首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3′-to-5′ in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3′ ends and strain-specific alternative 3′ editing within 3′ UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs.  相似文献   

2.
3.
Enzymes embedded into the RNA editing core complex (RECC) catalyze the U-insertion/deletion editing cascade to generate open reading frames in trypanosomal mitochondrial mRNAs. The sequential reactions of mRNA cleavage, U-addition or removal, and ligation are directed by guide RNAs (gRNAs). We combined proteomic, genetic, and functional studies with sequencing of total and complex-bound RNAs to define a protein particle responsible for the recognition of gRNAs and pre-mRNA substrates, editing intermediates, and products. This approximately 23-polypeptide tripartite assembly, termed the RNA editing substrate binding complex (RESC), also functions as the interface between mRNA editing, polyadenylation, and translation. Furthermore, we found that gRNAs represent only a subset of small mitochondrial RNAs, and yet an inexplicably high fraction of them possess 3′ U-tails, which correlates with gRNA''s enrichment in the RESC. Although both gRNAs and mRNAs are associated with the RESC, their metabolic fates are distinct: gRNAs are degraded in an editing-dependent process, whereas edited mRNAs undergo 3′ adenylation/uridylation prior to translation. Our results demonstrate that the well-characterized editing core complex (RECC) and the RNA binding particle defined in this study (RESC) typify enzymatic and substrate binding macromolecular constituents, respectively, of the ∼40S RNA editing holoenzyme, the editosome.  相似文献   

4.
Mitochondrial mRNAs in Trypanosoma brucei undergo extensive insertion and deletion of uridylates that are catalyzed by the RNA editing core complex (RECC) and directed by hundreds of small guide RNAs (gRNAs) that base pair with mRNA. RECC is largely RNA-free, and accessory mitochondrial RNA-binding complex 1 (MRB1) variants serve as scaffolds for the assembly of mRNA-gRNA hybrids and RECC. However, the molecular steps that create higher-order holoenzymes (“editosomes”) are unknown. Previously, we identified an RNA editing helicase 2-associated subcomplex (REH2C) and showed that REH2 binds RNA. Here we showed that REH2C is an mRNA-associated ribonucleoprotein (mRNP) subcomplex with editing substrates, intermediates, and products. We isolated this mRNP from mitochondria lacking gRNA-bound RNP (gRNP) subcomplexes and identified REH2-associated cofactors 1 and 2 (H2F1 and H2F2). H2F1 is an octa-zinc finger protein required for mRNP-gRNP docking, pre-mRNA and RECC loading, and RNP formation with a short synthetic RNA duplex. REH2 and other eukaryotic DEAH/RHA-type helicases share a conserved regulatory C-terminal domain cluster that includes an oligonucleotide-binding fold. Recombinant REH2 and H2F1 constructs associate in a purified complex in vitro. We propose a model of stepwise editosome assembly that entails controlled docking of mRNP and gRNP modules via specific base pairing between their respective mRNA and gRNA cargo and regulatory REH2 and H2F1 subunits of the novel mRNP that may control specificity checkpoints in the editing pathway.  相似文献   

5.
6.
RNA and its associated RNA binding proteins (RBPs) mitigate a diverse array of cellular functions and phenotypes. The interactions between RNA and RBPs are implicated in many roles of biochemical processing by the cell such as localization, protein translation, and RNA stability. Recent discoveries of novel mechanisms that are of significant evolutionary advantage between RBPs and RNA include the interaction of the RBP with the 3’ and 5’ untranslated region (UTR) of target mRNA. These mechanisms are shown to function through interaction of a trans-factor (RBP) and a cis-regulatory element (3’ or 5’ UTR) by the binding of a RBP to a regulatory-consensus nucleic acid motif region that is conserved throughout evolution. Through signal transduction, regulatory RBPs are able to temporarily dissociate from their target sites on mRNAs and induce translation, typically through a post-translational modification (PTM). These small, regulatory motifs located in the UTR of mRNAs are subject to a loss-of-function due to single polymorphisms or other mutations that disrupt the motif and inhibit the ability to associate into the complex with RBPs. The identification of a consensus motif for a given RBP is difficult, time consuming, and requires a significant degree of experimentation to identify each motif-containing gene on a genomic scale. We have developed a computational algorithm to analyze high-throughput genomic arrays that contain differential binding induced by a PTM for a RBP of interest–RBP-PTM Target Scan (RPTS). We demonstrate the ability of this application to accurately predict a PTM-specific binding motif to an RBP that has no antibody capable of distinguishing the PTM of interest, negating the use of in-vitro exonuclease digestion techniques.  相似文献   

