance, long‐distance dispersal, but the processes discussed here will generate endemism on young volcanic islands by vicariance.  相似文献   

11.
As alarm calls indicate the presence of predators, the correct interpretation of alarm calls, including those of other species, is essential for predator avoidance. Conversely, communication calls of other species might indicate the perceived absence of a predator and hence allow a reduction in vigilance. This “eavesdropping” was demonstrated in birds and mammals, including lemur species. Interspecific communication between taxonomic groups has so far been reported in some reptiles and mammals, including three primate species. So far, neither semantic nor interspecific communication has been tested in a solitary and nocturnal lemur species. The aim of this study was to investigate if the nocturnal and solitary Sahamalaza sportive lemur, Lepilemur sahamalazensis, is able to access semantic information of sympatric species. During the day, this species faces the risk of falling prey to aerial and terrestrial predators and therefore shows high levels of vigilance. We presented alarm calls of the crested coua, the Madagascar magpie-robin and aerial, terrestrial and agitation alarm calls of the blue-eyed black lemur to 19 individual Sahamalaza sportive lemurs resting in tree holes. Songs of both bird species’ and contact calls of the blue-eyed black lemur were used as a control. After alarm calls of crested coua, Madagascar magpie-robin and aerial alarm of the blue-eyed black lemur, the lemurs scanned up and their vigilance increased significantly. After presentation of terrestrial alarm and agitation calls of the blue-eyed black lemur, the animals did not show significant changes in scanning direction or in the duration of vigilance. Sportive lemur vigilance decreased after playbacks of songs of the bird species and contact calls of blue-eyed black lemurs. Our results indicate that the Sahamalaza sportive lemur is capable of using information on predator presence as well as predator type of different sympatric species, using their referential signals to detect predators early, and that the lemurs’ reactions are based on experience and learning.  相似文献   

12.
Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.  相似文献   

13.
The time and mode of colonization of Gargano have been a subject of debate. Taking into account the temporal distribution of the ancestors of the Mikrotia fauna, a Late Tortonian age represents the best fit for the time of migration. How these animals reached the island is even harder to decide. In the past some scholars embraced rafting as an important mechanism enabling small mammals to reach the islands, whereas others rejected this hypothesis, considering it an improbable mode of colonization. The recent record of oceanic rafts indicates that rafting is indeed a very plausible method for small-sized animals to reach islands, and the most probable method for the colonization of Gargano. A polyphasic model, as proposed by Masini and colleagues, is rejected in the case of Gargano, as it is based on a misinterpretation of the adaptive radiations within the Mikrotia fauna.  相似文献   

14.
Dispersal by passive oceanic rafting is considered important for the assembly of biotic communities on islands. However, not much is known about levels of population genetic connectivity maintained by rafting over transoceanic distances. We assess the evolutionary impact of kelp-rafting by estimating population genetic differentiation in three kelp-associated invertebrate species across a system of islands isolated by oceanic gaps for over 5 million years, using mtDNA and AFLP markers. The species occur throughout New Zealand''s subantarctic islands, but lack pelagic stages and any opportunity for anthropogenic transportation, and hence must rely on passive rafting for long-distance dispersal. They all have been directly observed to survive transoceanic kelp-rafting journeys in this region. Our analyses indicate that regular gene flow occurs among populations of all three species between all of the islands, especially those on either side of the subtropical front oceanographic boundary. Notwithstanding its perceived sporadic nature, long-distance kelp-rafting appears to enable significant gene flow among island populations separated by hundreds of kilometres of open ocean.  相似文献   

15.
Remote locations, such as oceanic islands, typically harbour relatively few species, some of which go on to generate endemic radiations. Species colonising these locations tend to be a non‐random subset from source communities, which is thought to reflect dispersal limitation. However, non‐random colonisation could also result from habitat filtering, whereby only a few continental species can become established. We evaluate the imprints of these processes on the Galápagos flora by analysing a comprehensive regional phylogeny for ~ 39 000 species alongside information on dispersal strategies and climatic suitability. We found that habitat filtering was more important than dispersal limitation in determining species composition. This finding may help explain why adaptive radiation is common on oceanic archipelagoes – because colonising species can be relatively poor dispersers with specific niche requirements. We suggest that the standard assumption that plant communities in remote locations are primarily shaped by dispersal limitation deserves reconsideration.  相似文献   

