首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Two classes of fluconazole derivatives, (a) carboxylic acid esters and (b) fatty alcohol and carbohydrate phosphate esters, were synthesized and evaluated in vitro against Cryptococcus neoformans, Candida albicans, and Aspergillus niger. All carboxylic acid ester derivatives of fluconazole (1a-l), such as O-2-bromooctanoylfluconazole (1g, MIC=111 microg/mL) and O-11-bromoundecanoylfluconazole (1j, MIC=198 microg/mL), exhibited higher antifungal activity than fluconazole (MIC > or = 4444 microg/mL) against C. albicans ATCC 14053 in SDB medium. Several fatty alcohol phosphate triester derivatives of fluconazole, such as 2a, 2b, 2f, 2g, and 2h, exhibited enhanced antifungal activities against C. albicans and/or A. niger compared to fluconazole in SDB medium. For example, 2-cyanoethyl-omega-undecylenyl fluconazole phosphate (2b) with MIC value of 122 microg/mL had at least 36 times greater antifungal activity than fluconazole against C. albicans in SDB medium. Methyl-undecanyl fluconazole phosphate (2f) with a MIC value of 190 microg/mL was at least 3-fold more potent than fluconazole against A. niger ATCC 16404. All compounds had higher estimated lipophilicity and dermal permeability than those for fluconazole. These results demonstrate the potential of these antifungal agents for further development as sustained-release topical antifungal chemotherapeutic agents.  相似文献   

2.
The aim of this study was to investigate olanzapine (OZ) systemic absolute bioavailability after intranasal (i.n.) administration in vivo to conscious rabbits. Furthermore, the study investigated the potential use of chitosan nanoparticles as a delivery system to enhance the systemic bioavailability of olanzapine following intranasal administration. Olanzapine-loaded chitosan nanoparticles were prepared through ionotropic gelation of chitosan with tripolyphosphate anions and studied in terms of their size, drug loading, and in vitro release. The OZ nanoparticles were administered i.n. to rabbits, and OZ plasma concentration at predetermined time points was compared to i.n. administration of OZ in solution. The concentrations of OZ in plasma were analyzed by ultra performance liquid chromatography mass spectroscopy (UPLC/MS). OZ-loaded chitosan nanoparticles significantly (p < 0.05) enhanced systemic absorption with 51 ± 11.2% absolute bioavailability as compared to 28 ± 6.7% after i.n. administration of OZ solution. The results of the present study suggest that intranasal administration of OZ-loaded chitosan nanoparticles formulation could be an attractive modality for delivery of OZ systemically.KEY WORDS: bioavailability, intranasal, nanoparticles, olanzapine, pharmacokinetic  相似文献   

3.
Preparation and antibacterial activity of chitosan nanoparticles   总被引:17,自引:0,他引:17  
Qi L  Xu Z  Jiang X  Hu C  Zou X 《Carbohydrate research》2004,339(16):2693-2700
Chitosan nanoparticles, such as those prepared in this study, may exhibit potential antibacterial activity as their unique character. The purpose of this study was to evaluate the in vitro antibacterial activity of chitosan nanoparticles and copper-loaded nanoparticles against various microorganisms. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. Copper ions were adsorbed onto the chitosan nanoparticles mainly by ion-exchange resins and surface chelation to form copper-loaded nanoparticles. The physicochemical properties of the nanoparticles were determined by size and zeta potential analysis, atomic force microscopy (AFM), FTIR analysis, and XRD pattern. The antibacterial activity of chitosan nanoparticles and copper-loaded nanoparticles against E. coli, S. choleraesuis, S. typhimurium, and S. aureus was evaluated by calculation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results show that chitosan nanoparticles and copper-loaded nanoparticles could inhibit the growth of various bacteria tested. Their MIC values were less than 0.25 microg/mL, and the MBC values of nanoparticles reached 1 microg/mL. AFM revealed that the exposure of S. choleraesuis to the chitosan nanoparticles led to the disruption of cell membranes and the leakage of cytoplasm.  相似文献   

