首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
L H Chang  A G Marshall 《Biopolymers》1986,25(7):1299-1313
The unfolding of B. subtilis 5S RNA is examined by direct calorimetric measurement in the presence of various concentrations of Na+ and Mg2+. The composite differential scanning calorimetry (DSC) curve is analyzed into 3–5 individual two-state melting transitions. In the absence of added Na+ or Mg2+, the 5S RNA segments melt together at Tm = 40°C. Addition of Na+ stabilizes the molecular structure (Tm = 56°C) and widens the melting temperature range, so that up to five component transitions are observed. Addition of Mg2+ alone produces a very stable structure (Tm = 75°C) with highly cooperative melting. Finally, addition of both Na+ and Mg2+ produces the highest stability (Tm = 76°C). The results are interpreted according to hypothetical secondary and tertiary base-pairing schemes. The conformational changes demonstrated here may facilitate the movement of the protein synthesis machinery during RNA translation.  相似文献   

2.
Equilibrium and kinetics of thermal melting of yeast 5.8S ribosomal RNA in aqueous NaCl were investigated by differential thermal melting and temperature jump methods. Two peaks were observed in each of the melting curves at 1 mM-1 M Na+ and linearity between each melting temperature Tm and log[Na+] was found at [Na+> 10 mM. From the difference spectrum ratio, dA280dA260, the G-C content in the local structures was calculated to be 91 and 56%. The temperature jump to 70–85°C in aqueous 30 mM Na+ of the RNA solution induced first-order kinetics, from which the kinetically determined melting curve was calculated. The curve could be approximately described in a Gaussian form with a Tm which agrees well with the high Tm in the static melting curve at 30 mM Na+. The kinetic properties of the reaction indicated a double helix-coil transition. However, the temperature jump to 20–60°C did not induce monophasic kinetics. The kinetic amplitude of the slow component showed a Tm which corresponded to the low Tm in the static melting curve at 30 mM Na+. The slow relaxation had the characteristics of a double helix-to-coil transition. However, contributions from very fast processes including single strand unstacking, were most noticeable in the low temperature melting region of the static curve. The thermodynamic parameters of both transitions from double helix to coil were analysed in detail. Both activation energies for helix formation were negative, and the nucleation is thought to follow a process similar to that in oligonucleotides. Values of Tm and enthalpy change of both helix-coil transitions indicated the cloverleaf model as the most plausible one for some limited regions of yeast 5.8S RNA among the previously proposed models: burp gun, cloverleaf and Rubin's models.  相似文献   

3.
The Na+/K+-ATPase generates an electrochemical gradient of Na+ and K+, which is necessary for the functioning of animal cells. During the catalytic act, the enzyme passes through two principal conformational states, E1 and E2. To assess the domain organization of the protein in these conformations, thermal denaturation of Na+/K+-ATPases from duck salt gland and from rabbit kidney has been studied in the absence and in the presence of Na+ or K+, which induce the transition to E1 or E2. The melting curves for the ion-free forms of the two ATPases have different shapes: the rabbit protein shows one transition at 56.1°C, whereas the duck protein shows two transitions, at 49.8 and 56.9°C. Addition of Na+ or K+ ions abolishes the difference in thermal behavior between these enzymes, but through opposite effects. The melting curves for the E2 conformation (K+ bound) in both cases exhibit a single peak of heat absorption at ∼63°C. For the E1 conformation (Na+ bound), each melting curve has three peaks, indicating denaturation of three domains. The difference in the domain organization of Na+/K+-ATPase in the E1 and E2 states may account for the different sensitivity to temperature, proteolysis, and oxidative stress observed for the two enzyme conformations.  相似文献   

