首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nef gene products encoded by human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus type 1 (SIV-1) increase viral loads in infected hosts and accelerate clinical progression to AIDS. Nef exhibits a spectrum of biological activities, including the ability to downregulate surface expression of CD4 and major histocompatibility complex (MHC) class I antigens, to alter the state of T-cell activation, and to enhance the infectivity of viral particles. To determine which of these in vitro functions most closely correlates with the pathogenic effects of Nef in vivo, we constructed recombinant HIV-1 NL4-3 viruses carrying mutations within the nef gene that selectively impair these functions. These mutant viruses were evaluated for pathogenic potential in severe combined immunodeficiency (SCID) mice implanted with human fetal thymus and liver (SCID-hu Thy/Liv mice), in which virus-mediated depletion of thymocytes is known to be Nef dependent. Disruption of the polyproline type II helix (Pxx)4 within Nef (required for binding of Hck and p21-activated kinase-like kinases, downregulation of MHC class I, and enhancement of HIV-1 infectivity in vitro but dispensable for CD4 downregulation) did not impair thymocyte depletion in virus-infected Thy/Liv human thymus implants. Conversely, three separate point mutations in Nef that compromised its ability to downregulate CD4 attenuated thymocyte depletion while not diminishing viral replication. These findings indicate that the functional ability of Nef to downregulate CD4 and not MHC class I downregulation, Hck or PAK binding, or (Pxx)4-associated enhancement of infectivity most closely correlates with Nef-mediated enhancement of HIV-1 pathogenicity in vivo. Nef-mediated CD4 downregulation merits consideration as a new target for the development of small-molecule inhibitors.  相似文献   

2.
The accessory protein Nef plays a crucial role in primate lentivirus pathogenesis. Nef enhances human immunodeficiency virus type 1 (HIV-1) infectivity in culture and stimulates viral replication in primary T cells. In this study, we investigated the relationship between HIV-1 replication efficiency in CD4(+) T cells purified from human blood and two various known activities of Nef, CD4 downregulation and single-cycle infectivity enhancement. Using a battery of reporter viruses containing point mutations in nef, we observed a strong genetic correlation between CD4 downregulation by Nef during acute HIV-1 infection of activated T cells and HIV-1 replication efficiency in T cells. In contrast, HIV-1 replication ability was not significantly correlated with the ability of Nef to enhance single-cycle virion infectivity, as determined by using viruses produced in cells lacking CD4. These results demonstrate that CD4 downregulation by Nef plays a crucial role in HIV-1 replication in activated T cells and underscore the potential for the development of therapies targeting this conserved activity of Nef.  相似文献   

3.
The human immunodeficiency virus type 1 (HIV-1) Nef protein has several independent functions that might contribute to efficient viral replication in vivo. Since HIV-1 adapts rapidly to its host environment, we investigated if different Nef properties are associated with disease progression. Functional analysis revealed that nef alleles obtained during late stages of infection did not efficiently downmodulate class I major histocompatibility complex but were highly active in the stimulation of viral replication. In comparison, functional activity in downregulation of CD4 and enhancement of HIV-1 infectivity were maintained or enhanced after AIDS progression. Our results demonstrate that various Nef activities are modulated during the course of HIV-1 infection to maintain high viral loads at different stages of disease progression. These findings suggest that all in vitro Nef functions investigated contribute to AIDS pathogenesis and indicate that nef variants with increased pathogenicity emerge in a significant number of HIV-1-infected individuals.  相似文献   

4.
Nef is a multifunctional accessory protein of primate lentiviruses. Recently, it has been shown that the ability of Nef to downmodulate CD4, CD28, and class I major histocompatibility complex is highly conserved between most or all primate lentiviruses, whereas Nef-mediated downregulation of T-cell receptor-CD3 was lost in the lineage that gave rise to human immunodeficiency virus type 1 (HIV-1). Whether or not other Nef activities are preserved between different groups of primate lentiviruses remained to be determined. Here, we show that nef genes from a large variety of HIVs and simian immunodeficiency viruses (SIVs) enhance virion infectivity and stimulate viral replication in human cells and/or in ex vivo infected human lymphoid tissue (HLT). Notably, nef alleles from unpassaged SIVcpz and SIVsmm enhanced viral infectivity, replication, and cytopathicity in cell culture and in ex vivo infected HLT as efficiently as those from HIV-1 and HIV-2, their human counterparts. Furthermore, nef genes from several highly divergent SIVs that have not been found in humans were also highly active in human cells and/or tissues. Thus, most primate lentiviral Nefs enhance virion infectivity and stimulate viral replication. Moreover, our data show that SIVcpz and SIVsmm Nefs do not require adaptive changes to perform these functions in human cells or tissues and support the idea that nef alleles from other primate lentiviruses would also be capable of promoting efficient virus spread in humans.  相似文献   

