首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
C Orskov  J H Nielsen 《FEBS letters》1988,229(1):175-178
We studied binding of 125I-labelled truncated-glucagon-like peptide-1 (proglucagon 78-107 amide) to a cloned rat insulin-producing cell line, RIN 5AH, in monolayer culture. Interaction of the peptide with pancreatic insulinoma cells was saturable and time dependent. Half-maximal binding was obtained when the cells were incubated in the presence of 3.3 x 10(-9) mol/l unlabelled truncated-glucagon-like peptide-1 (proglucagon 78-107 amide). Neither glucagon, full-length glucagon-like peptide-1 (proglucagon 72-107 amide) nor gastric inhibitory peptide competed for binding in concentrations up to 10(-6) mol/l.  相似文献   

2.
The truncated form of glucagon-like peptide-1 (TGLP-1, or proglucagon 78-108), secreted by the mammalian intestine, has potent pharmacological activities, stimulating insulin release and inhibiting gastric acid secretion. We have characterized high-affinity receptors for this peptide in rat isolated fundic glands. Scatchard analysis of binding studies using mono-125I-TGLP-1(7-36) amide as tracer showed a single class of binding site of Kd (4.4 +/- (SE) .08) x 10(-10) M, with a tissue concentration of 1.0 +/- 0.1 fmol sites/microgram DNA. Whole GLP-1 was approximately 700 times less potent in displacing tracer, while human GLP-2 and pancreatic glucagon produced no significant displacement at concentrations up to 10(-6) M. The data support a physiological role for TGLP-1 in the regulation of gastric acid secretion.  相似文献   

3.
Lamprey proglucagon and the origin of glucagon-like peptides.   总被引:3,自引:0,他引:3  
We characterized two proglucagon cDNAs from the intestine of the sea lamprey Petromyzon marinus. As in other vertebrates, sea lamprey proglucagon genes encode three glucagon-like sequences, glucagon, and glucagon-like peptides 1 and 2 (GLP-1 and GLP-2). This observation indicates that all three glucagon-like sequences encoded by the proglucagon gene originated prior to the divergence of jawed and jawless vertebrates. Estimates of the rates of evolution for the glucagon-like sequences suggest that glucagon originated first, about 1 billion years ago, while GLP-1 and GLP-2 diverged from each other about 700 MYA. The two sea lamprey intestinal proglucagon cDNAs have differing coding potential. Proglucagon I cDNA encodes the previously characterized glucagon and the glucagon-like peptide GLP-1, while proglucagon II cDNA encodes a predicted GLP-2 and, possibly, a glucagon. The existence of two proglucagon cDNAs which differ with regard to their potential to encode glucagon-like peptides suggests that the lamprey may use differential gene expression as a third mechanism, in addition to alternative proteolytic processing and mRNA splicing, to regulate the production of proglucagon-derived peptides.  相似文献   

4.
5.
We developed specific, C-terminal radioimmunoassays for three proglucagon (PG) fragments: PG 151-158, PG 151-160 and PG 126-159 (glucagon-like peptide-2 (GLP-2] in order to determine the exact C-terminal sequence of the newly isolated GLP-2 in man and pig. The antigens and the antisera showed no mutual cross-reactivity. By gel filtration of extracts of pig and human small intestine, the immunoreactivity eluting at the position of GLP-2 was identified by the radioimmunoassays for glucagon-like peptide-2 (PG 126-159) and for PG 151-158, whereas the assay for PG 151-160 was completely negative. We conclude that the C-terminal amino acid residue of pig and human ileal GLP-2 is PG 158. Thus the basic residues, PG 159 and 160 are removed during its processing in the small intestine.  相似文献   

6.
7.
Recent studies have revealed that the glucagon gene is expressed in the mammalian intestine. Here it codes for "glicentin" (proglucagon 1-69) and a glucagon-like peptide, proglucagon 78-107, recently isolated from porcine intestine. We studied the fate of the remaining COOH-terminal part of proglucagon (proglucagon 111-160) using radioimmunoassays against proglucagon 111-123 and 126-160. Two peptides were isolated from acid ethanol extracts of porcine ileal mucosa and sequenced: one corresponding to proglucagon 126-158 and one probably corresponding to proglucagon 111-158. By comparing human and porcine proglucagon sequences, Ala117 is replaced by Thr, and Ile138, Ala144, Ile152 and Gln153 are replaced by Val, Thr, Leu, and His. By gel filtration and radioimmunoassay of intestinal extracts it was established that a large part of porcine and virtually all of human proglucagon are processed to release proglucagon 111-123 (designated spacer peptide 2), which, like proglucagon 126-158 must be considered a potential hormonal entity. By isocratic high pressure liquid chromatography human spacer peptide 2 was indistinguishable from synthetic proglucagon 111-122 amide, suggesting that this is the structure of the naturally occurring human peptide.  相似文献   