4.
Helix-coil dynamics of a Z-helix hairpin   总被引:1,自引:0,他引:1  
The helix–coil transition of a Z-helix hairpin formed from d(C-G)5T4(C-G)5 has been characterized by equilibrium melting and temperature jump experiments in 5M NaClO4 and 10 mM Na2HPO4, pH 7.0. The melting curve can be represented by a simple all-or-none transition with a midpoint at 81.6 ± 0.4°C and an enthalpy change of 287 ± 15 kJ/mole. The temperature jump relaxation can be described by single exponentials at a reasonable accuracy. Amplitudes measured as a function of temperature provide equilibrium parameters consistent with those derived from equilibrium melting curves. The rate constants of Z-helix formation are found in the range from 1800 s?1 at 70°C to 800 s?1 at 90°C and are associated with an activation enthalpy of ?(50 ± 10) kJ/mole, whereas the rate constants of helix dissociation are found in the range from 200 s?1 at 70°C to 4500 s?1 at 90°C with an activation enthalpy +235 kJ/mole. These parameters are consistent with a requirement of 3–4 base pairs for helix nucleation. Apparently nucleation occurs in the Z-helix conformation, because a separate slow step corresponding to a B to Z transition has not been observed. In summary, the dynamics of the Z-helix–coil transition is very similar to that of previously investigated right-handed double helices.  相似文献   

5.
We have studied the solid to liquid-crystalline phase transition of sonicated vesicles of dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylcholine. The transition was studied by both fluorescence polarization of perylene embedded in the vesicles, and by the efflux rate of trapped 22Na+.Fluorescence polarization generally decreases with temperature, showing an inflection in the region 32–42°C with a mid-point of approximately 37.5 °C. On the other hand, the perylene fluorescence intensity increases abruptly in this region. To explain this result, we have proposed that, for T < Tc where Tc is the transition temperature, perylene is excluded from the hydrocarbon interior of the membranes, whereas, T < Tc this probe may be accommodated in the membrane interior to a large extent.The self-diffusion rates of 22Na+ through dipalmitoylphosphatidylglycerol vesicles exhibit a complex dependence on temperature. There is an initial large increase in diffusion rates (approximately 100-fold) between 30 and 38 °C, followed by a decrease (approximately 4-fold) between 38 and 48 °C. A monotonic increase is then observed at temperatures higher than 48 °C. The local maximum of 22Na+ self-diffusion rates at approximately 38 °C coincides with the mid-point of phase transition as detected by changes in fluorescence polarization of perylene with the same vesicles. Vesicles composed of dipalmitoylphosphatidylcholine show the same general behavior in terms of 22Na+ self-diffusion rates at different temperatures, except that the local maximum occurs at approximately 42 °C.The temperature dependence of the permeability and the appearance of a local maximum at the phase transition region could be explained in terms of a domain structure within the plane of the membranes. This explanation is based on the possibility that boundary regions between liquid and solid domains would exhibit relatively high permeability to 22Na+.Mixed vesicles composed of equimolar amounts of dipalmitoyl phospholipids and cholesterol show no abrupt changes in the temperature dependence of either perylene fluorescence polarization or 22Na+ diffusion rate measurements. This is taken to indicate the absence of agross phase transition in the presence of cholesterol.  相似文献   

6.
Abstract

Addition of Na2CO3 to almost salt-free DNA solution (5·10?5M EDTA, pH=5.7, Tm=26.5 °C) elevates both pH and the DNA melting temperature (Tm) if Na2CO3 concentration is less than 0.004M. For 0.004M Na2CO3, Tm=58 °C is maximal and pH=10.56. Further increase in concentration gives rise to a monotonous decrease in Tm to 37 °C for 1M N2CO3 (pH=10.57). Increase in pH is also not monotonous. The highest pH=10.87 is reached at 0.04M Na2CO3 (Tm=48.3 °C). To reveal the cause of this DNA destabilization, which happens in a narrow pH interval (10.56÷10.87) and a wide Na2CO3 concentration interval (0.004÷1M), a procedure has been developed for determining the separate influences on Tm of Na+, pH, and anions formed by Na2CO3 (HCO3 ? and CO3 2-). Comparison of influence of anions formed by Na2CO3 on DNA stability with Cl? (anion inert to DNA stability), ClO4 ? (strong DNA destabilizing “chaotropic” anion) and OH? has been carried out. It has been shown that only Na+ and pH influence Tm in Na2CO3 solution at concentrations lower than 0.001M. However, the Tm decrease with concentration for [Na2CO3]≥0.004M is only partly caused by high pH≈10.7. Na2CO3 anions also exert a strong destabilizing influence at these concentrations. For 0.1M Na2CO3 (pH=10.84, [Na+]=0.2M, Tm=42.7 °C), the anion destabilizing effect is higher 20 °C. For NaClO4 (ClO4 ? is a strong “chaotropic” anion), an equal anion effect occurs at much higher concentrations ~3M. This means that Na2CO3 gives rise to a much stronger anion effect than other salts. The effect is pH dependent. It decreases fivefold at neutral pH after addition of HCl to 0.1M Na2CO3 as well as after addition of NaOH for pH>11.2.  相似文献   

