首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 173 毫秒
1.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   

2.
Life‐history traits in birds, such as lifespan, age at maturity, and rate of reproduction, vary across environments and in combinations imposed by trade‐offs and limitations of physiological mechanisms. A plethora of studies have described the diversity of traits and hypothesized selection pressures shaping components of the survival–reproduction trade‐off. Life‐history variation appears to fall along a slow–fast continuum, with slow pace characterized by higher investment in survival over reproduction and fast pace characterized by higher investment in reproduction over survival. The Pace‐of‐Life Syndrome (POLS) is a framework to describe the slow–fast axis of variation in life‐history traits and physiological traits. The POLS corresponds to latitudinal gradients, with tropical birds exhibiting a slow pace of life. We examined four possible ways that the traits of high‐elevation birds might correspond to the POLS continuum: (i) rapid pace, (ii) tropical slow pace, (iii) novel elevational pace, or (iv) constrained pace. Recent studies reveal that birds breeding at high elevations in temperate zones exhibit a combination of traits creating a unique elevational pace of life with a central trade‐off similar to a slow pace but physiological trade‐offs more similar to a fast pace. A paucity of studies prevents consideration of the possibility of a constrained pace of life. We propose extending the POLS framework to include trait variation of elevational clines to help to investigate complexity in global geographic patterns.  相似文献   

3.
Fluctuating population density in stochastic environments can contribute to maintain life‐history variation within populations via density‐dependent selection. We used individual‐based data from a population of Soay sheep to examine variation in life‐history strategies at high and low population density. We incorporated life‐history trade‐offs among survival, reproduction and body mass growth into structured population models and found support for the prediction that different life‐history strategies are optimal at low and high population densities. Shorter generation times and lower asymptotic body mass were selected for in high‐density environments even though heavier individuals had higher probabilities to survive and reproduce. In contrast, greater asymptotic body mass and longer generation times were optimal at low population density. If populations fluctuate between high density when resources are scarce, and low densities when they are abundant, the variation in density will generate fluctuating selection for different life‐history strategies, that could act to maintain life‐history variation.  相似文献   

4.
Temperament traits are seen in many animal species, and recent evolutionary models predict that they could be maintained by heterogeneous selection. We tested this prediction by examining density‐dependent selection in juvenile common lizards Zootoca vivipara scored for activity, boldness and sociability at birth and at the age of 1 year. We measured three key life‐history traits (juvenile survival, body growth rate and reproduction) and quantified selection in experimental populations at five density levels ranging from low to high values. We observed consistent individual differences for all behaviours on the short term, but only for activity and one boldness measure across the first year of life. At low density, growth selection favoured more sociable lizards, whereas viability selection favoured less active individuals. A significant negative correlational selection on activity and boldness existed for body growth rate irrespective of density. Thus, behavioural traits were characterized by limited ontogenic consistency, and natural selection was heterogeneous between density treatments and fitness traits. This confirms that density‐dependent selection plays an important role in the maintenance of individual differences in exploration‐activity and sociability.  相似文献   

5.
Pace‐of‐life syndromes (POLSs) are suites of life‐history, physiological and behavioural traits that arise due to trade‐offs between allocation to current and future reproduction. Traits generally show covariation that can arise from genetic and environmental influences on phenotypes and constrain the independent evolution of traits, resulting in fitness consequences and impacts on population dynamics. The notion that correlations among traits may vary among populations along environmental gradients suggests an important role for the environment in shaping and maintaining POLSs. However, no synthesis has been attempted of the myriad ways in which environmental factors should influence POLSs. Here, we formulate a series of hypotheses targeting the critical interfaces of the environment and life‐history ‐ behaviour associations across different organisms. We discuss the hypotheses in light of findings from a systematic review of studies that measured changes in the association between behaviour and life‐history traits as a function of environmental conditions. The review revealed that POLSs are often shaped by environmental variation, where harshness of the environment in early life has the most consistent effects on POLS. However, only partial or no effects of environmental variation were found in a number of studies, which may result from the highly variable study systems, traits and environments studied. We highlight promising directions arising from the available studies and identify knowledge gaps that, if unaddressed, will impede progress in the field.  相似文献   

