首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
Reactive oxygen species (ROS) and calcium (Ca2+), two crucial intracellular signaling molecules, have been reported to play important roles in chlorophyll biosynthesis. In this study, we aimed to investigate whether disturbance of chlorophyll synthesis affects chloroplast ROS and Ca2+ homeostases. Chlorophyll biosynthesis was inhibited at the Mg branch by virus-induced gene silencing (VIGS) of CHLI gene encoding the Mg chelatase CHLI subunit in pea (Pisum sativum). Subsequently, ROS and intracellular free Ca2+ concentration ([Ca2+]i) in these chlorophyll-deficient pea plants were evaluated by histochemical and fluorescent staining assays. The results showed that the superoxide anion and hydrogen peroxide were predominantly generated in chloroplasts of the yellow leaves of pea VIGS-CHLI plants. The expression of genes encoding chloroplast antioxidant enzymes (CuZn-superoxide dismutase, ascorbate peroxidase, glutathione reductase, phospholipid glutathione peroxidase, peroxiredoxin and thioredoxins) were also decreased in the leaves of VIGS-CHLI plants compared with the control plants. Additionally, the [Ca2+]i were significantly reduced in the yellow leaves of VIGS-CHLI plants compared with the green leaves of VIGS-GFP control plants. The expression of genes encoding Ca2+ signaling related proteins (thylakoid Ca2+ transporter, calmodulins and calcineurin B-like protein) was down-regulated in yellow VIGS-CHLI leaves. These results indicate that inhibition of chlorophyll biosynthesis at the Mg branch by silencing CHLI affects chloroplast ROS homeostasis and Ca2+ signaling and down-regulates the expression of ROS scavenging genes and Ca2+ signaling related genes.  相似文献   

2.
3.
Hypoxia–ischemia-induced neuronal death is an important pathophysiological process that accompanies ischemic stroke and represents a major challenge in preventing ischemic stroke. To elucidate factors related to and a potential preventative mechanism of hypoxia–ischemia-induced neuronal death, primary neurons were exposed to sodium dithionite and glucose deprivation (SDGD) to mimic hypoxic–ischemic conditions. The effects of N,N,N′,N′-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a specific Zn2+-chelating agent, on SDGD-induced neuronal death, glutamate signaling (including the free glutamate concentration and expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor (GluR2) and N-methyl-d-aspartate (NMDA) receptor subunits (NR2B), and voltage-dependent K+ and Na+ channel currents were also investigated. Our results demonstrated that TPEN significantly suppressed increases in cell death, apoptosis, neuronal glutamate release into the culture medium, NR2B protein expression, and I K as well as decreased GluR2 protein expression and Na+ channel activity in primary cultured neurons exposed to SDGD. These results suggest that TPEN could inhibit SDGD-induced neuronal death by modulating apoptosis, glutamate signaling (via ligand-gated channels such as AMPA and NMDA receptors), and voltage-gated K+ and Na+ channels in neurons. Hence, Zn2+ chelation might be a promising approach for counteracting the neuronal loss caused by transient global ischemia. Moreover, TPEN could represent a potential cell-targeted therapy.  相似文献   

4.
We investigated the pharmacological actions of a slow-releasing H2S donor, GYY 4137; a substrate for the biosynthesis of H2S, l-cysteine and its precursor, N-acetylcysteine on potassium (K+; 50 mM)-evoked [3H]D-aspartate release from bovine isolated retinae using the Superfusion Method. GYY 4137 (10 nM–10 µM), l-cysteine (100 nM–10 µM) and N-acetylcysteine (10 µM–1 mM) elicited a concentration-dependent decrease in K+-evoked [3H]D-aspartate release from isolated bovine retinae without affecting basal tritium efflux. At equimolar concentration of 10 µM, the rank order of activity was as follows: l-cysteine?>?GYY 4137?>?N-acetylcysteine. A dual inhibitor of the biosynthetic enzymes for H2S, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), amino-oxyacetic acid (AOA; 3 mM) reversed the inhibitory responses caused by GYY 4137, l-cysteine and N-acetylcysteine on K+-evoked [3H]D-aspartate release. Glibenclamide (300 µM), an inhibitor of KATP channels blocked the inhibitory action of GYY 4137 and l-cysteine but not that elicited by N-acetylcysteine on K+-induced [3H]D-aspartate release. The inhibitory effect of GYY 4137 and l-cysteine on K+-evoked [3H]D-aspartate release was reversed by the non-specific inhibitor of nitric oxide synthase (NOS), l-NAME (300 µM). Furthermore, a specific inhibitor of inducible NOS (iNOS), aminoguanidine (10 µM) blocked the inhibitory action of l-cysteine on K+-evoked [3H]D-aspartate release. We conclude that both donors and substrates for H2S production can inhibit amino acid neurotransmission in bovine isolated retinae, an effect that is dependent, at least in part, upon the intramural biosynthesis of this gas, and on the activity of KATP channels and NO synthase.  相似文献   

