首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of dietary copper deficiency in rats on respiratory enzymes of isolated rat liver mitochondria have been studied. After 2 weeks of Cu-depletion, cytochrome c oxidase (EC 1.9.3.1) activity had declined by 42% and between 4 and 8 weeks exhibited between 20 and 25% of the activity of control mitochondria. Activities of NADH cytochrome c reductase (EC 1.6.99.3) and succinate cytochrome c reductase (EC 1.3.99.1), were unaffected initially but declined by 32 and 46%, respectively, after 8 weeks of Cu-depletion. After 4 weeks there was a significant (34%) decline in succinate supported state 3 respiration with only a modest (18%) decline in state 4 respiration. The ADP:O ratio was unaffected by Cu-depletion after 6 and 8 weeks of dietary Cu-restriction. State 3 respiration was significantly reduced after 6 weeks when glutamate/malate or beta-hydroxybutyrate were used as substrates, whereas state 4 respiration and ADP:O ratios were unaffected. The fall in state 3 respiration was of sufficient magnitude at 8 weeks to cause a significant decline in the respiratory control ratio with all substrates. Comparisons between the relative activities of cytochrome c oxidase and reductase activities in Cu-deficient preparations, the relatively specific effect of the deficiency on state 3 respiration with all substrates tested and the ability to increase significantly oxygen consumption in excess of maximal state 3 respiration by the uncoupler 2,4-dinitrophenol suggest that the defect in Cu-deficient mitochondria cannot be attributed solely to the decreased activity of cytochrome c oxidase.  相似文献   

2.
We investigated the kinetics of the mitochondrial respiratory chain, proton leak, and phosphorylating subsystems of liver mitochondria from mannoheptulose-treated and control rats. Mannoheptulose treatment raises glucagon and lowers insulin; it had no effect on the kinetics of the mitochondrial proton leak or phosphorylating subsystems, but the respiratory chain from succinate to oxygen was stimulated. Previous attempts to detect any stimulation of cytochrome c oxidase by glucagon are shown by flux control analysis to have used inappropriate assay conditions. To investigate the site of stimulation of the respiratory chain we measured the relationship between the thermodynamic driving force and respiration rate for the span succinate to coenzyme Q, the cytochrome bc1 complex and cytochrome c oxidase. Hormone treatment of rats altered the kinetics of electron transport from succinate to coenzyme Q in subsequently isolated mitochondria and activated succinate dehydrogenase. The kinetics of electron transport through the cytochrome bc1 complex were not affected. Effects on cytochrome c oxidase were small or nonexistent.  相似文献   

3.
Purified cytochrome c oxidase was reconstituted into phospholipid vesicles having high internal pH buffering capacity. In the presence of valinomycin, 2 K+ ions were taken up by the vesicles per electron transferred from cytochrome c to oxygen. The charge stoichiometry of 2 was obtained from simultaneous measurement of changes of K+, H+, and oxygen in the medium after addition of the reductant ascorbate/TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine). The changes in oxygen concentration were measured with a fast responding oxygen electrode (90% response time, 0.4 s). The existence of a proton pump in cytochrome c oxidase could thus be confirmed, and its charge stoichiometry measured, in a reconstituted system uncomplicated by other respiratory chain components.  相似文献   

4.
The degree of involvement of cyanide-resistant alternative oxidase in the respiration of Yarrowia lipolytica mitochondria was evaluated by comparing the rate of oxygen consumption in the presence of cyanide, which shows the activity of the cyanide-resistant alternative oxidase, and the oxidation rate of cytochrome c by ferricyanide, which shows the activity of the main cytochrome pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was associated with oxygen consumption due to the functioning of the alternative oxidase. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation) completely inhibited oxygen consumption by the mitochondria. Under these conditions, the inhibition of the alternative oxidase by benzohydroxamic acid (BHA) failed to affect the reduction of ferricyanide at the level of cytochrome c. BHA did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These data indicate that the alternative system is unable to compete with the cytochrome respiratory chain for electrons. The alternative oxidase only transfers the electrons that are superfluous for the cytochrome respiratory chain.  相似文献   