6.
The way an organism spreads its reproduction over time is defined as a life‐history trait, and selection is expected to favour life‐history traits associated with the highest fitness return. We use a long‐term dataset of 277 life histories to investigate the shape and strength of selection acting on the age at first reproduction and at last reproduction in the long‐lived Alpine Swift. Both traits were under strong directional selection, but in opposite directions, with selection favouring birds starting their reproductive career early and being able to reproduce for longer. There was also evidence for stabilising selection acting on both traits, suggesting that individuals should nonetheless refrain from reproducing in their first 2 years of life (i.e. when inexperienced), and that reproducing after 7 years of age had little effect on lifetime fitness, probably due to senescence.  相似文献   

7.
Optimality models for evolution of life histories have shown that increased environmental stochasticity promotes early age of maturity. Here we argue that if r‐selection for early maturation implies a tradeoff making those phenotypes more sensitive to a change in population size than phenotypes maturing at older ages, K‐selection can favor delayed onset of maturation. We analyze a general stochastic Leslie‐matrix model with a simplified density regulation affecting all survivals equally through a function of the population vector, often called the ‘critical age class’. We show that the outcome of such an age‐dependent r‐ and K‐selection is that the expected value of the ‘critical age class’ is maximized by evolution, a strategy strongly influenced by the magnitude of the environmental stochasticity. We also demonstrate that evolution caused by such density‐dependent selection influences the population dynamics, showing a possible reciprocal effect between ecology and evolution in age‐structured populations. This modeling approach reveals that changes in population size affecting the fitness of phenotypes with different age of maturity may be an important selective agent for variation in onset of reproduction in fluctuating environments. This provides a testable hypothesis for how patterns in the population dynamics should affect life history variation.  相似文献   

8.
Oona Poranen  Suvi Ruuskanen 《Ibis》2021,163(1):247-252
The pace‐of‐life syndrome hypothesis (POLS) represents an attractive theoretical framework suggesting that physiological and behavioural traits have evolved together with environmental conditions and life‐history strategies. POLS predicts that metabolic differences covary with behavioural variation such that high metabolic rate is associated with risk‐prone behaviour and a faster pace‐of‐life, whereas a low metabolic rate is associated with risk‐averse behaviour and a slower pace‐of‐life. We tested the POLS hypothesis in captive European Pied Flycatchers during their first year by examining the relationship between explorative behaviour and basal metabolic rate. Our results are inconsistent with POLS. The positive association of explorative behaviour with basal metabolic rate was not recovered for either sex, possibly due to foraging conditions in the aviaries where control and trial groups were fed twice a day, the birds' young age, developmental plasticity, or a non‐existent syndrome.  相似文献   

9.
Variation in life‐history traits is ubiquitous, even though genetic variation is thought to be depleted by selection. One potential mechanism for the maintenance of trait variation is spatially variable selection. We explored spatial variation in selection in the field for a colonial marine invertebrate that shows phenotypic differences across a depth gradient of only 3 m. Our analysis included life‐history traits relating to module size, colony growth, and phenology. Directional selection on colony growth varied in strength across depths, while module size was under directional selection at one depth but not the other. Differences in selection may explain some of the observed phenotypic differentiation among depths for one trait but not another: instead, selection should actually erode the differences observed for this trait. Our results suggest selection is not acting alone to maintain trait variation within and across environments in this system.  相似文献   

10.
The canalization hypothesis postulates that the rate at which trait variation generates variation in the average individual fitness in a population determines how buffered traits are against environmental and genetic factors. The ranking of a species on the slow‐fast continuum – the covariation among life‐history traits describing species‐specific life cycles along a gradient going from a long life, slow maturity, and low annual reproductive output, to a short life, fast maturity, and high annual reproductive output – strongly correlates with the relative fitness impact of a given amount of variation in adult survival. Under the canalization hypothesis, long‐lived species are thus expected to display less individual heterogeneity in survival at the onset of adulthood, when reproductive values peak, than short‐lived species. We tested this life‐history prediction by analysing long‐term time series of individual‐based data in nine species of birds and mammals using capture‐recapture models. We found that individual heterogeneity in survival was higher in species with short‐generation time (< 3 years) than in species with long generation time (> 4 years). Our findings provide the first piece of empirical evidence for the canalization hypothesis at the individual level from the wild.  相似文献   