4.
Chitosan (CS) nanoparticles have been extensively studied for siRNA delivery; however, their stability and efficacy are highly dependent on the types of cross-linker used. To address this issue, three common cross-linkers; tripolyphosphate (TPP), dextran sulphate (DS) and poly-D-glutamic acid (PGA) were used to prepare siRNA loaded CS-TPP/DS/PGA nanoparticles by ionic gelation method. The resulting nanoparticles were compared with regard to their physicochemical properties including particle size, zeta potential, morphology, binding and encapsulation efficiencies. Among all the formulations prepared with different cross linkers, CS-TPP-siRNA had the smallest particle size (ranged from 127 ± 9.7 to 455 ± 12.9 nm) with zeta potential ranged from +25.1 ± 1.5 to +39.4 ± 0.5 mV, and high entrapment (>95%) and binding efficiencies. Similarly, CS-TPP nanoparticles showed better siRNA protection during storage at 4˚C and as determined by serum protection assay. TEM micrographs revealed the assorted morphology of CS-TPP-siRNA nanoparticles in contrast to irregular morphology displayed by CS-DS-siRNA and CS-PGA-siRNA nanoparticles. All siRNA loaded CS-TPP/DS/PGA nanoparticles showed initial burst release followed by sustained release of siRNA. Moreover, all the formulations showed low and concentration-dependent cytotoxicity with human colorectal cancer cells (DLD-1), in vitro. The cellular uptake studies with CS-TPP-siRNA nanoparticles showed successful delivery of siRNA within cytoplasm of DLD-1 cells. The results demonstrate that ionically cross-linked CS-TPP nanoparticles are biocompatible non-viral gene delivery system and generate a solid ground for further optimization studies, for example with regard to steric stabilization and targeting.  相似文献   

5.
Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values 125.0 µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 µg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 µg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity.  相似文献   

6.
Two series of new chitosan derivatives were synthesized by reaction of deacetylated chitosan (CH) with propyl (CH-Propyl) and pentyl (CH-Pentyl) trimethylammonium bromides to obtain derivatives with increasing degrees of substitution (DS). The derivatives were characterized by 1H NMR and potentiometric titration techniques and their antifungal activities on the mycelial growth of Aspergillus flavus were investigated in vitro. The antifungal activities increase with DS and the more substituted derivatives of both series, CH-Propyl and CH-Pentyl, exhibited antifungal activities respectively three and six times higher than those obtained with commercial and deacetylated chitosan. The minimum inhibitory concentrations (MIC) were evaluated at 24, 48 and 72 h by varying the polymer concentration from 0.5 to 16 g/L and the results showed that the quaternary derivatives inhibited the fungus growth at polymer concentrations four times lower than that obtained with deacetylated chitosan (CH). The chitosans modified with pentyltrimethylammonium bromide exhibited higher activity and results are discussed taking into account the degree of substitution (DS).  相似文献   

7.
Five water-soluble chitosan derivatives were carried out by quaternizing either iodomethane or N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (Quat188) as a quaternizing agent under basic condition. The degree of quaternization (DQ) ranged between 28 ± 2% and 90 ± 2%. The antifungal activity was evaluated by using disc diffusion method, minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) methods against Trichophyton rubrum (T. rubrum), Trichophyton mentagrophyte (T. mentagrophyte), and Microsporum gypseum (M. gypseum) at pH 7.2. All quaternized chitosans and its derivatives showed more effective against T. rubrum than M. gypseum and T. mentagrophyte. The MIC and MFC values were found to range between 125-1000 μg/mL and 500-4000 μg/mL, respectively against all fungi. Our results indicated that the quaternized N-(4-N,N-dimethylaminocinnamyl) chitosan chloride showed highest antifungal activity against T. rubrum and M. gypseum compared to other quaternized chitosan derivatives. The antifungal activity tended to increase with an increase in molecular weight, degree of quaternization and hydrophobic moiety against T. rubrum. However, the antifungal activity was depended on type of fungal as well as chemical structure of the quaternized chitosan derivatives.  相似文献   

8.
The aim of the present study was to formulate serratiopeptidase (SER)-loaded chitosan (CS) nanoparticles for oral delivery. SER is a proteolytic enzyme which is very sensitive to change in temperature and pH. SER-loaded CS nanoparticles were fabricated by ionic gelation method using tripolyphosphate (TPP). Nanoparticles were characterized for its particle size, morphology, entrapment efficiency, loading efficiency, percent recovery, and in vitro dissolution study. SER-CS nanoparticles had a particle size in the range of 400–600 nm with polydispersity index below 0.5. SER association was up to 80 ± 4.2%. SER loading and CS/TPP mass ratio were the primary parameters having direct influence on SER-CS nanoparticles. SER-CS nanoparticles were freeze dried using trehalose (20%) as a cryoprotectant. In vitro dissolution showed initial burst followed by sustained release up to 24 h. In vivo anti-inflammatory activity was carried out in rat paw edema model. In vivo anti-inflammatory activity in rat paw edema showed prolonged anti-inflammatory effect up to 32 h relative to plain SER.KEY WORDS: anti-inflammatory activity, chitosan, nanoparticle, serratiopeptidase, TPP  相似文献   