5.
In unfertilized eggs of the sea urchin, the quite low respiratory rate is enhanced by tetramethyl- p -phenylenediamine (TMPD), phenazine methosulfate (PMS) and sperm and this augmentation is completely inhibited by carbon monoxide (CO). Exposure to light releases eggs from this CO-mediated inhibition. The action spectra for photoreactivation of CO-inhibited cytochrome c oxidase in isolated mitochondria and CO-blocked respiration in TMPD-treated eggs were found to be similar to the absorption spectrum of CO-bound cytochrome aa 3. In PMS-treated eggs and fertilized eggs, the maximum photoreactivation of CO-inhibited respiration occurred at a light fluence rate higher than that for maximum photoreactivation of CO-inhibited respiration in TMPD-treated eggs, with peaks at the same wavelengths as those in the absorption spectrum of reduced cytochrome b. A similar phenomenon was seen for NADH cytochrome c reductase in mitochondria. Thus, cytochrome c oxidase and NADH cytochrome c reductase, whose activities are not altered by fertilization, seem to be functional, even in unfertilized eggs. In unfertilized eggs, difference spectra indicated that PMS and sperm augmented cytochrome b reduction and that TMPD accelerated cytochrome c reduction without cytochrome b reduction. Therefore, it is likely that depression of electron transport to cytochrome b , which is augmented by PMS and sperm, is responsible for the low respiratory rate in unfertilized eggs.  相似文献   

6.
Male Sprague-Dawley rats were pair-fed a liquid diet containing 36% of calories as ethanol for at least 31 days. Mitochondria were isolated from the livers and assayed for state 3, state 4 and uncoupled respiration at all three coupling sites. Assay conditions were established that maximized state 3 respiration with each substrate while maintaining a high respiratory control ratio. In mitochondria from ethanol-fed animals, state 3 respiratory rates were decreased at all three coupling sites. The decreased state 3 rate observed at site III was still significantly higher than the state 3 rates observed at site II in mitochondria from either ethanol-fed or control animals. Moreover, the maximal (FCCP-uncoupled) rates with succinate and alpha-ketoglutarate were the same in mitochondria from ethanol-fed and control animals, whereas with glutamate-malate as substrate it was lowered 23% by chronic ethanol consumption. To investigate the role of cytochrome oxidase in modulating the respiratory rate with site I and site II substrates, the effects of cyanide on state 3 and FCCP-uncoupled respiration were determined. When the mitochondria were uncoupled there was no decrease in the rate of succinate oxidation until the rates of ascorbate and succinate oxidation became equivalent. Conversely, parallel inhibition of ascorbate, succinate and glutamate-malate state 3 respiratory rates were observed at all concentrations (1-50 microM) of cyanide utilized. These observations suggest strongly that in coupled mitochondria ethanol-elicited decreases in cytochrome oxidase activity depress the state 3 respiratory rates with site I and II substrates.  相似文献   

7.
1. Beef heart mitochondria have a cytochrome c1:c:aa3 ratio of 0.65:1.0:1.0 as isolated; Keilin-Hartree submitochondrial particles ahve a ratio of 0.65:0.4:1.0. More than 50% of the submitochondrial particle membrane is in the 'inverted' configuration, shielding the catalytically active cytochrome c. The 'endogenous' cytochrome c of particles turns over at a maximal rate between 450 and 550 s-1 during the oxidation of succinate or ascorbate plus TMPD; the maximal turnover rate for cytochrome c in mitochondria is 300-400 s-1, at 28 degrees-30 degrees C, pH 7.4. 2. Ascorbate plus N,N,N',N'-tetramethyl-p-phenylene diamine added to antimycin-treated particles induces anomalous absorption increases between 555 and 565 nm during the aerobic steady state, which disappear upon anaerobiosis; succinate addition abolishes this cycle and permits the partial resolution of cytochrome c1 and cytochrome c steady states at 552.5-547 nm and 550-556.5 nm, respectively. 3. Cytochrome c1 is rather more reduced than cytochrome c during the oxidation of succinate and of ascorbate + N,N,N',N'-tetramethyl-p-phenylene diamine in both mitochondria and submitochondrial particles; a near equilibrium condition exists between cytochromes c1 and c in the aerobic steady state, with a rate constant for the c1 leads to c reduction step greater than 10(3) s-1. 4. The greater apparent response of the c/aa3 electron transfer step to salts, the hyperbolic inhibition of succinate oxidation by azide and cyanide, and the kinetic behaviour of the succinate-cytochrome c reductase system, are all explicable in terms of a near-equilibrium condition prevailing at the c1/c step. Endogenous cytochrome c of mitochondria and submitochondrial particles is apparently largely bound to cytochrome aa3 units in situ. Cytochrome c1 can either reduce the cytochrome c-cytochrome aa3 complex directly, or requires only a small extra amount of cytochrome c to carry the full electron transfer flux.  相似文献   