11.
Environments causing variation in age‐specific mortality – ecological agents of selection – mediate the evolution of reproductive life‐history traits. However, the relative magnitude of life‐history divergence across selective agents, whether divergence in response to specific selective agents is consistent across taxa and whether it occurs as predicted by theory, remains largely unexplored. We evaluated divergence in offspring size, offspring number, and the trade‐off between these traits using a meta‐analysis in livebearing fishes (Poeciliidae). Life‐history divergence was consistent and predictable to some (predation, hydrogen sulphide) but not all (density, food limitation, salinity) selective agents. In contrast, magnitudes of divergence among selective agents were similar. Finally, there was a negative, asymmetric relationship between offspring‐number and offspring‐size divergence, suggesting greater costs of increasing offspring size than number. Ultimately, these results provide strong evidence for predictable and consistent patterns of reproductive life‐history divergence and highlight the importance of comparing phenotypic divergence across species and ecological selective agents.  相似文献   

12.
The amount of resources available during development often affects body size, causing phenotypic variation in life‐history traits and reproductive behaviours. However, past studies have seldom examined the reaction norms of both life‐history and behavioural traits versus body size. We measured the phenotypic plasticity of several life‐history (age‐specific egg load, egg size, longevity) and behavioural (oviposition rate, host marking rate, walking speed) traits of the egg parasitoid Telenomus podisi Ashmead (Hymenoptera: Scelionidae) in response to body size variation. We predicted that life‐history traits would show more evidence of size compensation than behavioural traits, resulting in fewer positively‐sloped size versus trait reaction norms among the former. As predicted by life‐history models, smaller wasps appear to shift resource allocation towards early‐life reproduction, having a similar egg load to large individuals 9 days after emergence. Surprisingly, longevity was unaffected by body size. However, egg size, the number of offspring produced during oviposition bouts, and the rate of subsequent egg synthesis were greater for larger individuals. In addition, as predicted, the reaction norms of behavioural traits versus body size were all positively sloped. Thus, despite possible adaptive compensatory plasticity of life‐history traits by small individuals, behavioural constraints directly related to body size would contribute to maintaining a positive size–fitness relationship.  相似文献   

13.
The pace-of-life syndrome (POLS) hypothesis specifies that closely related species or populations experiencing different ecological conditions should differ in a suite of metabolic, hormonal and immunity traits that have coevolved with the life-history particularities related to these conditions. Surprisingly, two important dimensions of the POLS concept have been neglected: (i) despite increasing evidence for numerous connections between behavioural, physiological and life-history traits, behaviours have rarely been considered in the POLS yet; (ii) the POLS could easily be applied to the study of covariation among traits between individuals within a population. In this paper, we propose that consistent behavioural differences among individuals, or personality, covary with life history and physiological differences at the within-population, interpopulation and interspecific levels. We discuss how the POLS provides a heuristic framework in which personality studies can be integrated to address how variation in personality traits is maintained within populations.  相似文献   

14.
Dries Bonte  Maxime Dahirel 《Oikos》2017,126(4):472-479
The study of tradeoffs among major life history components (age at maturity, lifespan and reproduction) allowed the development of a quantitative framework to understand how environmental variation shapes patterns of biodiversity among and within species. Because every environment is inherently spatially structured, and in most cases temporally variable, individuals need to move within and among habitats to maximize fitness. Dispersal is often assumed to be tightly integrated into life histories through genetic correlations with other vital traits. This assumption is particularly strong within the context of a fast‐slow continuum of life‐history variation. Such a framework is to date used to explain many aspects of population and community dynamics. Evidence for a consistent and context‐independent integration of dispersal in life histories is, however, weak. We therefore advocate the explicit integration of dispersal into life history theory as a principal axis of variation influencing fitness, that is free to evolve, independently of other life history traits. We synthesize theoretical and empirical evidence on the central role of dispersal and its evolutionary dynamics on the spatial distribution of ecological strategies and its impact on population spread, invasions and coexistence. By applying an optimality framework we show that the inclusion of dispersal as an independent dimension of life histories might substantially change our view on evolutionary trajectories in spatially structured environments. Because changes in the spatial configuration of habitats affect the costs of movement and dispersal, adaptations to reduce these costs will increase phenotypic divergence among and within populations. We outline how this phenotypic heterogeneity is anticipated to further impact population and community dynamics.  相似文献   