5.
Nef is a myristoylated protein of 27 to 35 kDa that is conserved in primate lentiviruses. In vivo, Nef is required for high viral load and full pathological effects. In vitro, Nef has at least four activities: induction of CD4 and major histocompatibility complex (MHC) class I downregulation, enhancement of viral infectivity, and alteration of T-cell activation pathways. We previously reported that the Nef protein from human immunodeficiency virus type 1 interacts with a novel human thioesterase (hTE). In the present study, by mutational analysis, we identified a region of the Nef core, extending from the residues D108 to W124, that is involved both in Nef-hTE interaction and in Nef-induced CD4 downregulation. This region of Nef is located on the oligomer interface and is in close proximity to the putative CD4 binding site. One of the mutants carrying a mutation in this region, targeted to the conserved residue D123, was also found to be defective in two other functions of Nef, MHC class I downmodulation and enhancement of viral infectivity. Furthermore, mutation of this residue affected the ability of Nef to form dimers, suggesting that the oligomerization of Nef may be critical for its multiple functions.  相似文献   

6.
The human immunodeficiency virus type 1 (HIV-1) Nef protein is an important virulence factor. Nef has several functions, including down-modulation of CD4 and class I major histocompatibility complex cell surface expression, enhancement of virion infectivity, and stimulation of viral replication in peripheral blood mononuclear cells. Nef also increases HIV-1 replication in human lymphoid tissue (HLT) ex vivo. We analyzed recombinant and primary nef alleles with highly divergent activity in different in vitro assays to clarify which of these Nef activities are functionally linked. Our results demonstrate that Nef activity in CD4 down-regulation correlates significantly with the efficiency of HIV-1 replication and with the severity of CD4(+) T-cell depletion in HLT. In conclusion, HIV-1 Nef variants with increased activity in CD4 down-modulation would cause severe depletion of CD4(+) T cells in lymphoid tissues and accelerate AIDS progression.  相似文献   

7.
The multifunctional simian and human immunodeficiency virus (SIV and HIV) Nef proteins are important for virulence. We studied the importance of selected Nef functions using an SIV Nef with mutations in two regions that are required for CD4 downregulation. This Nef mutant is defective for downregulating CD4 and, in addition, for enhancing SIV infectivity and induction of SIV replication from infected quiescent peripheral blood mononuclear cells, but not for other known functions, including downregulation of class I major histocompatibility complex (MHC) cell surface expression. Replication of SIV containing this Nef variant in rhesus monkeys was attenuated early during infection. Subsequent increases in viral load coincided with selection of reversions and second-site compensatory changes in Nef. Our results indicate that the surfaces of Nef that mediate CD4 downregulation and the enhancement of virion infectivity are critical for SIV replication in vivo. Furthermore, these findings indicate that class I MHC downregulation by Nef is not sufficient for SIV virulence early in infection.  相似文献   

8.
The nef gene, which encodes related cytoplasmic proteins in both human (HIV) and simian (SIV) immunodeficiency viruses is dispensable for viral replication in vitro. In contrast, in vivo experiments have revealed that SIV nef is required for efficient viral replication and development of AIDS in SIV infected rhesus monkeys, thus indicating that nef plays an essential role in the natural infection. We show that expression of the Nef protein from the HIV-1 NL43 isolate in transgenic mice perturbs development of CD4+ T cells in the thymus and elicits depletion of peripheral CD4+ T cells. Thymic T cells expressing NL43 Nef show altered activation responses. In contrast, Nef protein of the HIV-1 HxB3 isolate does not have an overt effect on T cells when expressed in transgenic animals. The differential effects of the two HIV-1 nef alleles in transgenic mice correlate with down-regulation of CD4 antigen expression on thymic T cells. The differential interactions of the NL43 and HxB3 nef alleles with CD4 were reproduced in a transient assay in human CD4+ CEM T cells. Down-regulation of CD4 by nef in both human and transgenic murine T cells indicates that the relevant interactions are conserved in these two systems and suggests that the consequences of Nef expression on the host cell function can be analyzed in vivo in the murine system. Our observations from transgenic mice suggest that nef-elicited perturbations in T cell signalling play an important role in the viral life cycle in vivo, perhaps resulting in elimination of infected CD4+ T cells.  相似文献   