7.
Previously we have shown that the temperature dependence of the sodium pump (Na+,K+-ATPase) is altered under different neuropathological conditions. In this study we compared temperature dependence of the Na+,K+-ATPase in the fronto-parietal cortex of CCK2 receptor-deficient (homo- and heterozygous) and normal (wild-type) mice. The Arrhenius plot for Na+,K+-ATPase from wild-type brain is non-linear with a breakpoint at 20.3 ± 0.4°C. In case of the brain cell membrane of CCK2 receptor-deficient mice (homo- and heterozygous) the breakpoint on Arrhenius plot was detected at 26.0 ± 1.1°C and 25.4 ± 0.4°C, respectively. The shift of the breakpoint on the Arrhenius plot established in CCK2 receptor-deficiency as well as in case of some other pathological conditions confirms that such kind of alteration in the Na+,K+-ATPase temperature dependence is likely related to the homeostatic adjustment of altered function of the sodium pump.  相似文献   

8.
Renaturation of DNA in the presence of ethidium bromide   总被引:1,自引:0,他引:1  
J R Hutton  J G Wetmur 《Biopolymers》1972,11(11):2337-2348
The rate of renaturation of T2 DNA has been studied as a fuction of ethidium bound per nucleotide of denatured DNA. The Binding constants and number of binding sites for ethidium have been determined by spectral titration for denatured DNA at 55, 65, and 75°C and for native DNA at 65°C in 0.4M Na+. The rate of renaturation of T2 DNA was found to be independentof ethidium binding up to 0.03 moles per mole of nucleotide. Above 0.03 moles, the rate drops off precipitously approaching zero at 0.08 and 0.06 moles bound ethidium per nucleotide at 65°C respectively. A study was also made of the use of bound ethidium fluorescence as a probe for monitoring DNA renaturation reactions.  相似文献   

9.
Archaeal microorganisms that grow optimally at Na+ concentrations of 1.7 M, or the equivalent of 10% (w/v) NaCl, and greater are considered to be extreme halophiles. This review encompasses extremely halophilic archaea and their growth characteristics with respect to the correlation between the extent of alkaline pH and elevated temperature optima and the extent of salt tolerance. The focus is on poly-extremophiles, i.e., taxa growing optimally at a Na+ concentration at or above 1.7 M (approximately 10% w/v NaCl); alkaline pH, at or above 8.5; and elevated temperature optima, at or above 50°C. So far, only a very few extreme halophiles that are able to grow optimally under alkaline conditions as well as at elevated temperatures have been isolated. The distribution of extremely halophilic archaea growing optimally at 3.4 M Na+ (approximately 20% w/v NaCl) is bifurcated with respect to pH optima, either they are neutrophilic, with a pHopt of approximately 7, or strongly alkaliphilic, with pHopt at or above 8.5. Amongst these extreme halophiles which have elevated pH optima, only four taxa have an optimum temperature above 50°C: Haloarcula quadrata (52°C), Haloferax elongans (53°C), Haloferax mediterranei (51°C) and Natronolimnobius ‘aegyptiacus’ (55°C).  相似文献   