16.
Pair‐living and a monogamous mating strategy are rare and theoretically unexpected among mammals. Nevertheless, about 10% of primate species exhibit such a social system, which is difficult to explain in the absence of paternal care. In this study, we investigated the two major hypotheses proposed to explain the evolution of monogamy in mammals, the female defence hypothesis (FDH) and the resource defence hypothesis (RDH), in red‐tailed sportive lemurs (Lepilemur ruficaudatus), a nocturnal primate from Madagascar. We analysed behavioural data from eight male–female pairs collected during a 24‐mo field study to illuminate the determinants of pair‐living in this species. Male and female L. ruficaudatus were found to live in dispersed pairs, which are characterised by low cohesion and low encounter rates within a common home range. Social interactions between pair partners were mainly agonistic and characterised by a complete absence of affiliative interactions – body contact was only observed during mating. During the short annual mating season, males exhibited elevated levels of aggression towards mates, as well as extensive mate guarding and increased locomotor activity. In addition, males were exclusively responsible for the maintenance of proximity between pair partners during this period, and they defended their territories against neighbouring males but not against females. Together, these results point towards the importance of female defence in explaining pair‐living in L. ruficaudatus. We discuss the spatial and temporal distribution of receptive females in relation to the female defence strategies of males and suggest possible costs that prevent male red‐tailed sportive lemurs from defending more than one female.  相似文献   

17.
Incursion and excursion of Antarctic biota: past, present and future   总被引:3,自引:1,他引:2  
Aim To investigate the major paradigms of intense isolation and little anthropogenic influence around Antarctica and to examine the timings and scales of the modification of the southern polar biota. Location Antarctica and surrounding regions. Methods First, mechanisms of and evidence for long‐term isolation are reviewed. These include continental drift, the development of a surrounding deep‐water channel and the Antarctic Circumpolar Current (ACC). They also include levels of endemism, richness and distinctiveness of assemblages. Secondly, evidence for past and modern opportunities for species transport are investigated. Comparative levels of alien establishments are also examined around the Southern Ocean. Discussion On a Cenozoic time‐scale, it is clear that Gondwana's fragmentation led to increasing geographical isolation of Antarctica and the initiation of the ACC, which restricted biota exchange to low levels while still permitting some movement of biota. On a shorter Quaternary time‐scale, the continental ice‐sheet, influenced by solar (Milankovitch) cycles, has expanded and contracted periodically, covering and exposing terrestrial and continental shelf habitats. There were probably refugia for organisms during each glacial maxima. It is also likely that new taxa were introduced into Antarctica during cycles of ice sheet and oceanic front movement. The current situation (a glacial minimum) is not ‘normal’; full interglacials represent only 10% of the last 430 ka. On short (ecological) time‐scales, many natural dispersal processes (airborne, oceanic eddy, rafting and hitch‐hiking on migrants) enable the passage of biota to and from Antarctica. In recent years, humans have become influential both directly by transporting organisms and indirectly by increasing survival and establishment prospects via climate change. Main conclusions Patterns of endemism and alien establishment are very different across taxa, land and sea, and north vs. south of the Polar Frontal Zone. Establishment conditions, as much as transport, are important in limiting alien establishment. Three time‐scales emerge as important in the modification of Antarctica's biota. The natural ‘interglacial’ process of reinvasion of Antarctica is being influenced strongly by humans.  相似文献   