9.
Adult rhesus macaques infected with nef-defective simian immunodeficiency virus (SIV) exhibit extremely low levels of steady-state virus replication, do not succumb to immunodeficiency disease, and are protected from experimental challenge with pathogenic isolates of SIV. Similarly, rare humans found to be infected with nef-defective human immunodeficiency virus type 1 (HIV-1) variants display exceptionally low viral burdens and do not show evidence of disease progression after many years of infection. HIV-1 Nef induces the rapid endocytosis and lysosomal degradation of cell surface CD4 and enhances virus infectivity in primary human T cells and macrophages. Although expression of SIV Nef also leads to down-modulation of cell surface CD4 levels, no evidence for SIV Nef-induced enhancement of virus infectivity was observed in earlier studies. Thus, it remains unclear whether fundamental differences exist between the activities of HIV-1 and SIV Nef. To establish more clearly whether the SIV and HIV-1 nef gene products are functionally analogous, we compared the replication kinetics and infectivity of variants of SIVmac239 that either do (SIVnef+) or do not (SIV delta nef) encode intact nef gene products. SIVnef+ replicates more rapidly than nef-defective viruses in both human and rhesus peripheral blood mononuclear cells (PBMCs). As previously described for HIV-1 Nef, SIV Nef also enhances virus infectivity within each cycle of virus replication. As a strategy for evaluating the in vivo contribution of HIV-1 nef alleles and long terminal repeat regulatory sequences to the pathogenesis of immunodeficiency disease, we constructed SIV-HIV chimeras in which the nef coding and U3 regulatory regions of SIVmac239 were replaced by the corresponding regions from HIV-1/R73 (SIVR7nef+). SIVR7nef+ displays enhanced infectivity and accelerated replication kinetics in primary human and rhesus PBMC infections compared to its nef-defective counterpart. Converse chimeras, containing SIV Nef in an HIV-1 background (R7SIVnef+) also exhibit greater infectivity than matched nef-defective viruses (R7SIV delta nef). These data indicate that SIV Nef, like that of HIV-1, does enhance virus replication in primary cells in tissue culture and that HIV-1 and SIV Nef are functionally interchangeable in the context of both HIV-1 and SIV.  相似文献   

10.
Type 1 human immunodeficiency viruses encoding mutated nef reading frames are 10- to 30-fold less infectious than are isogenic viruses in which the nef gene is intact. This defect in infectivity causes nef-negative viruses to grow at an attenuated rate in vitro. To investigate the mechanism of Nef-mediated enhancement of viral growth rate and infectivity, a complementation analysis of nef mutant viruses was performed. To provide Nef in trans upon viral infection, a CEM derivative cell line (designated CLN) that expresses Nef under the control of the viral long terminal repeat was constructed. When nef-negative virus was grown in CLN cells, its growth rate was restored to wild-type levels. However, the output of nef-negative virus during the first 72 h after infection of CLN cells was not restored, suggesting that provision of Nef within the newly infected cell does not enhance the productivity of a nef-negative provirus. The genetically nef-negative virions produced by the CLN cells, however, were restored to wild-type levels of infectivity as measured in a syncytium formation assay in which CD4-expressing HeLa cells were targets. These trans-complemented, genetically nef-negative virions yielded wild-type levels of viral output following a single cycle of replication in primary CD4 T cells as well as in parental CEM cells. To define the determinants for producer cell modification of virions by Nef, the role of myristoylation was investigated. Virus that encodes a myristoylation-negative nef was as impaired in infectivity as was virus encoding a deleted nef gene. Because myristoylation is required for both membrane association of Nef and optimal viral infectivity, the possibility that Nef protein is included in the virion was investigated. Wild-type virions were purified by filtration and exclusion chromatography. A Western blot (immunoblot) of the eluate fractions revealed a correlation between peak Nef signal and peak levels of p24 antigen. Although virion-associated Nef was detected in part as the 27-kDa full-length protein, the majority of immunoreactive protein was detected as a 20-kDa isoform. nef-negative virus lacked both 27- and 20-kDa immunoreactive species. Production of wild-type virions in the presence of a specific inhibitor of the human immunodeficiency virus type 1 protease resulted in virions which contained only 27-kDa full-length Nef protein. These data indicate that Nef is a virion protein which is processed by the viral protease into a 20-kDa isoform within the virion particle.  相似文献   