10.
The preparation and melting of a 16 base-pair duplex DNA linked on both ends by C12H24 (dodecyl) chains is described. Absorbance vs temperature curves (optical melting curves) were measured for the dodecyl-linked molecule and the same duplex molecule linked on the ends instead by T4 loops. Optical melting curves of both molecules were measured in 25, 55, and 85 mM Na+ and revealed, regardless of [Na +], the duplex linked by dodecyl loops is more stable by at least 6°C than the same duplex linked by T4 loops. Experimental curves in each salt environment were analyzed in terms of the two-state and multistate theoretical models. In the two-state, or van't Hoff analysis, the melting transition is assumed to occur in an all-or-none manner. Thus, the only possible states accessible to the molecule throughout the melting transition are the completely intact duplex and the completely melted duplex or minicircle. In the multistate analysis no assumptions regarding the melting transition are required and the statistical occurrence of every possible partially melted state of the duplex is explicitly considered. Results of the analysis revealed the melting transitions of both the dodecyl-linked molecule and the dumbbell with T4 end loops are essentially two state in 25 and 55 mM Na+. In contrast, significant deviations from two-state behavior were observed in 85 m MNa+. From our previously published melting data of DNA dumbbells with Tn end loops where n = 2, 3, 4, 6, 8, 10, 14 [T. M. Paner, M. Amaratunga, and A. S. Benight, (1992) Biopolymers, Vol. 32, pp. 881–892] and the dumbbell with T4 end loops of this study, a plot of d(Tm)/d ln [Na+] was constructed. Extrapolation of this data to n = 1 intersects with the value of d (Tm)/d ln [Na+] obtained for the alkyl-linked dumbbell, suggesting the salt-dependent stability of the alkyl-linked molecule behaves as though the duplex of this molecule were linked by end loops comprised of a single T residue. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
E Freire  R L Biltonen 《Biopolymers》1978,17(5):1257-1272
The thermal unfolding of yeast phenylalanine-specific tRNA (tRNAPhe) has been calorimetrically investigated at several salt concentrations in the absence of magnesium. Application of the deconvolution theory of macromolecular conformational transitions allows calculation of the thermodynamic parameters of unfolding. It is demonstrated that the unfolding of tRNAPhe occurs in a sequential fashion and that four separate transitions or five macromolecular thermodynamic states exist in the temperature range 8–72°C under the experimental conditions of these studies (0.067–0.52M Na+). The enthalpy and entropy changes between states and the relative population of each state as a function of temperature and salt concentration have been obtained. Sodium stabilizes the low-temperature conformations of tRNAPhe. The increase in the melting temperatures of each transition is shown to be linearly dependent on the logarithm of sodium concentration. These results allow calculation of the “phase” diagram for the transitions as a function of salt concentration.  相似文献   

12.
G.J. Bening  L.J.M. Eilermann 《BBA》1973,292(2):402-412
1. Phosphorylating particles from Azotobacter vinelandii show a rapid, respiration-induced reversible increase in pH of the suspending medium; this is not found with non-phosphorylating particles.2. The observed pH response requires the presence of low concentrations of Mg2+ or of higher concentrations of Na+ or K+.3. Between 40 and 10 °C the rates of proton influx and efflux have similar temperature coefficients; below 10 °C the effect of temperature is greater on proton efflux.4. The kinetics of the energy-linked enhancement of fluorescence 1-anilinonaphthalene-8-sulphonate are slower than that of the quenching of the fluorescence of atebrin.  相似文献   

13.
Absorbance melting curves of the double-stranded (rA) · (rU) helix, made with fractionated homopolynucleotides of matched length, have been obtained over a 15-fold range of [Na+] and 30° range of temperature. An excellent fit of the observed profiles was obtained with theoretical curves calculated on the basis of the simplest interpretation for the occurrence of particular equilibria [1–3]; the complete molecular partition function being evaluated by the power series method developed by Applequist [4–6]. The stability constant was evaluated from literature values for the calorimetric enthalpy. The loop closure exponent was best represented by 2.22 ± 0.04 for the mismatching loop mode of melting and 1.22 for the matching mode and was independent of [Na+] and temperature. Assuming the applicability of the nonintersecting random walk value of 1.9 ± 0.1, these results would suggest a slight bias toward matched loop formation during melting of homopolynucleotides that might be expected to form only mismatched loops. The value of the stacking parameter at 60°C was only ~6% higher than that at 30°C, 0.0221 (0.0184 for the matching case). Calculated melting curves indicate the occurrence of a fifth-order phase transition when the mean helix length is only ~13 base-pairs, or about one full turn of the helix.  相似文献   