5.
One important mechanism plants use to cope with salinity is keeping the cytosolic Na+ concentration low by sequestering Na+ in vacuoles, a process facilitated by Na+/H+ exchangers (NHX). There are eight NHX genes (NHX1 through NHX8) identified and characterized in Arabidopsis thaliana. Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes (MtNHX1, MtNHX2, MtNHX3, MtNHX4, MtNHX6, and MtNHX7). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana, Glycine max, Phaseolus vulgaris, and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~?20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl? contents increased by 152 and 162%, respectively. Na+ exclusion may be responsible for the relatively smaller increase in Na+ concentration in roots under salt stress as compared to Cl?. Decline in tissue K+ concentration under salinity was not surprising as some antiporters play an important role in transporting both Na+ and K + . MtNHX1, MtNHX6, and MtNHX7 display high expression in roots and leaves. MtNHX3, MtNHX6, and MtNHX7 were induced in roots under salinity stress. Expression analysis results indicate that sequestering Na+ into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.  相似文献   

6.
7.
The Na+/H+ antiporters play an important role in salt tolerance in plants. However, the functions of OsNHXs in rice except OsNHX1 have not been well studied. Using the gain- and loss-of-function strategies, we studied the potential role of OsNHX2 in salt tolerance in rice. Overexpression of OsNHX2 (OsNHX2-OE) in rice showed the significant tolerance to salt stress than wild-type plants and OsNHX2 knockdown transgenic plants (OsNHX2-KD). Under salt treatments of 300-mM NaCl for 5 days, the plant fresh weights, relative water percentages, shoot heights, Na+ contents, K+ contents, and K+/Na+ ratios in leaves of OsNHX2-OE transgenic plants were higher than those in wild-type plants, while no differences were detected in roots. K+/Na+ ratios in rice leaf mesophyll cells and bundle sheath cells were higher in OsNHX2-OE transgenic plants than in wild-type plants and OsNHX2-KD transgenic plants. Our data indicate that OsNHX2 plays an important role in salt stress based on leaf mesophyll cells and bundle sheath cells and can be served in genetically engineering crop plants with enhanced salt tolerance.  相似文献   

8.
9.
10.
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2??, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p ?? (possible sources for O2??), the Rieske iron–sulfur cluster (possible source of O2?? and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2?? and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.  相似文献   

11.
12.
Many aquatic algae induce a CO2-concentrating mechanism (CCM) associated with active inorganic carbon transport to maintain high photosynthetic affinity using dissolved inorganic carbon even in low-CO2 (LC) conditions. In the green alga Chlamydomonas reinhardtii, a Ca2+-binding protein CAS was identified as a novel factor regulating the expression of CCM-related proteins including bicarbonate transporters. Although previous studies revealed that CAS associates with the thylakoid membrane and changes its localization in response to CO2 and light availability, its detailed localization in the chloroplast has not been examined in vivo. In this study, high-resolution fluorescence images of CAS fused with a Chlamydomonas-adapted fluorescence protein, Clover, were obtained by using a sensitive hybrid detector and an image deconvolution method. In high-CO2 (5% v/v) conditions, the fluorescence signals of Clover displayed a mesh-like structure in the chloroplast and part of the signals discontinuously overlapped with chlorophyll autofluorescence. The fluorescence signals gathered inside the pyrenoid as a distinct wheel-like structure at 2 h after transfer to LC-light condition, and then localized to the center of the pyrenoid at 12 h. These results suggest that CAS could move in the chloroplast along the thylakoid membrane in response to lowering CO2 and gather inside the pyrenoid during the operation of the CCM.  相似文献   