11.
A variety of simian immunodeficiency virus (SIVmac) nef mutants have been investigated to clarify which in vitro Nef functions contribute to efficient viral replication and pathogenicity in rhesus macaques. Most of these nef alleles, however, were only functionally characterized for their ability to down-modulate CD4 and class I major histocompatibility complex (MHC-I) cell surface expression and to enhance SIV replication and infectivity. To obtain information on the in vivo relevance of more recently established Nef functions, we examined the ability of a large panel of constructed SIVmac Nef mutants and of variants that emerged in infected macaques to down-regulate CD3, CD28, and MHC-II and to up-regulate the MHC-II-associated invariant chain (Ii). We found that all these four Nef functions were restored in SIV-infected macaques. In most cases, however, the initial mutations and the changes selected in vivo affected several in vitro Nef functions. For example, truncated Nef proteins that emerged in animals infected with SIVmac239 containing a 152-bp deletion in nef efficiently modulated both CD3 and Ii surface expression. Overall, our results suggest that the effect of Nef on each of the six cellular receptors investigated contributes to viral fitness in the infected host but also indicate that modulation of CD3, MHC-I, MHC-II, or Ii surface expression alone is insufficient for SIV virulence.  相似文献   

12.
Viruses encounter changing selective pressures during transmission between hosts, including host-specific immune responses and potentially varying functional demands on specific proteins. The human immunodeficiency virus type 1 Nef protein performs several functions potentially important for successful infection, including immune escape via down-regulation of class I major histocompatibility complex (MHC-I) and direct enhancement of viral infectivity and replication. Nef is also a major target of the host cytotoxic T-lymphocyte (CTL) response. To examine the impact of changing selective pressures on Nef functions following sexual transmission, we analyzed genetic and functional changes in nef clones from six transmission events. Phylogenetic analyses indicated that the diversity of nef was similar in both sources and acutely infected recipients, the patterns of selection across transmission were variable, and regions of Nef associated with distinct functions evolved similarly in sources and recipients. These results weighed against the selection of specific Nef functions by transmission or during acute infection. Measurement of Nef function provided no evidence that the down-regulation of either CD4 or MHC-I was optimized by transmission or during acute infection, although rare nef clones from sources that were impaired in these activities were not detected in recipients. Nef-specific CTL activity was detected as early as 3 weeks after infection and appeared to be an evolutionary force driving the diversification of nef. Despite the change in selective pressure between the source and recipient immune systems and concomitant genetic diversity, the majority of Nef proteins maintained robust abilities to down-regulate MHC-I and CD4. These data suggest that both functions are important for the successful establishment of infection in a new host.  相似文献   

13.
T Luo  J V Garcia 《Journal of virology》1996,70(9):6493-6496
The nef genes of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) encode a 27- to 34-kDa myristoylated protein which induces downregulation of CD4 surface levels and enhances virus infectivity. In adult macaques, Nef has been implicated in pathogenesis and disease progression. Both HIV-1 SF2 Nef and SIVmac239 Nef have been shown to associate with a cellular serine/threonine kinase. We tested five functional Nef isolates to examine whether this kinase association is a property conserved among different isolates. HIV-1 SF2 and 248 and SIVmac239 Nef proteins were found associated with the kinase. HIV-1 NL4-3 and 233 Nef proteins were found weakly associated or not associated with the kinase. All five Nef isolates efficiently downregulated CD4 cell surface expression, suggesting that the association with this cellular kinase is not required for Nef to downregulate CD4. Comparison of the SF2 and NL4-3 isolates shows a differential ability of Nef to enhance infectivity that suggests a possible correlation between kinase association and enhancement of infectivity.  相似文献   