9.
The 9 quaternary ammonium chitosans containing monosaccharides or disaccharides moieties were successfully synthesized by reductive N-alkylation then quaternized by N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (Quat-188). The chemical structures of quaternary ammonium chitosan derivatives were characterized by ATR-FTIR and 1H NMR spectroscopy. The degree of N-substitution (DS) and the degree of quaternization (DQ) were determined by 1H NMR spectroscopic method. It was found that the DS was in the range of 12–40% while the DQ was in the range of 90–97%. The results indicated that the O-alkylation was occured in this condition. Moreover, all quaternary ammonium chitosan derivatives were highly water-soluble at acidic, basic, and neutral pH. Minimum inhibitory concentration (MIC) antibacterial studies of these materials were carried out on Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria compared to quaternary ammonium N-octyl and N-benzyl chitosan derivatives. The quaternary ammonium mono and disaccharide chitosan derivatives showed very high MIC values which were in the range of 32 to >256 μg/mL against both bacteria. Also it was found that the antibacterial activity decreased with increasing the DS. This was due to the increased hydrophilicity of mono and disaccharide moieties. On the other hand, the low MIC values (8–32 μg/mL) were obviously observed when the DS of quaternary ammonium N-octyl and N-benzyl chitosan derivatives was lower than 18%. The results showed that the presence of hydrophobic moiety such as the N-benzyl group enhanced the antibacterial activity compared to the hydrophilic moiety against both bacteria.  相似文献   

10.
Zhong Z  Xing R  Liu S  Wang L  Cai S  Li P 《Carbohydrate research》2008,343(3):566-570
Three different acyl thiourea derivatives of chitosan (CS) were synthesized and their structures were characterized by FT-IR spectroscopy and elemental analysis. The antimicrobial behaviors of CS and its derivatives against four species of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Sarcina) and four crop-threatening pathogenic fungi (Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, Colletotrichum gloeosporioides (Penz.) Saec, and Phyllisticta zingiberi) were investigated. The results indicated that the antimicrobial activities of the acyl thiourea derivatives are much better than that of the parent CS. The minimum value of MIC and MBC of the derivatives against E. coli was 15.62 and 62.49 microg/mL, respectively. All of the acyl thiourea derivatives had a significant inhibitory effect on the fungi in concentrations of 50-500 microg/mL; the maximum inhibitory index was 66.67%. The antifungal activities of the chloracetyl thiourea derivatives of CS are noticeably higher than the acetyl and benzoyl thiourea derivatives. The degree of grafting of the acyl thiourea group in the derivatives was related to antifungal activity; higher substitution resulted in stronger antifungal activity.  相似文献   

11.
In the present study, a series of azo derivatives (TR-1 to TR-9) have been synthesised via the diazo-coupling approach between substituted aromatic amines with phenol or naphthol derivatives. The compounds were evaluated for their therapeutic applications against alpha-glucosidase (anti-diabetic) and pathogenic bacterial strains E. coli (gram-negative), S. aureus (gram-positive), S. aureus (gram-positive) drug-resistant strain, P. aeruginosa (gram-negative), P. aeruginosa (gram-negative) drug-resistant strain and P. vulgaris (gram-negative). The IC50 (µg/mL) of TR-1 was found to be most effective (15.70 ± 1.3 µg/mL) compared to the reference drug acarbose (21.59 ± 1.5 µg/mL), hence, it was further selected for the kinetic studies in order to illustrate the mechanism of inhibition. The enzyme inhibitory kinetics and mode of binding for the most active inhibitor (TR-1) was performed which showed that the compound is a non-competitive inhibitor and effectively inhibits the target enzyme by binding to its binuclear active site reversibly.  相似文献   