13.
14.
In the present study, we investigated the protective mechanism of paeoniflorin (PF), a monoterpene glycoside extracted from Radix Paeoniae alba roots, on MPP+-induced neurotoxicity in cultured rat pheochromocytoma cells (PC12). Our work included examination of cell viability assessment, amounts of released lactic dehydrogenase (LDH), intracellular Ca2+ concentration, cell apoptosis, mitochondrial membrane potential, caspase-3 activity, and expression profiling of two apoptosis-related genes (Bcl-2 and Bax). It was shown that, PF functioned as an MPP+ antagonist, being able to suppress apoptosis, decrease LDH release and Ca2+ concentration, attenuate membrane potential collapse and, inhibit caspase-3 activation, decrease in Bax/Bcl-2 ratio. These observations suggest that PF could protect PC12 cells against MPP+-induced injury and the mechanism PF’s neuroprotective effect was closely associated with Bcl-2 up-regulation and Bax down-regulation. PF has neuroprotective effects on MPP+-induced apoptosis in PC12 cells via regulating mitochondrial membrane potential and Bcl-2/Bax/caspase-3 signaling pathways, and this new insight will help develop a PF-based therapeutic strategy for treatmenting neurodegenerative diseases and injury.  相似文献   

15.
A vacuole Na+/H+ antiporter gene TaNHX2 was obtained by screening the wheat cDNA library and by the 5′-RACE method. The expression of TaNHX2 was induced in roots and leaves by treatment with NaCl, polyethylene glycol (PEG), cold and abscisic acid (ABA). When expressed in a yeast mutant (Δnhx1), TaNHX2 suppressed the salt sensitivity of the mutant, which was deficient in vacuolar Na+/H+ antiporter, and caused partial recovery of growth of Δnhx1 in NaCl and LiC1 media. The survival rate of yeast cells was improved by overexpressing the TaNHX2 gene under NaCl, KCl, sorbitol and freezing stresses when compared with the control. The results imply that TaNHX2 might play an important role in salt and osmotic stress tolerance in plant cells.  相似文献   

16.
Cation/H+ exchangers (CAXs) are membrane proteins that transport Ca2+ and other cations using the H+ gradient generated by H+-ATPase or H+-pyrophosphatase. This study reports the characterization of CAX2 from Puccinellia tenuiflora with respect to molecular and functional properties. PutCAX2 was cloned from a cDNA library of P. tenuiflora seedlings. The expression of PutCAX2 in shoots and roots was induced by Ca2+ and Ba2+ treatments. A green fluorescent protein (GFP) marker revealed that PutCAX2 was located on the endoplasmic reticulum (ER) membrane. Four yeast transformants were created using GFP fusion PutCAX2 and truncated PutCAX2s, and their growth in the presence of various cations (Fe3+, Al3+, Mn2+, Cu2+, Co2+, Ni2+, Mg2+, Zn2+, Na+, Li+, Ca2+, and Ba2+) was analyzed. The N-terminally truncated PutCAX2 (GFP-ΔNPutCAX2) and the N and C-terminally truncated PutCAX2 (GFP-ΔNCPutCAX2) transformants grew well in the presence of 100 and 150 mM Ca2+ or 8 and 20 mM Ba2+, whereas the GFP-PutCAX2 and C-terminally truncated PutCAX2 (GFP-ΔCPutCAX2) transformants did not show any tolerance to Ca2+ or Ba2+. The Ba2+ content in whole yeast cells expressing GFP-ΔNPutCAX2 or GFP-ΔNCPutCAX2 was lower than that in other yeast transformants. Moreover, the efflux experiment showed that the Ba2+ efflux rate of yeast cells expressing GFP-ΔNPutCAX2 and GFP-ΔNCPutCAX2 was higher than that of other yeast cells. To our knowledge, this is the first report on the molecular and functional characterization of a novel ER-localized CAX protein from a wild halophyte plant; the results suggest that the N-terminus of PutCAX2 acts as an auto-inhibitory domain, which affects the Ca2+ and Ba2+ tolerance of yeast.  相似文献   