14.
Point mutations in SIVmac239 Nef disrupting CD4 downmodulation and enhancement of virion infectivity attenuate viral replication in acutely infected rhesus macaques, but changes selected later in infection fully restore Nef function (A. J. Iafrate et al., J. Virol. 74:9836-9844, 2000). To further evaluate the relevance of these Nef functions for viral persistence and disease progression, we analyzed an SIVmac239 Nef mutant containing a deletion of amino acids Q64 to N67 (delta64-67Nef). This mutation inactivates the N-distal AP-2 clathrin adaptor binding element and disrupts the abilities of Nef to downregulate CD4, CD28 and CXCR4 and to stimulate viral replication in vitro. However, it does not impair the downmodulation of CD3 and class I major histocompatibility complex (MHC-I) or MHC-II and the upregulation of the MHC-II-associated invariant chain, and it has only a moderate effect on the enhancement of virion infectivity. Replication of the delta64-67Nef variant in acutely infected macaques was intermediate between grossly nef-deleted and wild-type SIVmac239. Subsequently, three of six macaques developed moderate to high viral loads and developed disease, whereas the remaining animals efficiently controlled SIV replication and showed a more attenuated clinical course of infection. Sequence analysis revealed that the deletion in nef was not repaired in any of these animals. However, some changes that slightly enhanced the ability of Nef to downmodulate CD4 and moderately increased Nef-mediated enhancement of viral replication and infectivity in vitro were observed in macaques developing high viral loads. Our results imply that both the Nef functions that were disrupted by the delta64-67 mutation and the activities that remained intact contribute to viral pathogenicity.  相似文献   

15.
The nef gene of the pathogenic simian immunodeficiency virus (SIV) mac239 clone has been well characterized. Little is known, however, about the function of nef alleles derived from naturally SIVsm-infected sooty mangabeys (Cercocebus atys) and from human immunodeficiency virus type 2 (HIV-2)-infected individuals. Addressing this, we demonstrate that, similarly to the SIVmac239 nef, primary SIVsm and HIV-2 nef alleles down-modulate cell surface expression of human CD4, CD28, CD3, and class I or II major histocompatibility complex (MHC-I or MHC-II, respectively) molecules, up-regulate surface expression of the invariant chain (Ii) associated with immature MHC-II, inhibit early T-cell activation events, and enhance virion infectivity. Both also stimulate viral replication, although HIV-2 nef alleles were less active in this assay than SIVsm nef alleles. Mutational analysis showed that a dileucine-based sorting motif in the C-proximal loop of SIV or HIV-2 Nef is critical for its effects on CD4, CD28, and Ii but dispensable for down-regulation of CD3, MHC-I, and MHC-II. The C terminus of SIV and HIV-2 Nef was exclusively required for down-modulation of MHC-I, further demonstrating that analogous functions are mediated by different domains in Nef proteins derived from different groups of primate lentiviruses. Our results demonstrate that none of the eight Nef functions investigated had been newly acquired after cross-species transmission of SIVsm from naturally infected mangabeys to humans or macaques. Notably, HIV-2 and SIVsm nef alleles efficiently down-modulate CD3 and C28 surface expression and inhibit T-cell activation more efficiently than HIV-1 nef alleles. These differences in Nef function might contribute to the relatively low levels of immune activation observed in HIV-2-infected human individuals.  相似文献   