8.
The discovery of glucagon-like peptide 1 (GLP-1) began more than two decades ago with the observations that anglerfish islet proglucagon messenger RNAs (mRNAs) contained coding sequences for two glucagon-related peptides arranged in tandem. Subsequent analyses revealed that mammalian proglucagon mRNAs encoded a precursor containing the sequence of pancreatic glucagon, intestinal glicentin and two glucagon-related peptides termed GLP-1 and GLP-2. Multidisciplinary approaches were then required to define the structure of biologically active GLP-1 7-36 amide and its role as an incretin, satiety hormone and, most recently, a neuroprotective peptide. This historial perspective outlines the use of traditional recombinant DNA approaches to derive the GLP-1 sequence and highlights the challenges and combination of clinical and basic science approaches required to define the physiology and pathophysiology of bioactive peptides discovered through genomics.  相似文献   

9.
The mammalian proglucagon gene encodes three glucagon-like sequences, glucagon, glucagon-like peptide 1 (GLP-1) and glucagon-like peptide 2 (GLP-2). Each of these three functionally distinct proglucagon-derived peptides has a unique, but related, receptor. To better understand the origin of the unique physiological functions of each proglucagon-derived glucagon-like sequence we have cloned glucagon-like receptors from two species of frogs, Xenopus laevis and Rana pipiens. The cloned glucagon-like receptor sequences were found to be most closely related to glucagon receptors. To determine whether the evolutionary history of the receptors for proglucagon-derived peptides was the same as that inferred for the peptide hormones, we conducted a phylogenetic analysis using both parsimony and distance methods. We show that the evolutionary history of the receptors for glucagon-like sequences differ from the history of the glucagon-like sequences. The phylogeny of receptors for proglucagon-derived peptides is not monophyletic (i.e. they are not each other's closest relatives), as the receptor for the hormone glucose-dependent insulinotropic peptide (GIP) is more closely related to the glucagon receptor than either the GLP-1 or GLP-2 receptors. In contrast to the evolutionary origin of glucagon-like sequences, where glucagon is of most ancient origin, we found that the GLP-2 receptor has the most ancient origin. These observations suggest that the diversification of the glucagon-like sequences encoded by the proglucagon gene and of the receptors for these peptides occurred independently, and that either these hormones or their receptors have been recruited for new functions.  相似文献   

10.
The vertebrate proglucagon gene encodes three glucagon-like sequences (glucagon, glucagon-like peptide-1 [GLP-1], and glucagon-like peptide 2 [GLP-2]) that have distinct functions in regulating metabolism in mammals. In contrast, glucagon and GLP-1 have similar physiological actions in fish, that of mammalian glucagon. We have identified sequences similar to receptors for proglucagon-derived peptides from the genomes of two fish (pufferfish and zebrafish), a frog (Xenopus tropicalis), and a bird (chicken). Phylogenetic analysis of the receptor sequences suggested an explanation for the divergent function of GLP-1 in fish and mammals. The phylogeny of our predicted and characterized receptors for proglucagon-derived peptides demonstrate that receptors for glucagon, GLP-1, and GLP-2 have an origin before the divergence of fish and mammals; however, fish have lost the gene encoding the GLP-1 class of receptors, and likely the incretin action of GLP-1. Receptors that bind GLP-1, but yield glucagon-like action, have been characterized in goldfish and zebrafish, and these sequences are most closely related to glucagon receptors. Both pufferfish and zebrafish have a second glucagon receptor-like gene that is most closely related to the characterized goldfish glucagon receptor. The phylogeny of glucagon receptor-like genes in fish indicates that a duplication of the glucagon receptor gene occurred on the ancestral fish lineage, and could explain the shared action of glucagon and GLP-1. We suggest that the binding specificity of one of the duplicated glucagon receptors has diverged, yielding receptors for GLP-1 and glucagon, but that ancestral downstream signaling has been maintained, resulting in both receptors retaining glucagon-stimulated downstream effects.  相似文献   