17.
The phytotoxic aluminum species (Al3+) is considered as the primary factor limiting crop productivity in over 40 % of world’s arable land that is acidic. We evaluated the responses of two wheat cultivars (Triticum aestivum L.) with differential Al resistance, cv. Yecora E (Al-resistant) and cv. Dio (Al-sensitive), exposed to 0, 37, 74 and 148 μM Al for 14 days in hydroponic culture at pH 4.5. With increasing Al concentration, leaf Ca2+ and Mg2+ content decreased, as well as the effective quantum yield of photosystem II (PSII) photochemistry (Φ PSII ), while a gradual increase in leaf membrane lipid peroxidation, Al accumulation, photoinhibition (estimated as F v /F m ), and PSII excitation pressure (1 ? q p ) occurred. However, the Al-resistant cultivar with lower Al accumulation, retained larger concentrations of Ca2+ and Mg2+ in the leaves and kept a larger fraction of the PSII reaction centres (RCs) in an open configuration, i.e. a higher ratio of oxidized to reduced quinone A (QA), than plants of the Al-sensitive cultivar. Four times higher Al concentration in the nutrient solution was required for Al-resistant plants (148 μM Al) than for Al-sensitive (37 μM Al), in order to establish the same closed RCs. Yet, the decline in photosynthetic efficiency in the cultivar Dio was not only due to closure of PSII RCs but also to a decrease in the quantum yield of the open RCs. We suggest that Al3+ toxicity may be mediated by nutrient deficiency and oxidative stress, and that Al-resistance of the wheat cultivar Yecora E, may be due at least partially, from the decreased Al accumulation that resulted to decreased reactive oxygen species (ROS) formation. However, under equal internal Al accumulation (exposure Al concentration: Dio 74 μM, Yecora E 148 μM) that resulted to the same oxidative stress, the reduced PSII excitation pressure and the better PSII functioning of the Al-resistant cultivar was probably due to the larger concentrations of Ca2+ and Mg2+ in the leaves. We propose that the different sensitivities of wheat cultivars to Al3+ toxicity can be correlated to differences in the redox state of QA. Thus, chlorophyll fluorescence measurements can be a promising tool for rapid screening of Al resistance in wheat cultivars.  相似文献   

18.
High salinity is the one of important factors limiting plant growth and crop production. Many NHX-type antiporters have been reported to catalyze K+/H+ exchange to mediate salt stress. This study shows that an NHX gene from Arachis hypogaea L. has an important role in K+ uptake and transport, which affects K+ accumulation and plant salt tolerance. When overexpressing AhNHX1, the growth of tobacco seedlings is improved with longer roots and a higher fresh weight than the wild type (WT) under NaCl treatment. Meanwhile, when exposed to NaCl stress, the transgenic seedlings had higher K+/H+ antiporter activity and their roots got more K+ uptake. NaCl stress could induce higher K+ accumulation in the roots, stems, and leaves of transgenic tobacco seedlings but not Na+ accumulation, thus, leading to a higher K+/Na+ ratio in the transgenic seedlings. Additionally, the AKT1, HAK1, SKOR, and KEA genes, which are involved in K+ uptake or transport, were induced by NaCl stress and kept higher expression levels in transgenic seedlings than in WT seedlings. The H+-ATPase and H+-PPase activities were also higher in transgenic seedlings than in the WT seedlings under NaCl stress. Simultaneously, overexpression of AhNHX1 increased the relative distribution of K+ in the aerial parts of the seedlings under NaCl stress. These results showed that AhNHX1 catalyzed the K+/H+ antiporter and enhanced tobacco tolerance to salt stress by increasing K+ uptake and transport.  相似文献   

19.
The aim of this study was to investigate whether the presence of endogenous estradiol alters the effects of a high-fat (HF) diet on activity/expression of the cardiac Na+/K+-ATPase, via PI3K/IRS and RhoA/ROCK signalling cascades in female rats. For this study, female Wistar rats (8 weeks old, 150–200 g) were fed a standard diet or a HF diet (balanced diet for laboratory rats enriched with 42% fat) for 10 weeks. The results show that rats fed a HF diet exhibited a decrease in phosphorylation of the α1 subunit of Na+/K+-ATPase by 30% (p < 0.05), expression of total α1 subunit of Na+/K+-ATPase by 31% (p < 0.05), and association of IRS1 with p85 subunit of PI3K by 42% (p < 0.05), while the levels of cardiac RhoA and ROCK2 were significantly increased by 84% (p < 0.01) and 62% (p < 0.05), respectively. Our results suggest that a HF diet alters cardiac Na+/K+-ATPase expression via molecular mechanisms involving RhoA/ROCK and IRS-1/PI3K signalling in female rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号