12.
The objective of this study was to determine whether chitosan (poly-β-1,4-glucosamine) and hydrolysates of chitosan can be used as novel preservatives in foods. Chitosan was hydrolyzed by using oxidative-reductive degradation, crude papaya latex, and lysozyme. Mild hydrolysis of chitosan resulted in improved microbial inactivation in saline and greater inhibition of growth of several spoilage yeasts in laboratory media, but highly degraded products of chitosan exhibited no antimicrobial activity. In pasteurized apple-elderflower juice stored at 7°C, addition of 0.3 g of chitosan per liter eliminated yeasts entirely for the duration of the experiment (13 days), while the total counts and the lactic acid bacterial counts increased at a slower rate than they increased in the control. Addition of 0.3 or 1.0 g of chitosan per kg had no effect on the microbial flora of houmous, a chickpea dip; in the presence of 5.0 g of chitosan per kg, bacterial growth but not yeast growth was substantially reduced compared with growth in control dip stored at 7°C for 6 days. Improved antimicrobial potency of chitosan hydrolysates like that observed in the saline and laboratory medium experiments was not observed in juice and dip experiments. We concluded that native chitosan has potential for use as a preservative in certain types of food but that the increase in antimicrobial activity that occurs following partial hydrolysis is too small to justify the extra processing involved.  相似文献   

13.
Chitosan gallate were synthesized using a free radical-induced grafting reaction. Chitosan gallate showed enhanced water-solubility compared to plain chitosan, and exhibited good thermal stability. The IC50 value of chitosan gallate against 2,2-diphenyl-1-picrylhydrazyl (DPPH) was 17.86 μg/mL. In addition, chitosan gallate effectively inhibited the generation of intracellular reactive oxygen species (ROS), and also suppressed lipid peroxidation in RAW264.7 macrophage cells. Chitosan gallate also exhibited the protection effect on genomic DNA damage by induced hydroxyl radical, and up-regulated the protein expression of antioxidant enzymes including superoxide dismutase-1 and glutathione reductase under H2O2-mediated oxidative stress in RAW264.7 macrophage cells. These results indicate that chitosan gallate might be potential antioxidant biomaterials.  相似文献   

14.
Inhibition of the functional activity of Filamenting temperature-sensitive mutant Z (FtsZ) protein, an essential and highly conserved bacterial cytokinesis protein, is a promising approach for the development of a new class of antibacterial agents. Berberine, a benzylisoquinoline alkaloid widely used in traditional Chinese and native American medicines for its antimicrobial properties, has been recently reported to inhibit FtsZ. Using a combination of in silico structure-based design and in vitro biological assays, 9-phenoxyalkyl berberine derivatives were identified as potent FtsZ inhibitors. Compared to the parent compound berberine, the derivatives showed a significant enhancement of antibacterial activity against clinically relevant bacteria, and an improved potency against the GTPase activity and polymerization of FtsZ. The most potent compound 2 strongly inhibited the proliferation of Gram-positive bacteria, including methicillin-resistant S. aureus and vancomycin-resistant E. faecium, with MIC values between 2 and 4 µg/mL, and was active against the Gram-negative E. coli and K. pneumoniae, with MIC values of 32 and 64 µg/mL respectively. The compound perturbed the formation of cytokinetic Z-ring in E. coli. Also, the compound interfered with in vitro polymerization of S. aureus FtsZ. Taken together, the chemical modification of berberine with 9-phenoxyalkyl substituent groups greatly improved the antibacterial activity via targeting FtsZ.  相似文献   

15.
P. aeruginosa causes mostly both community-acquired and nosocomial infections, which leads to serious therapeutic challenges for treatment and requirement of appropriate therapeutic agent is needed which can combat antibiotic resistance. The research work was performed to investigate the effect of Zinc Oxide nanoparticles (ZnO NPs) in combination with Meropenem, Ciprofloxacin, and Colistin against clinical isolated strains of P. aeruginosa and ATCC 27853 strain.The minimum inhibitory concentration (MIC) of ZnO NPs and the antibiotics (Meropenem, Ciprofloxacin, and Colistin), was determined by the microdilution method and the results of MIC values were ranging between 1 and 16 µg/mL was found to be shown for antibiotics and ZnO NPs found to showed highest MIC values ranging from 2000 to 4000 µg/mL. The fractional inhibitory concentration index (FICI) was calculated using checkerboard method to test the combinations of ZnO NPs and the antibiotics (Meropenem, Ciprofloxacin, and Colistin), and among all the six P. aeruginosa clinical isolated strains P. aeruginosa (MRO-16-3 and MRO-16-4), showed FICI as 0.24 and 0.39 9, whereas P. aeruginosa ATCC 27853 strain showed FICI as 0.41 which indicates synergistic effect with Colistin.The time kill growth curve showed synergistic effect for the combination of Colistin and ZnO NPs against P. aeruginosa (MRO-16-3 and MRO-16-) strains. P. aeruginosa (MRO-16-3) was found to be highly sensitive to Colistin with an MIC of 2 µg/mL, which has shown to reduced bacterial growth to zero colonies after 24 h of incubation.In conclusion, combination of Colistin and ZnO NPs at appropriate dosage intervals might be beneficial as using therapeutic agent in treatment of P. aeruginosa ailments.  相似文献   