7.
When using X174 RFI DNA as a template, in vitro, E. coli RNA polymerase synthesizes four major purine triphosphate-containing 5′ end sequences. RNase A digests of α32P labeled RNA were further digested with spleen exonuclease to remove the bulk of the oligonucleotides with 5′ hydroxyls and then chromatographed on DEAE cellulose to resolve the remaining 5′ terminal oligonucleotides. By application of standard separation and sequence techniques, the major 5′ end sequences were shown to be: pppApUp(Cp), pppApApApUp(Cp), pppApApApApUp(Cp), and pppGpApUp(Gp).  相似文献   

8.
9.
RNA interference (RNAi) has become an essential technology for functional gene analysis. Its success, however, depends on the effective expression of RNAi-inducing small double-stranded interfering RNA molecules (siRNAs) in target cells. In many cell types, RNAi can be achieved by transfection of chemically synthesised siRNAs, which results in transient knockdown of protein expression. Expression of double-stranded short hairpin RNA (shRNA) provides another means to induce RNAi in cells that are hard to transfect. To facilitate the generation of stable, conditional RNAi cell lines, we have developed novel one- and two-component vector GATEWAY-compatible lentiviral tetracycline-regulated RNAi (GLTR) systems. The combination of a modified RNA-polymerase-III-dependent H1 RNA promoter (designated ‘THT’) for conditional shRNA expression with different lentiviral delivery vectors allows (1) the use of fluorescent proteins for colour-coded combinatorial RNAi or for monitoring RNAi induction (pGLTR-FP), (2) selection of transduced cells (pGLTR-S), and (3) the generation of conditional cell lines using a one vector system (pGLTR-X). All three systems were found to be suitable for the analysis of essential genes, such as CDC27, a component of the mitotic ubiquitin ligase APC/C, in cell lines and primary human cells.  相似文献   

10.
11.
The detection of somatic single nucleotide variants is a crucial component to the characterization of the cancer genome. Mutation calling algorithms thus far have focused on comparing the normal and tumor genomes from the same individual. In recent years, it has become routine for projects like The Cancer Genome Atlas (TCGA) to also sequence the tumor RNA. Here we present RADIA (RNA and DNA Integrated Analysis), a novel computational method combining the patient-matched normal and tumor DNA with the tumor RNA to detect somatic mutations. The inclusion of the RNA increases the power to detect somatic mutations, especially at low DNA allelic frequencies. By integrating an individual’s DNA and RNA, we are able to detect mutations that would otherwise be missed by traditional algorithms that examine only the DNA. We demonstrate high sensitivity (84%) and very high precision (98% and 99%) for RADIA in patient data from endometrial carcinoma and lung adenocarcinoma from TCGA. Mutations with both high DNA and RNA read support have the highest validation rate of over 99%. We also introduce a simulation package that spikes in artificial mutations to patient data, rather than simulating sequencing data from a reference genome. We evaluate sensitivity on the simulation data and demonstrate our ability to rescue back mutations at low DNA allelic frequencies by including the RNA. Finally, we highlight mutations in important cancer genes that were rescued due to the incorporation of the RNA.  相似文献   