16.
Three viral proteins participate in the down-modulation of CD4 in human immunodeficiency virus type 1 (HIV-1)-infected cells. The underlying mechanisms have been extensively investigated. However, the physiological relevance of this phenomenon remains poorly understood. To address the role of CD4 down-modulation in HIV-1 pathogenesis in vivo, we have characterized the functional properties of nef alleles isolated from seven HIV-1-infected patients at either the stage of AIDS (late alleles) or during the asymptomatic phase of infection (early alleles). HIV-1 variants carrying these nef alleles showed striking differences in CD4 down-modulation, virus infectivity, and replication properties. Infection of T cells with late strains resulted in production of viral particles with enhanced infectivity, as compared with variants carrying early nef alleles. These differences in infectivity were observed only when viruses were produced in cells with high levels of the viral receptor, suggesting a functional link between CD4 levels and the ability of Nef to down-modulate CD4 and to enhance viral infectivity. Similarly, late nef alleles were substantially more active than early nef genes in stimulating HIV-1 replication in high CD4-positive cells, including primary lymphocytes, but not in cells expressing low levels of the CD4 receptor. Single-round assays showed that differences in infectivity between late and early strains are largely reduced when evaluated in target cells with high levels of CD4, suggesting that the inhibitory effect occurs at the entry step. Supporting this, enhanced CD4 down-modulation by late nef alleles was associated with higher levels of envelope incorporation into viral particles, a phenomenon that likely accounted for the augmented infectivity. Our data suggest a mechanistic link between the Nef-mediated CD4 down-modulation and the enhancement of replication in CD4-positive lymphocytes. As progression to disease occurs, HIV-1 Nef variants with enhanced ability to down-modulate CD4 are selected. These strains efficiently overcome the deleterious effects of CD4 and replicate more aggressively in CD4-positive primary lymphocytes. These results highlight the importance of the virus-induced CD4 down-modulation in HIV-1 pathogenesis.  相似文献   

17.
The nef gene of the pathogenic simian immunodeficiency virus (SIV) 239 clone was replaced with primary human immunodeficiency virus type 1 (HIV-1) nef alleles to investigate whether HIV-1 Nef can substitute for SIV Nef in vivo. Initially, two rhesus macaques were infected with the chimeric viruses (Nef-SHIVs). Most of the nef alleles obtained from both animals predicted intact open reading frames. Furthermore, forms containing upstream nucleotide substitutions that enhanced expression of the inserted gene became predominant. One animal maintained high viral loads and slowly progressed to immunodeficiency. nef long terminal repeat sequences amplified from this animal were used to generate a second generation of Nef-SHIVs. Two macaques, which were subsequently infected with a mixture of cloned chimeric viruses, showed high viral loads and progressed to fatal immunodeficiency. Five macaques received a single molecular clone, named SHIV-40K6. The SHIV-40K6 nef allele was active in CD4 and class I major histocompatibility complex downregulation and enhanced viral infectivity and replication. Notably, all of the macaques inoculated with SHIV-40K6 showed high levels of viral replication early in infection. During later stages, however, the course of infection was variable. Three animals maintained high viral loads and developed immunodeficiency. Of the remaining two macaques, which showed decreasing viral loads after the acute phase of infection, only one efficiently controlled viral replication and remained asymptomatic during 1.5 years of follow-up. The other animal showed an increasing viral load and developed signs of progressive infection during later stages. Our data demonstrate that HIV-1 nef can, to a large extent, functionally replace SIVmac nef in vivo.  相似文献   

18.
It has been reported that patients infected with nef-defective human immunodeficiency virus type 1 (HIV-1) do not progress to AIDS; however, mutations that abrogate Nef expression are not common in long-term nonprogressors (LTNPs). We postulated that Nef function might be impaired in LTNPs, irrespective of the presence or absence of detectable amino acid sequence anomalies. To challenge this hypothesis we compared in vitro function of nef alleles that were derived from three groups of Japanese patients: LTNPs, progressors, and asymptomatic carriers (ACs). The patient-derived nef alleles were subcloned into a nef-defective infectious HIV-1 molecular clone and an expression vector. We first examined Nef-dependent enhancement of infection in a single-round infectivity assay by the use of MAGNEF cells, in which Nef is required more strictly for the infection than in the parent MAGI cells. All nef alleles from LTNPs showed reduced enhancement in the infectivity of nef-defective HIV-1 mutants compared to the nef alleles of progressors or ACs. Second, we found that nef alleles from LTNPs were less efficient in CD4 downregulation than those of progressors or ACs. Third, all nef alleles from LTNPs, progressors, and ACs reduced the cell surface expression of major histocompatibility complex class I to a similar level. Last, there was no correlation between Hck-binding activity of Nef and clinical grouping. In conclusion, we detected inefficient enhancement of HIV-1 infectivity and CD4 downregulation by HIV-1 nef alleles of LTNPs. It awaits further study to conclude that these characteristics of nef alleles are the cause or the consequence of the long-term nonprogression after HIV-1 infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号