14.
A direct measurement of the unzippering rate of a nucleic acid double helix   总被引:1,自引:0,他引:1  
The rate of double helix unzippering was determined directly by application of a fast temperature jump method to a nucleotide system of partly unzippered helices formed from oligoriboadenylates and oligoribouridylates of equal chain lengths (14 and 18 nucleotide residues). These helices showed a relaxation process in the time range of 0.1 to 0.3 μsec, that is assigned to the unzippering reaction. Measurements at 0.05 M and 0.1 M [Na+] demonstrated a rather small dependence upon the ionic strength. Increase of temperature increases the rate of unzippering. Simulation of the unzippering relaxation by a zipper model yielded a rate constant of base pair formation adjacent to a helix sequence of 8 × 106 sec?1 at 25°C associated with an activation enthalpy of 4 kcalmole. This elementary rate constant is higher than that obtained from a simulation of the overall recombination and dissociation rates of entire helices. The difference is attributed to reduced electrostatic and steric hindrance effects for base pair equilibration at helix ends.  相似文献   

15.
R D Blake  P V Haydock 《Biopolymers》1979,18(12):3089-3109
A series of high-resolution melting curves were obtained by the continuous direct-derivative method [Blake, R. D. & Lefoley, S. G. (1978) Biochim. Biophys. Acta 518 , 233–246] on lambda DNA (cI857S7 strain) under varying conditions of [Na+]. Examination of the denaturation patterns at close intervals of [Na+] indicates that frequent changes in mechanism occur below 0.04M Na+, while almost none occurs above 0.1M Na+. Changes at low [Na+] generally occur in an abrupt fashion, in most cases within a 3 mM change in [Na+], and in at least one case within 0.6 mM, indicating the balance between alternative mechanisms is frequently quite delicate. These changes involve segments of between 900 and 1500 or more base pairs in length and are therefore not insignificant. Changes at low [Na+] reflect a perturbation of the energetic balance between competing mechanisms by weakly screened long-range electrostatic forces. Some perturbation probably also arises from variations in the linear charge density of the double helix induced by the proximity of premelted loop segments; however, this contribution cannot be evaluated without a detailed denaturation map. At high [Na+] the mechanism of melting is more conserved, permitting the dependence of subtrasitional melting temperature tm(i) on [Na+] to be examined for almost all 34 ± 2 subtransitions. The G + C composition of segments responsible for each subtransition was determined by a quantitative spectral method. Analysis according to the Manning-Record expression [Manning, G. (1972) Biopolymers 11 , 937–949; Record, M. T., Jr., Anderson, C. F. & Lohman, T. M. (1978) Q. Rev. Biophysics 11 , 103–178] relating ΔHm and dtm(i)/d log[Na+] to the fraction of Na+ released during melting, appears to indicate almost 40% more Na+ is bound to the single-stranded G and/or C residues than to A and T residues. This is consistent with a much shorter mean axial spacing and higher charge density in the former, particularly single-stranded G residues, which have an extraordinary tendency to stack.  相似文献   

16.
Goldfish, Carassius auratus, adaptively remodel their gills in response to changes in ambient oxygen and temperature, altering the functional lamellar surface area to balance the opposing requirements for respiration and osmoregulation. In this study, the effects of thermal- and hypoxia-mediated gill remodeling on branchial Na+ fluxes and the distribution of putative Na+-transporting ionocytes in goldfish were assessed. When assessed either in vitro (isolated gill arches) or in vivo at a common water temperature, the presence of an interlamellar cell mass (ILCM) in fish acclimated to 7°C clearly decreased Na+ efflux across the gill relative to fish maintained at 25°C and lacking an ILCM. However, loss of the ILCM in 7°C-acclimated fish exposed to hypoxia led to a decrease in Na+ efflux (assessed under hypoxic conditions) despite the apparent large increases in functional lamellar surface area. Goldfish possessing an ILCM were able to sustain Na+ uptake, albeit at a lower rate matched to efflux, owing to the re-distribution of ionocytes expressing genes thought to be involved in Na+ uptake [Na+/H+ exchanger isoform 3 (NHE3) and V- type H+-ATPase] to the edge of the ILCM where they can establish contact with the surrounding environment. NHE-expressing cells co-localized with Na+/K+-ATPase expression, suggesting a role for NHE in Na+-uptake in the goldfish. Implications of the ILCM on ion fluxes in the goldfish are discussed.  相似文献   