11.
Glucagon-like peptide-1 (7–36) amide as a novel neuropeptide   总被引:2,自引:0,他引:2  
Although earlier studies indicated that GLP-1 (7-36) amide was an intestinal peptide with a potent effect on glucose-dependent insulin secretion, later on it was found that several biological effects of this peptide occur in the brain, rather than in peripheral tissues. Thus, proglucagon is expressed in pancreas, intestine, and brain, but post translational processing of the precursor yields different products in these organs, glucagon-like peptide-1 (7-36) amide being one of the forms produced in the brain. Also, GLP-1 receptor cDNA from human and rat brains has been cloned and sequenced, and the deduced amino acid sequences are the same as those found in pancreatic islets. Through these receptors, GLP-1 (7-36) amide from gut or brain sources induces its effects on the release of neurotransmitters from selective brain nuclei, the inhibition of gastric secretion and motility, the regulation of food and drink intake, thermoregulation, and arterial blood pressure. Central administration (icv) of GLP-1 (7-36) amide produces a marked reduction in food and water intake, and the colocalization of the GLP-1 receptor, GLUT-2, and glucokinase mRNAs in hypothalamic neurons involved in glucose sensing suggests that these cells may be involved in the transduction of signals needed to produce a state of fullness. In addition, GLP-1 (7-36) amide inhibits gastric acid secretion and gastric emptying, but these effects are not found in vagotomized subjects, suggesting a centrally mediated effect. Similar results have been found with the action of this peptide on arterial blood pressure and heart rate in rats. Synthesis of GLP-1 (7-36) amide and its own receptors in the brain together with its abovementioned central physiological effects imply that this peptide may be considered a neuropeptide. Also, the presence of GLP-1 (7-36) amide in the synaptosome fraction and its calcium-dependent release by potassium stimulation, suggest that the peptide may act as a neurotransmitter although further electrophysiological and ultrastructural studies are needed to confirm this possibility.  相似文献   

12.
13.
By hydrophobic gel permeation and high pressure liquid chromatography we isolated from pig intestinal mucosa a peptide which corresponds to proglucagon 78-107 as suggested by chromatography and determination of its N-terminal sequence. Natural and synthetic proglucagon 78-107 dose dependently and potently increased insulin secretion from the isolated perfused pig pancreas. Proglucagon 78-107 also secreted by the small intestine may participate in the hormonal control of insulin secretion.  相似文献   

14.
Glucagon-like peptide-1 (GLP-1) is released from intestinal L-cells in response to ingestion of meals. The mechanisms regulating its secretion are not clear, but local somatostatin (SS) restrains GLP-1 secretion. We investigated feedback and substrate regulation of GLP-1 and SS secretion, using isolated perfused porcine ileum (n=17). Effluents were measured for GLP-1 and SS. Perfusion pressure and motility were recorded. Investigated parameters included spontaneous fluctuations, changes in perfusate glucose concentrations (3.5, 5, 11 mM) and addition of insulin (1 nM). We also investigated the effect of proglucagon products, glucagon (10 nM), GLP-1 and GLP-2 (0.1, 1, and 10 nM) on GLP-1 and SS secretion, as well as on glucagon-like peptide-2 (GLP-2), peptide YY (PYY) and GIP secretion, all possible product of L-cells or neighbour cells. Perfusate glucose concentration dose-dependently stimulated GLP-1 secretion (p=0.011). Insulin had no effect. Glucagon weakly stimulated GIP secretion. GLP-1 stimulated SS secretion and motor activity, but inhibited GLP-2, GIP and PYY secretion and perfusion pressure. GLP-2 weakly stimulated SS secretion. We conclude (a) that GLP-1 secretion is influenced by perfusate glucose concentration and (b) that L-cell secretion is feedback regulated by GLP-1 itself, probably via paracrine SS activity.  相似文献   

15.
An amino-terminal histidyl structure (His1) is characteristic of most peptides in the glucagon superfamily. An assay for His1 peptides performed by amino-terminal amino acid sequencing was used to screen venom from the Gila monster lizard, Heloderma horridum. Two His1 peptides were identified: helospectin and a new His1 peptide that has been named exendin-3 to indicate that it is the third peptide to be found in an exocrine secretion of Heloderma lizards which has endocrine activity, the first two being helospectin (exendin-1) and helodermin (exendin-2). In the lot of H. horridum venom tested, exendin-3 was 5-10-fold more abundant in molar concentration than helospectin. The structure of exendin-3 was analyzed by amino acid sequencing and mass spectrometry. Exendin-3 is a 39-amino acid peptide with a mass of 4200. It contains a carboxyl-terminal amide and has a strong homology with secretin at its amino-terminal 12 amino acids. The complete structure of exendin-3 is His-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala- Val-Arg - Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro- Ser- amide. It is 32 and 26% homologous with helospectin and helodermin, respectively. It has greatest homology with glucagon (48%) and human glucagon-like peptide-1 (50%). Exendin-3 (3 microM) stimulated increases in cellular cAMP and amylase release from dispersed guinea pig pancreatic acini.  相似文献   