12.
The type VI secretion system (T6SS) is a widespread protein export apparatus found in Gram-negative bacteria. The majority of T6SSs deliver toxic effector proteins into competitor bacteria. Yet, the structure, function, and activation of many of these effectors remains poorly understood. Here, we present the structures of the T6SS effector RhsA from Pseudomonas protegens and its cognate T6SS spike protein, VgrG1, at 3.3 Å resolution. The structures reveal that the rearrangement hotspot (Rhs) repeats of RhsA assemble into a closed anticlockwise β-barrel spiral similar to that found in bacterial insecticidal Tc toxins and in metazoan teneurin proteins. We find that the C-terminal toxin domain of RhsA is autoproteolytically cleaved but remains inside the Rhs ‘cocoon’ where, with the exception of three ordered structural elements, most of the toxin is disordered. The N-terminal ‘plug’ domain is unique to T6SS Rhs proteins and resembles a champagne cork that seals the Rhs cocoon at one end while also mediating interactions with VgrG1. Interestingly, this domain is also autoproteolytically cleaved inside the cocoon but remains associated with it. We propose that mechanical force is required to remove the cleaved part of the plug, resulting in the release of the toxin domain as it is delivered into a susceptible bacterial cell by the T6SS.  相似文献   

13.
14.
Olfaction based behavioral experiments are important for the investigation of sensory coding, perception, decision making and memory formation. The predominant experimental paradigms employ forced choice operant assays, which require associative learning and reinforced training. Animal performance in these assays not only reflects odor perception but also the confidence in decision making and memory. In this study, we describe a versatile and automated setup, “Poking-Registered Olfactory Behavior Evaluation System” (PROBES), which can be adapted to perform multiple olfactory assays. In addition to forced choice assays, we employ this system to examine animal’s innate ability for odor detection, discrimination and preference without elaborate training procedures. These assays provide quantitative measurements of odor discrimination and robust readouts of odor preference. Using PROBES, we find odor detection thresholds are at lower concentrations in naïve animals than those determined by forced choice assays. PROBES-based automated assays provide an efficient way of analyzing innate odor-triggered behaviors.  相似文献   

15.
C-C chemokine receptor 5 (CCR5) is a receptor for chemokines and a co-receptor for HIV-1 entry into the target CD4+ cells. CCR5 delta 32 deletion is a loss-of-function mutation, resistant to HIV-1 infection. We tried to induce the CCR5 delta 32 mutation harnessing the genome editing technique, CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR and CRISPR associated protein 9, Cas9) in the commonly used cell line human embryonic kidney HEK 293T cells. Surprisingly, we found that HEK293T cells are heterozygous for CCR5 delta 32 mutation, in contrast to the wild type CCR5 cells, human acute T cell leukemia cell line Jurkat and human breast adenocarcinoma cell line MDA-MB-231 cells. This finding indicates that at least one human cell line is heterozygous for the CCR5 delta 32 mutation. We also found that in PCR amplification, wild type CCR5 DNA and mutant delta 32 DNA can form mismatched heteroduplex and move slowly in gel electrophoresis.  相似文献   

16.
The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5′-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg2+ or Mn2+), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1–α1 loop.  相似文献   

17.
Abasic [apurinic/apyrimidinic (AP)] sites are the most common DNA damages, opposite which dAMP is frequently inserted (‘A-rule’) in Escherichia coli. Nucleotide insertion opposite the AP-site in eukaryotic cells depends on the assay system and the type of cells. Accordingly, a ‘C-rule’, ‘A-rule’, or the lack of specificity has been reported. DNA sequence context also modulates nucleotide insertion opposite AP-site. Herein, we have compared replication of tetrahydrofuran (Z), a stable analog of AP-site, in E. coli and human embryonic kidney 293T cells in two different sequences. The efficiency of translesion synthesis or viability of the AP-site construct in E. coli was less than 1%, but it was 7- to 8-fold higher in the GZGTC sequence than in the GTGZC sequence. The difference in viability increased even more in pol V-deficient strains. Targeted one-base deletions occurred in 63% frequency in the GZG and 68% frequency in GZC sequence, which dropped to 49% and 21%, respectively, upon induction of SOS. The full-length products with SOS primarily involved dAMP insertion opposite the AP-site, which occurred in 49% and 71% frequency, respectively, in the GZG and GZC sequence. dAMP insertion, largely carried out by pol V, was more efficient when the AP-site was a stronger replication block. In contrast to these results in E. coli, viability was 2 to 3 orders of magnitude higher in human cells, and the ‘A-rule’ was more rigidly followed. The AP-site in the GZG and GZC sequences gave 76% and 89%, respectively, Z→T substitutions. In human cells, targeted one-base deletion was undetectable, and dTMP>dCMP were the next preferred nucleotides inserted opposite Z. siRNA knockdown of Rev1 or pol ζ established that both these polymerases are vital for AP-site bypass, as demonstrated by 36–67% reduction in bypass efficiency. However, neither polymerase was indispensable, suggesting roles of additional DNA polymerases in AP-site bypass in human cells.  相似文献   