8.
The nature of the cyanide-resistant respiration of Taenia crassiceps metacestode was studied. Mitochondrial respiration with NADH as substrate was partially inhibited by rotenone, cyanide and antimycin in decreasing order of effectiveness. In contrast, respiration with succinate or ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was more sensitive to antimycin and cyanide. The saturation kinetics for O2 with NADH as substrate showed two components, which exhibited different oxygen affinities. The high-O2-affinity system (Km app=1.5 microM) was abolished by low cyanide concentration; it corresponded to cytochrome aa3. The low-O2-affinity system (Km app=120 microM) was resistant to cyanide. Similar O2 saturation kinetics, using succinate or ascorbate-TMPD as electron donor, showed only the high-O2-affinity cyanide-sensitive component. Horse cytochrome c increased 2-3 times the rate of electron flow across the cyanide-sensitive pathway and the contribution of the cyanide-resistant route became negligible. Mitochondrial NADH respiration produced significant amounts of H2O2 (at least 10% of the total O2 uptake). Bovine catalase and horse heart cytochrome c prevented the production and/or accumulation of H2O2. Production of H2O2 by endogenous respiration was detected in whole cysticerci using rhodamine as fluorescent sensor. Thus, the CN-resistant and low-O2-affinity respiration results mainly from a spurious reaction of the respiratory complex I with O2, producing H2O2. The meaning of this reaction in the microaerobic habitat of the parasite is discussed.  相似文献   

9.
The respiratory system of the fastidious beta-proteobacterium Eikenella corrodens grown with limited oxygen was studied. Membranes showed the highest oxidase activity with ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) or succinate and the lowest activity with NADH and formate. The presence of a bc1-type complex was suggested by the inhibition exerted by 2-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), myxothiazol, and antimycin A on respiration with succinate and by the effect of the latter two inhibitors on the succinate-reduced difference spectra. Respiration with succinate or ascorbate-TMPD was abolished by low KCN concentrations, suggesting the presence of a KCN-sensitive terminal oxidase. Cytochromes b and c were spectroscopically detected after reduction with physiological or artificial electron donors, whereas type a and d cytochromes were not detected. The CO difference spectrum of membranes reduced by dithionite and its photodissociation spectrum (77 K) suggested the presence of a single CO compound that had the spectral features of a cytochrome o-like pigment. High-pressure liquid chromatography analysis of membrane haems confirmed the presence of haem B; in contrast, haems A and O were not detected. Peroxidase staining of membrane type c cytochromes using SDS-PAGE revealed the presence of five bands with apparent molecular masses of 44, 33, 30, 26, and 14 kDa. Based on our results, a tentative scheme of the respiratory chain in E. corrodens, comprising (i) dehydrogenases for succinate, NADH, and formate, (ii) a ubiquinone, (iii) a cytochrome bc1, and (iv) a type-cbb' cytochrome c oxidase, is proposed.  相似文献   

10.
Ceramide interaction with the respiratory chain of heart mitochondria   总被引:15,自引:0,他引:15  
Di Paola M  Cocco T  Lorusso M 《Biochemistry》2000,39(22):6660-6668
A study is presented on the interaction of ceramide with the respiratory chain of rat heart mitochondria, and a comparison is made between the effects elicited by short- and long-chain ceramides. N-Acetylsphingosine (C(2)-ceramide) and N-palmitoylsphingosine (C(16)-ceramide) inhibited to the same extent the pyruvate+malate-dependent oxygen consumption. Succinate-supported respiration was also inhibited by ceramides, but this activity was substantially restored upon the addition of cytochrome c, which, on the contrary, was ineffective toward the ceramide-inhibited NADH-linked substrate oxidation. Direct measurements showed that short- and long-chain ceramides caused a large release of cytochrome c from mitochondria. The ceramide-dependent inhibition of pyruvate+malate and succinate oxidation caused reactive oxygen species to be produced at the level of either complex I or complex III. The activity of the cytochrome c oxidase, measured as ascorbate/TMPD oxidase activity, was significantly stimulated and inhibited by C(2)- and C(16)-ceramide, respectively. Similar effects were observed on the activity of the individual respiratory complexes isolated from bovine heart. Short- and long-chain ceramides had definitely different effects on the mitochondrial membrane potential. C(2)-ceramide caused an almost complete collapse of the respiration-dependent membrane potential, whereas C(16)-ceramide had a negligible effect. Similar results were obtained when the potential was generated in liposome-reconstituted complex III respiring at the steady-state. Furthermore, C(2)-ceramide caused a drop of the membrane potential generated by ATP hydrolysis instead of respiration, whereas C(16)-ceramide did not. Finally, only short-chain ceramides inhibited markedly the reactive oxygen species generation associated with membrane potential-dependent reverse electron flow from succinate to complex I. The emerging indication is that the short-chain ceramide-dependent collapse of membrane potential is a consequence of their ability to perturb the membrane structure, leading to an unspecific increase of its permeability.  相似文献   