16.
High-affinity binding sites for glucagon-like peptide-1 7-36 amide (GLP-1 7-36 NH2) were identified in rat brain and lung membranes. Binding of [125I]GLP-1 7-36 NH2 was rapid, reversible, specific, saturable and pH dependent. Specific binding in the central nervous system was particularly high in the hypothalamus and the brain stem. Oxyntomodulin, glucagon-like peptide-1, glucagon-like peptide-2 and glucagon were 100-1000-fold less potent than GLP-1 7-36 NH2 in competition for this binding site.  相似文献   

17.
Biologically active peptides are initially synthesized in the form of protein precursors, and the peptides are liberated by post-translational processing from the precursors in a tissue-specific manner. Mammalian proglucagon, which is synthesized in the neuroendocrine L-cells of the intestine and the alpha-cells of the pancreas, contains within its structure the sequences of glucagon and two glucagon-like peptides (GLP-I and GLP-II) flanked at their amino and carboxyl termini by dibasic residues. Tissue-specific processing liberates different peptides in the intestine compared with the pancreas. One of these intestinal peptides, glucagon-like peptide I(7-37) (GLP-I(7-37], is one of the most potent insulin secretagogues studied to date. It contains within its carboxyl-terminal domain an arginine residue that, because of an adjacent glycine residue, may alternatively be used during post-translational processing as a site for amidation. Using a chromatographic system and radioimmunoassays that discriminate among the closely related GLP-I peptides, we find that the processing of proglucagon in the rat intestine and to a lesser extent in the rat pancreas results in the formation of at least three GLP-I peptides, of 37, 31, and 30 residues. The 30-residue peptide is in the form of an alpha-carboxyl-terminal arginine amide, a modification that is not usually found in proteins. Remarkably, the relative potencies for the stimulation of insulin secretion from the perfused rat pancreas of the nonamidated (GLP-I(7-37] and the amidated (GLP-I(7-36) amide) peptides are the same (Weir, G. C., Mojsov, S., Hendrik, G. K., and Habener, J. F. (1989) Diabetes 38, 338-342; Suzuki, S., Kawai, K., Okashir, S., Mukal, H., and Yamashita, K. (1989) Endocrinology 125, 3109-3114).  相似文献   

18.
The effects of glucagon-like peptide 1 (7-36) amide [GLP-1 (7-36) amide] and glucagon on the release of islet amyloid polypeptide (IAPP), or amylin, from the isolated perfused rat pancreas were studied. In the presence of 5.6 mM glucose, GLP-1 (7-36) amide and glucagon stimulated the release of amylin from the perfused pancreas. The infusion of GLP-1 (7-36) amide at a concentration of 10(-9) M elicited a biphasic release of amylin similar to that of insulin. The cumulative output of amylin induced by 10(-9)M GLP-1 (7-36) amide was significantly higher than that by 10(-9)M glucagon (p less than 0.01). The amylin/insulin molar ratios induced by GLP-1 (7-36) amide and glucagon were about 1% and did not differ significantly. These findings suggest that GLP-1 (7-36) amide and glucagon stimulate the release of amylin from the pancreas and that the concomitant secretion of amylin and insulin might contribute to glucose homeostasis.  相似文献   

19.
Summary Numerous endocrine cells can be observed in the gut of the lizard Podarcis hispanica after application of the Grimelius silver nitrate technique. The argyrophilic endocrine cells are usually tall and thin in the small intestine but short, basal, and round in the large intestine. Eleven types of immunoreactive endocrine cells have been identified by immunocytochemical methods. Numerous serotonin-, caerulein/gastrin/cholecystokinin octapeptide-and peptide tyrosine-tyrosine-immunoreactive cells; a moderate number of pancreatic polypeptide-, neurotensin-, somatostatin-, glucagon-like peptide-1-and glucagon-immunoreactive cells, and few cholecystokinin N-terminal-and bombesin-immunoreactive cells were found in the epithelium of the small intestine. Coexistence of glucagon with GLP-1 or PP/PYY has been observed in some cells. In the large intestine a small number of serotonin-, peptide tyrosine-tyrosine-, pancreatic polypeptide-, neurotensin-, somatostatin-and glucagon-like peptide-1-immunoreactive cells were detected. Vasoactive intestinal peptide immunoreactivity was found in nerve fibers of the muscular layer. Substance P-immunoreactive nerve fibers were detected in lamina propria, submucosa and muscular layer. Chromogranin A-immunoreactive cells were observed throughout the intestine, although in lower numbers than argyrophilic cells.  相似文献   

20.
Glucagon gene expression in vertebrate brain   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号