15.
Life‐history traits describe parameters associated with growth, size, survival, and reproduction. Life‐history variation is a hallmark of biological diversity, yet researchers commonly observe that one of the major axes of life‐history variation after controlling for body size involves trade‐offs among growth, reproduction, and longevity. This persistent pattern of covariation among these specific traits has engendered a search for shared mechanisms that could constrain or facilitate production of variation in life‐history strategies. Endocrine traits are one candidate mechanism that may underlie the integration of life history and other phenotypic traits. However, the vast majority of this research has been on the effects of steroid hormones such as glucocorticoids and androgens on life‐history trade‐offs. Here we propose an expansion of the focus on glucocorticoids and gonadal hormones and review the potential role of insulin‐like growth factor‐1 (IGF‐1) in shaping the adaptive integration of multiple life‐history traits. IGF‐1 is a polypeptide metabolic hormone largely produced by the liver. We summarize a vast array of research demonstrating that IGF‐1 levels are susceptible to environmental variation and that IGF‐1 can have potent stimulatory effects on somatic growth and reproduction but decrease lifespan. We review the few studies in natural populations that have measured plasma IGF‐1 concentrations and its associations with life‐history traits or other characteristics of the organism or its environment. We focus on two case studies that found support for the hypothesis that IGF‐1 mediates adaptive divergence in suites of life‐history traits in response to varying ecological conditions or artificial selection. We also examine what we view as potentially fruitful avenues of research on this topic, which until now has been rarely investigated by evolutionary ecologists. We discuss how IGF‐1 may facilitate adaptive plasticity in life‐history strategies in response to early environmental conditions and also how selection on loci controlling IGF‐1 signaling may mediate population divergence and eventual speciation. After consideration of the interactions among androgens, glucocorticoids, and IGF‐1 we suggest that IGF‐1 be considered a suitable candidate mechanism for mediating life‐history traits. Finally, we discuss what we can learn about IGF‐1 from studies in free‐ranging animals. The voluminous literature in laboratory and domesticated animals documenting relationships among IGF‐1, growth, reproduction, and lifespan demonstrates the potential for a number of new research questions to be asked in free‐ranging animals. Examining how IGF‐1 mediates life‐history traits in free‐ranging animals could lead to great insight into the mechanisms that influence life‐history variation.  相似文献   

16.
Early developmental conditions contribute to individual heterogeneity of both phenotypic traits and fitness components, ultimately affecting population dynamics. Although the demographic consequences of ontogenic growth are best quantified using an integrated measure of fitness, most analyses to date have instead studied individual fitness components in isolation. Here, we estimated phenotypic selection on weaning mass in female southern elephant seals Mirounga leonina by analyzing individual‐based data collected between 1986 and 2016 with capture–recapture and matrix projection models. In support of a hypothesis predicting a gradual decrease of weaning mass effects with time since weaning (the replacement hypothesis), we found that the estimated effects of weaning mass on future survival and recruitment probability was of intermediate duration (rather than transient or permanent). Heavier female offspring had improved odds of survival in early life and a higher probability to recruit at an early age. The positive link between weaning mass and recruitment age is noteworthy, considering that pre‐recruitment mortality already imposed a strong selective filter on the population, leaving only the most ‘robust’ individuals to reproduce. The selection gradient on asymptotic population growth rate, a measure of mean absolute fitness, was weaker than selection on first‐year survival and recruitment probabilities. Weaker selection on mean fitness occurs because weaning mass has little impact on adult survival, the fitness component to which the population growth of long‐lived species is most sensitive. These results highlight the need to interpret individual variation in phenotypic traits in a context that considers the demographic pathways between the trait and an inclusive proxy of individual fitness. Although variation in weaning mass do not translate to permanent survival differences among individuals in adulthood, it explains heterogeneity and positive covariation between survival and breeding in early life, which contribute to between‐individual variation in fitness.  相似文献   