18.
The stochastic process of long‐distance dispersal is the exclusive means by which plants colonize oceanic islands. Baker's rule posits that self‐incompatible plant lineages are unlikely to successfully colonize oceanic islands because they must achieve a coordinated long‐distance dispersal of sufficiently numerous individuals to establish an outcrossing founder population. Here, we show for the first time that Mauritian Coffea species are self‐incompatible and thus represent an exception to Baker's rule. The genus Coffea (Rubiaceae) is composed of approximately 124 species with a paleotropical distribution. Phylogenetic evidence strongly supports a single colonization of the oceanic island of Mauritius from either Madagascar or Africa. We employ Bayesian divergence time analyses to show that the colonization of Mauritius was not a recent event. We genotype S‐RNase alleles from Mauritian endemic Coffea, and using S‐allele gene genealogies, we show that the Mauritian allelic diversity is confined to just seven deeply divergent Coffea S‐RNase allelic lineages. Based on these data, we developed an individual‐based model and performed a simulation study to estimate the most likely number of founding individuals involved in the colonization of Mauritius. Our simulations show that to explain the observed S‐RNase allelic diversity, the founding population was likely composed of fewer than 31 seeds that were likely synchronously dispersed from an ancestral mainland species.  相似文献   

19.
Aim To identify the biogeographical factors underlying spider species richness in the Macaronesian region and assess the importance of species extinctions in shaping the current diversity. Location The European archipelagos of Macaronesia with an emphasis on the Azores and Canary Islands. Methods Seven variables were tested as predictors of single‐island endemics (SIE), archipelago endemics and indigenous spider species richness in the Azores, Canary Islands and Macaronesia as a whole: island area; geological age; maximum elevation; distance from mainland; distance from the closest island; distance from an older island; and natural forest area remaining per island – a measure of deforestation (the latter only in the Azores). Different mathematical formulations of the general dynamic model of oceanic island biogeography (GDM) were also tested. Results Island area and the proportion of remaining natural forest were the best predictors of species richness in the Azores. In the Canary Islands, area alone did not explain the richness of spiders. However, a hump‐shaped relationship between richness and time was apparent in these islands. The island richness in Macaronesia was correlated with island area, geological age, maximum elevation and distance to mainland. Main conclusions In Macaronesia as a whole, area, island age, the large distance that separates the Azores from the mainland, and the recent disappearance of native habitats with subsequent unrecorded extinctions seem to be the most probable explanations for the current observed richness. In the Canary Islands, the GDM model is strongly supported by many genera that radiated early, reached a peak at intermediate island ages, and have gone extinct on older, eroded islands. In the Azores, the unrecorded extinctions of many species in the oldest, most disturbed islands seem to be one of the main drivers of the current richness patterns. Spiders, the most important terrestrial predators on these islands, may be acting as early indicators for the future disappearance of other insular taxa.  相似文献   

20.
Tooth wear is generally an age‐related phenomenon, often assumed to occur at similar rates within populations of primates and other mammals, and has been suggested as a correlate of reduced offspring survival among wild lemurs. Few long‐term wild studies have combined detailed study of primate behavior and ecology with dental analyses. Here, we present data on dental wear and tooth loss in older (>10 years old) wild and captive ring‐tailed lemurs (Lemur catta). Among older ring‐tailed lemurs at the Beza Mahafaly Special Reserve (BMSR), Madagascar (n=6), the percentage of severe dental wear and tooth loss ranges from 6 to 50%. Among these six individuals, the oldest (19 years old) exhibits the second lowest frequency of tooth loss (14%). The majority of captive lemurs at the Indianapolis Zoo (n=7) are older than the oldest BMSR lemur, yet display significantly less overall tooth wear for 19 of 36 tooth positions, with only two individuals exhibiting antemortem tooth loss. Among the captive lemurs, only one lemur (a nearly 29 year old male) has lost more than one tooth. This individual is only missing anterior teeth, in contrast to lemurs at BMSR, where the majority of lost teeth are postcanine teeth associated with processing specific fallback foods. Postcanine teeth also show significantly more overall wear at BMSR than in the captive sample. At BMSR, degree of severe wear and tooth loss varies in same aged, older individuals, likely reflecting differences in microhabitat, and thus the availability and use of different foods. This pattern becomes apparent before “old age,” as seen in individuals as young as 7 years. Among the four “older” female lemurs at BMSR, severe wear and/or tooth loss do not predict offspring survival. Am. J. Primatol. 72:1026–1037, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号