18.
The molecular size of mu and pi symbionts of Parameciumaurelia has been calculated from renaturation kinetic data. Observed values were 0.78 × 109 daltons for mu particle DNA and 0.81 × 109 daltons for pi particle DNA. Estimates of analytical complexity were 4.45 × 109 and 5.05 × 109 daltons respectively. Based on these data, mu and pi symbionts appear to possess multiple genomes and contain a minimum of 5 or 6 copies of each DNA sequence.  相似文献   

19.
Ribosome biogenesis in yeast requires 75 small nucleolar RNAs (snoRNAs) and a myriad of cofactors for processing, modification, and folding of the ribosomal RNAs (rRNAs). For the 19 RNA helicases implicated in ribosome synthesis, their sites of action and molecular functions have largely remained unknown. Here, we have used UV cross-linking and analysis of cDNA (CRAC) to reveal the pre-rRNA binding sites of the RNA helicase Rok1, which is involved in early small subunit biogenesis. Several contact sites were identified in the 18S rRNA sequence, which interestingly all cluster in the “foot” region of the small ribosomal subunit. These include a major binding site in the eukaryotic expansion segment ES6, where Rok1 is required for release of the snR30 snoRNA. Rok1 directly contacts snR30 and other snoRNAs required for pre-rRNA processing. Using cross-linking, ligation and sequencing of hybrids (CLASH) we identified several novel pre-rRNA base-pairing sites for the snoRNAs snR30, snR10, U3, and U14, which cluster in the expansion segments of the 18S rRNA. Our data suggest that these snoRNAs bridge interactions between the expansion segments, thereby forming an extensive interaction network that likely promotes pre-rRNA maturation and folding in early pre-ribosomal complexes and establishes long-range rRNA interactions during ribosome synthesis.  相似文献   

20.
Four experiments investigated the role of the syllable in Chinese spoken word production. Chen, Chen and Ferrand (2003) reported a syllable priming effect when primes and targets shared the first syllable using a masked priming paradigm in Chinese. Our Experiment 1 was a direct replication of Chen et al.’s (2003) Experiment 3 employing CV (e.g., 拔营,/ba2.ying2/, strike camp) and CVG (e.g., 白首,/bai2.shou3/, white haired) syllable types. Experiment 2 tested the syllable priming effect using different syllable types: e.g., CV (气球,/qi4.qiu2/, balloon) and CVN (蜻蜓,/qing1.ting2/, dragonfly). Experiment 3 investigated this issue further using line drawings of common objects as targets that were preceded either by a CV (e.g., 企,/qi3/, attempt), or a CVN (e.g., 情,/qing2/, affection) prime. Experiment 4 further examined the priming effect by a comparison between CV or CVN priming and an unrelated priming condition using CV-NX (e.g., 迷你,/mi2.ni3/, mini) and CVN-CX (e.g., 民居,/min2.ju1/, dwellings) as target words. These four experiments consistently found that CV targets were named faster when preceded by CV primes than when they were preceded by CVG, CVN or unrelated primes, whereas CVG or CVN targets showed the reverse pattern. These results indicate that the priming effect critically depends on the match between the structure of the prime and that of the first syllable of the target. The effect obtained in this study was consistent across different stimuli and different tasks (word and picture naming), and provides more conclusive and consistent data regarding the role of the syllable in Chinese speech production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号