11.
Effect of methotrexate (MTX) on mitochondrial oxygen uptake, oxidative phosphorylation and on the activity of several enzymes linked to respiratory chain was studied. MTX was able to inhibit state III respiration activated by ADP and to decrease the respiratory coefficient with the substrates alpha-ketoglutarate and glutamate; these effects became pronounced when mitochondria were pre-incubated with MTX for 10 min. No effect was observed on ATPase activity of undamaged or broken mitochondria; the same was true for NADH-oxidase, NADH-dehydrogenase, NADH-cytochrome c reductase, succinate oxidase, and cytochrome c oxidase activity. The effect on the steady-state of cytochrome b, as well as, the inhibitory effect on state III of respiration with NAD+-linked substrates, offers a reasonable possibility to suggesting that the inhibition site of MTX could be in a place anterior to cytochrome b region, and not linked to respiratory chain.  相似文献   

12.
The half-time for oxidation of cytochrome b(557) in mitochondria from etiolated mung bean (Phaseolus aureus) hypocotyls is 5.8 milliseconds at 24 Celsius in the absence or presence of 0.3 mm KCN, when the oxidation is carried out by injecting a small amount of oxygenated medium into a suspension of mitochondria made anaerobic in the presence of succinate plus malonate. Since oxygen is consumed by the alternate, cyanide-insensitive respiratory pathway of these mitochondria, cycles of oxidation and reduction can be obtained with the oxygen pulses when cyanide is present. Reduced cytochromes (a + a(3)) also become oxidized at nearly the uninhibited rate under these conditions, a(3) completely and a partially. The half-time for oxidation of c(547) is also unaffected by 0.3 mm KCN, but c(549) has a half-time equal to that of c(547) in the presence of KCN, compared to the shorter one observed in the absence of inhibitor. The maximum extent of oxidation of the cytochromes c is about 70% in the presence of 0.3 mm KCN; this oxidation is rapidly followed by an extensive reduction which is synchronous with the reduction of cytochrome a observed under the same conditions. In the presence of cyanide, it appears likely that the cytochromes c and b(557) are oxidized by cytochrome oxidase in oxygen pulse experiments, rather than by the alternate oxidase. The oxidation of cytochrome b(553) is partially inhibited by KCN, but complete oxidation is attained in the aerobic steady state with excess oxygen. If the oxygen pulse experiment is carried out in the presence of sufficient malonate so that entry of reducing equivalents into the respiratory chain occurs at a rate negligible compared to inter-carrier electron transport, the half-time for flavoprotein oxidation is unaffected by 0.3 mm KCN while that for ubiquinone oxidation is but 2-fold larger. The observed net oxidation rate of these two carriers in mung bean mitochondria is more sensitive to the entry rate of reducing equivalents, as set by succinate concentration and malonate to succinate ratio, then it is in skunk cabbage (Symplocarpus foetidus) mitochondria. These observations are interpreted in terms of a respiratory carrier Y, placed between flavoprotein plus ubiquinone and the cytochromes, which is the fork in the split respiratory pathway to the two terminal oxidases and which has lower electron transport capacity in mung bean mitochondria than in skunk cabbage mitochondria.  相似文献   

13.
In Acanthamoeba castellanii mitochondria, the apparent affinity values of alternative oxidase for oxygen were much lower than those for cytochrome c oxidase. For unstimulated alternative oxidase, the K(Mox) values were around 4-5 microM both in mitochondria oxidizing 1 mM external NADH or 10 mM succinate. For alternative oxidase fully stimulated by 1 mM GMP, the KK(Mox) values were markedly different when compared to those in the absence of GMP and they varied when different respiratory substrates were oxidized (K(Mox) was around 1.2 microM for succinate and around 11 microM for NADH). Thus, with succinate as a reducing substrate, the activation of alternative oxidase (with GMP) resulted in the oxidation of the ubiquinone pool, and a corresponding decrease in K(Mox). However, when external NADH was oxidized, the ubiquinone pool was further reduced (albeit slightly) with alternative oxidase activation, and the K(Mox) increased dramatically. Thus, the apparent affinity of alternative oxidase for oxygen decreased when the ubiquinone reduction level increased either by changing the activator or the respiratory substrate availability.  相似文献   