17.
Animal personalities, composed of axes of consistent individual behaviors, are widely reported and can have important fitness consequences. However, despite theoretical predictions that life‐history trade‐offs may cause and maintain personality differences, our understanding of the evolutionary ecology of personality remains poor, especially in long‐lived species where trade‐offs and senescence have been shown to be stronger. Furthermore, although much theoretical and empirical work assumes selection shapes variation in personalities, studies exploring the genetic underpinnings of personality traits are rare. Here we study one standard axis of personality, the shy–bold continuum, in a long‐lived marine species, the wandering albatross from Possession Island, Crozet, by measuring the behavioral response to a human approach. Using generalized linear mixed models in a Bayesian framework, we show that boldness is highly repeatable and heritable. We also find strong differences in boldness between breeding colonies, which vary in size and density, suggesting birds are shyer in more dense colonies. These results demonstrate that in this seabird population, boldness is both heritable and repeatable and highlights the potential for ecological and evolutionary processes to shape personality traits in species with varying life‐history strategies.  相似文献   

18.
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare Ne in short‐lived, density‐dependent animal populations with different mating systems. We study the impact of a fluctuating, density‐dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual Ne/N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male‐biased, density‐dependent sex ratio reduces the rate of genetic drift compared to an equal, density‐independent sex ratio, but a stochastic change towards male bias reduces the Ne/N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes.  相似文献   

19.
The evolutionary potential in the timing of recruitment and reproduction may be crucial for the ability of populations to buffer against environmental changes, allowing them to avoid unfavourable breeding conditions. The evolution of a trait in a local population is determined by its heritability and selection. In the present study, we performed pedigree‐based quantitative genetic analyses for two life‐history traits (recruiting age and laying date) using population data of the storm petrel over an 18‐year period in two adjacent breeding colonies (only 150 m apart) that share the same environmental conditions. In both traits, natal colony effect was the main source of the phenotypic variation among individuals, and cohort variance for recruitment age and additive genetic variance for laying date were natal colony‐specific. We found significant heritability only in laying date and, more specifically, only in birds born in one of the colonies. The difference in genetic variance between the colonies was statistically significant. Interestingly, selection on earlier breeding birds was detected only in the colony in which heritable variation in laying date was found. Therefore, local evolvability for a life‐history trait may vary within a unexpectedly small spatial scale, through the diversifying natural selection and insulating gene flow. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 439–446.  相似文献   

20.
Understanding how wild immune variation covaries with other traits can reveal how costs and trade‐offs shape immune evolution in the wild. Divergent life history strategies may increase or alleviate immune costs, helping shape immune variation in a consistent, testable way. Contrasting hypotheses suggest that shorter life histories may alleviate costs by offsetting them against increased mortality, or increase the effect of costs if immune responses are traded off against development or reproduction. We investigated the evolutionary relationship between life history and immune responses within an island radiation of three‐spined stickleback, with discrete populations of varying life histories and parasitism. We sampled two short‐lived, two long‐lived and an anadromous population using qPCR to quantify current immune profile and RAD‐seq data to study the distribution of immune variants within our assay genes and across the genome. Short‐lived populations exhibited significantly increased expression of all assay genes, which was accompanied by a strong association with population‐level variation in local alleles and divergence in a gene that may be involved in complement pathways. In addition, divergence around the eda gene in anadromous fish is likely associated with increased inflammation. A wider analysis of 15 populations across the island revealed that immune genes across the genome show evidence of having diverged alongside life history strategies. Parasitism and reproductive investment were also important sources of variation for expression, highlighting the caution required when assaying immune responses in the wild. These results provide strong, gene‐based support for current hypotheses linking life history and immune variation across multiple populations of a vertebrate model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号