17.
Abstract

The hairpin-duplex equillibria of the dodecamer d-AAGCTTAAGCTT and interaction of the duplex form with a pentapeptide, KGWGK, has been studied. UV thermal transitions are monophasic at low salt but biphasic at higher salt concentrations. At 10?5M or less oligomer concentration biphasic melting curves persist till 900 mM NaCl. The d(Tm)/d log(Na+) for the duplex form is 12 °C and for the hairpin is 18 °C. The ΔH and ΔS values for duplex formation are low(-25 Kcal/mole and—59 Cal/mole respectively). KGWGK binds to the duplex form with a binding constant K = 3.4×105M?1measured from fluorescence quenching of tryptophan. These unusual results are markedly different from that reported for d-AGATCT- AGATCT (Biochemistry 31, 6241–6245) and are discussed in ternis of sequence dependence of loop folding and cruciform extrusion pathway of hairpin formation.  相似文献   

18.
Oligmoycin-sensitive (O-S) Mg2+ ATPase from mouse brain has a higher sensitivity to DDT at a low temperature, 17°C than at 27° or 37°. The I50 value for 17° was 0.24 μM DDT. The DDT sensitivity did not differ significantly at 27° and 37°C. This negative temperature correlation is similar to results in brain and muscle tissues of insects. Oligomycin-insensitive Mg2+ ATPase, also was inhibited by DTT more effectively at cooler temperatures. In contrast, O-S Mg2+ ATPase from mouse muscle showed no significant sensitivity difference to DDT at the 3 temperatures. Na+-K+ ATPase, inhibited to a lesser degree by DDT, was inhibited to a much greater extent (61%) at 37° than at 17° (23%). This positive temperature correlation is similar to findings in insect homogenates.  相似文献   

19.
Abstract

The effect of U(34) dethiolation on the anticodon-anticodon association between E.coli tRNA(Glu) and yeast tRNA(Phe) has been studied by the temperature jump relaxation technique. An important destabilization upon replacement of the thioketo group of s2U(34) by a keto group, was revealed by a lowering of melting temperature of about 20° C. The measured kinetic parameters indicated that this destabilization effect was originated in an increase of dissociation and a decrease of association rate constants by a factor of 4 to 5. Modifications in both stacking interactions and flexibility in the anticodon loop would be responsible for this effect.  相似文献   

20.
Summary In inside-out patches from cultured neonatal rat heart cells, single Na+ channel currents were analyzed under the influence of the cardiotonic compound DPI 201-106 (DPI), a putative novel channel modifier. In absence of DPI, normal cardiac single Na+ channels studied at –30 mV have one open state which is rapidly left with a rate constant of 826.5 sec–1 at 20°C during sustained depolarization., Reconstructed macroscopic currents relax completely with 7 to 10 msec. The current decay fits a single exponential. A considerable percentage of openings may occur during relaxation of the macroscopic current. In patches treated with 3×10–6 m DPI in the pipette solution, stepping to –30 mV results in drastically prolonged and usually repetitive openings. This channel activity mostly persists over the whole depolarization (usually 160 msec in duration) but is abruptly terminated on clamping back the patch to the holding potential. Besides these modified events, apparently normal openings occur. The open time distribution of DPI-treated Na+ channels is the sum of two exponentials characterized by time constants of 0.85 msec (which is close to the time constant found in the control patches, 1.21 msec) and 12 msec. Moreover, DPI-modified Na+ channels exhibit a sustained high, time-independent open probability. Similar to normal Na+ channels, the mean number of open DPI-modified Na+ channels is voltage-dependent and increases on shifting the holding potential in the hyperpolarizing direction. These kinetic changes suggest an elimination of Na+ channel inactivation as it may follow from an interaction of DPI with Na+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号