14.
During early development of the sea urchin, the respiratory rate, enhanced upon fertilization, is maintained up to hatching (pre-hatching period) and then gradually increases to a maximum at the gastrula stage (post-gastrula period). Except for a short duration after fertilization, respiration in embryos is strongly inhibited by CN and antimycin A. During the whole span of early development, the amounts of proteins, cytochromes and the specific activities of cytochrome c oxidase and reduced nicotinamide adenine dinucleotide (NADH) cytochrome c reductase in mitochondria are practically the same as in unfertilized eggs. A marked augmentation of mitochondrial respiration after hatching probably occurs without net increase in whole mitochondrial intrinsic capacities. Carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) or tetramethyl p-phenylenediamine (TMPD) enhances the respiratory rate in the pre-hatching period but hardly augments the respiration in the post-gastrula period. In the presence of both FCCP and TMPD, the respiratory rate in the pre-hatching period was as high as in the post-gastrula period. Probably, electron transport in the mitochondrial respiratory chain is regulated by acceptor control and limitation of cytochrome c reduction in the pre-hatching period and released from those regulations in the post-gastrula period. Acceptor control of respiration is experimentally reproduced in isolated mitochondria by making adenine nucleotide levels as those levels in the pre-hatching period.  相似文献   

15.
Beffa, T., Pezet, R. and Turian, G. 1987. Multiple-site inhibition by colloidal elemental sulfur (S°) of respiration by mitochondria from young dormant α spores of Phomopsis viticola. Mitochondria from young dormant α spores of Phomopsis viticola Sacc. (ATCC 44940) were isolated by grinding and differential centrifugation. They presented a good integrity of their inner and outer membranes as measured by biochemical assays. Electron microscopic analysis revealed an homogenous population. The highest respiratory activities were observed with NADH and ascorbate + tetra-methyl-p-phenylenediamine (TMPD). Malate stimulated the oxidation of pyruvate, citrate or α-ketoglutarate. The coupling of respiration to oxidative phosphorylation appeared at the time of spore germination. The respiratory activities of mitochondria isolated from young dormant α spores of P. viticola were strongly inhibited by S°. The sensitivity of mitochondrial oxidation of different substrates (NADH, pyruvate + malate, succinate and ascorbate + TMPD) to S° was heterogenous and indicated multiple-site action. Thus preincubation of mitochondria with 30 μM S° before addition of substrates fully prevented NADH oxidation (>98%), and strongly inhibited oxidation of pyruvate + malate (85%), succinate (60%) and ascorbate + TMPD (74%). S° inhibited more rapidly the oxidation of succinate than that of other substrates. In the presence of dithiothreitol (DTT), S°-inhibited oxidation of all substrates (except ascorbate + TMPD) could only be transiently and weakly reestablished. The inhibitory action of S° on the oxidation of NADH, pyruvate + malate and succinate was higher than that observed with sulfhydryl group reagents such as mersalyl, Hg-acetate or p - chloromercuribenzoate. In contrast to S° these SH-group reagents could not inhibit oxidation of ascorbate + TMPD. S°, by its dual capacity to oxidize the SH-groups and to self-reduce, probably at the level of cytochrome c oxidase, could produce a modification of the oxidation state of the respiratory complexes thereby disturbing the electron flux.  相似文献   

16.
The oxidase cho of Methylobacillus flagellatus KT was purified to homogeneity by nondenaturing gel electrophoresis, and the kinetic properties and substrate specificity of the enzyme were studied. Ascorbate and ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) were oxidized by cbo with a pH optimum of 8.3. When TMPD served as electron donor for the oxidase cho, the optimal pH (7.0 to 7.6) was determined from the difference between respiration rates in the presence of ascorbate/TMPD and of only ascorbate. The kinetic constants, determined at pH 7.0, were as follows: oxidation by the enzyme of reduced TMPD at pH 7.0 was characterized by KM = 0.86 mM and Vmax = 1.1 mumol O2/(min mg protein), and oxidation of reduced cytochrome c from horse heart was characterized by KM = 0.09 mM and Vmax = 0.9 mumol O2/(min mg protein) Cyanide inhibited ascorbate/TMPD oxidase activity (Ki = 4.5-5.0 microM). The soluble cytochrome cH (12 kDa) partially purified from M. flagellatus KT was found to serve as the natural electron donor for the oxidase cbo.  相似文献   