16.
Chitosan (CS) is a naturally occurring biopolymer. It has important biological properties such as biocompatibility, antifungal and antibacterial activity, wound healing ability, anticancerous property, anticholesteremic properties, and immunoenhancing effect. Recently, CS nanoparticles have been used for biomedical applications. However, due to the limited solubility of CS in water its water-soluble derivatives are preferred for the above said applications. In this work, the nanoparticles of CS and its water-soluble derivatives such as O-carboxymethyl chitosan (O-CMC) and N,O-carboxymethyl chitosan (N,O-CMC) was synthesized and characterized. In addition, cytotoxicity and antibacterial activity of the prepared nanoparticles was also evaluated for biomedical applications.  相似文献   

17.
The aim of this study was to prepare and select chitosan nanoparticles loaded metal ions with high antibacterial activities. Chitosan nanoparticles were prepared based on ionic gelation between chitosan and sodium tripolyphosphate. Then, Ag+, Cu2+, Zn2+, Mn2+, or Fe2+ was individually loaded onto chitosan nanoparticles. Their particle sizes and zeta potentials were measured. Their antibacterial activities were evaluated by determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Escherichia coli 25922, Salmonella choleraesuis ATCC 50020 and Staphylococcus aureus 25923 in vitro. Results showed that antibacterial activity was significantly enhanced by the metal ions loaded, except for Fe2+. Especially for chitosan nanoparticles loaded Cu2+, the MIC and MBC against E. coli 25922, S.choleraesuis ATCC 50020 and S. aureus 25923 were 21–42 times lower than that of Cu2+, respectively. Moreover, it was found that antibacterial activity was directly proportional to zeta potential.  相似文献   

18.
New series of pyrazoles 4a – c and pyrazolopyrimidines 5a – f had been constructed. The newly synthesized compounds were assessed for their antimicrobial activity towards E. coli and P. aeruginosa (gram –ve bacteria), B. subtilis and S. aureus (gram +ve bacteria) and A. flavus and C. albicans (representative of fungi). The pyrazolylpyrimidine-2,4-dione derivative 5b is the most active candidate against B. subtilis (MIC=60 μg/mL) and P. aeruginosa (MIC=45 μg/mL). Regarding antifungal potential, compound 5f was the most effective against A. flavus (MIC=33 μg/mL). Similarly, compound 5c displayed strong antifungal activity towards C. Albicans (MIC=36 μg/mL) in reference to amphotericin B (MIC=60 μg/mL). Finally, the novel compounds had been docked inside dihydropteroate synthase (DHPS) to suggest the binding mode of these compounds.  相似文献   

19.
Seventeen novel 2,5‐disubstituted benzimidazole derivatives were designed, synthesized and evaluated for their antibacterial activities. The tested compounds B1 – B4 and C2 – C6 exhibited not only good antifungal activity but also favorable broad‐spectrum antibacterial activity. Also, the lowest MIC of antibacterial and antifungal activity was 2 μg/mL and 4 μg/mL, respectively. It suggested that the structure of compound including the different substituent and its sites directly affected the efficacy of the synthesized compounds.  相似文献   

20.
A series of novel 2,3-dihydro-4H-1-benzoselenin-4-one (thio)semicarbazone derivatives were designed and synthesized by using molecular hybridization approach. All the target compounds were characterized by HRMS and NMR and evaluated in vitro antifungal activity against five pathogenic strains. In comparison with precursor selenochroman-4-ones, the hybrid molecules in this study showed significant improvement in antifungal activities. Notably, compound B8 showed significant antifungal activity against other strains excluding Aspergillus fumigatus (0.25 μg/mL on Candida albicans, 2 μg/mL on Cryptococcus neoformans, 8 μg/mL on Candida zeylanoides and 2 μg/mL on fluconazole-sensitive strains of Candida albicans). Moreover, compounds B8, B9 and C2 also displayed most potent activities against four fluconazole-resistance strains. Especially the MIC values of the hybrid molecule B8 against fluconazole-resistant strains were in the range of 0.5–2 μg/mL. Therefore, the molecular hybridization approach in this study provided new ideas for the development of antifungal drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号