17.
The activity of the cyanide-resistant alternative oxidase (pathway) of Y. lipolytica mitochondria was studied as a function of the activity of the major, cyanide-sensitive, cytochrome pathway. The contribution of the alternative oxidase to the total respiration of mitochondria was evaluated by measuring the rate of oxygen consumption in the presence of cyanide (an inhibitor of the cytochrome pathway). The potential activity of the cytochrome pathway was evaluated spectrophotometrically, by measuring the oxidation rate of cytochrome c by ferricyanide, which accepts electrons from complex III (cytochrome c) of this pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was accompanied by oxygen consumption due to the transfer of electrons through the alternative pathway. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation in the cytochrome pathway) completely inhibited the consumption of oxygen by the mitochondria. Under these conditions, the inhibition of the alternative pathway by benzohydroxamic acid failed to affect the transfer of electrons from cytochrome c to ferricyanide. Benzohydroxamic acid did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These findings indicate that the alternative pathway is unable to compete with the cytochrome respiratory chain for electrons. The alternative pathway transfers only electrons that are superfluous for the cytochrome chain.  相似文献   

18.
Male Sprague-Dawley rats were pair-fed a liquid diet containing 36% of calories as ethanol for at least 31 days. Mitochondria were isolated from the livers and assayed for state 3, state 4 and uncoupled respiration at all three coupling sites. Assay conditions were established that maximized state 3 respiration with each substrate while maintaining a high respiratory control ratio. In mitochondria from ethanol-fed animals, state 3 respiratory rates were decreased at all three coupling sites. The decreased state 3 rate observed at site III was still significantly higher than the state 3 rates observed at site II in mitochondria from either ethanol-fed or control animals. Moreover, the maximal (FCCP-uncoupled) rates with succinate and -ketoglutarate were the same in mitochondria from ethanol-fed and control animals, whereas with glutamate-malate as substrate it was lowered 23% by chronic ethanol consumption. To investigate the role of cytochrome oxidase in modulating the respiratory rate with site I and site II substrates, the effects of cyanide on state 3 and FCCP-uncoupled respiration were determined. When the mitochondria were uncoupled there was no decrease in the rate of succinate oxidation until the rates of ascorbate and succinate oxidation became equivalent. Conversely, parallel inhibition of ascorbate, succinate and glutamate-malate state 3 respiratory rates were observed at all concentrations (1–50 μM) of cyanide utilized. These observations suggest strongly that in coupled mitochondria ethanol-elicited decreases in cytochrome oxidase activity depress the state 3 respiratory rates with site I and II substrates.  相似文献   

19.
In media of low ionic strength, membraneous cytochrome c oxidase, isolated cytochrome c oxidase, and proteoliposomal cytochrome c oxidase each bind cytochrome c at two sites, one of low affinity (1 microM greater than Kd' greater than 0.2 microM) and readily reversible and the other of high affinity (0.01 microM greater than Kd) and weakly reversible. When cytochrome c occupies both sites, including the low affinity site, the maximal turnover measured polarographically with ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) is independent of TMPD concentration, and lies between 250 and 400 s-1 (30 degrees C, pH 7.4) for fully activated systems. The apparent affinity of the enzyme for cytochrome c is, however, TMPD dependent. When cytochrome c occupies only the high-affinity site, the maximal turnover is closely dependent upon the concentration of TMPD, which, unlike ascorbate, can reduce bound cytochrome c. As TMPD concentration is increased, the maximal turnover approaches that seen when both sites as occupied. The lower activity of isolated cytochrome aa3 is due to the presence of inactive or inaccessible enzyme molecules. Incorporation of isolated enzyme into phospholipid vesicles restores full activity to all the subsequently accessible cytochrome aa3 molecules. Negatively charged (asolectin) vesicles show a higher cytochrome c affinity at the low-affinity sites than do the other enzyme preparations. A model for the cytochrome c-cytochrome aa3 complexes is put forward in which both sites, when occupied, are fully catalytically competent, but in which occupation of the "tight" site by a catalytically functional cytochrome c molecule is required for overall oxidation of cytochrome c via the "loose" site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号