首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ostreolysin, a cytolytic protein from the edible oyster mushroom (Pleurotus ostreatus), recognizes and binds specifically to membrane domains enriched in cholesterol and sphingomyelin (or saturated phosphatidylcholine). These events, leading to permeabilization of the membrane, suggest that a cholesterol-rich liquid-ordered membrane phase, which is characteristic of lipid rafts, could be its possible binding site. In this work, we present effects of ostreolysin on membranes containing various steroids. Binding and membrane permeabilizing activity of ostreolysin was studied using lipid mono- and bilayers composed of sphingomyelin combined, in a 1/1 molar ratio, with natural and synthetic steroids (cholesterol, ergosterol, β-sitosterol, stigmasterol, lanosterol, 7-dehydrocholesterol, cholesteryl acetate, and 5-cholesten-3-one). Binding to membranes and lytic activity of the protein are both shown to be dependent on the intact sterol 3β-OH group, and are decreased by introducing additional double bonds and methylation of the steroid skeleton or C17-isooctyl chain. The activity of ostreolysin mainly correlates with the ability of the steroids to promote formation of liquid-ordered membrane domains, and is the highest with cholesterol-containing membranes. Furthermore, increasing the cholesterol concentration enhanced ostreolysin binding in a highly cooperative manner, suggesting that the membrane lateral distribution and accessibility of the sterols are crucial for the activity of this new member of cholesterol-dependent cytolysins.  相似文献   

2.
Ostreolysin is a cytolytic protein from the edible oyster mushroom (Pleurotus ostreatus), which recognizes specifically and binds to raft-like sterol-enriched membrane domains that exist in the liquid-ordered phase. Its binding can be abolished by micromolar concentrations of lysophospholipids and fatty acids. The membrane activity of ostreolysin, however, does not completely correlate with the ability of a certain sterol to induce the formation of a liquid-ordered phase, suggesting that the protein requires an additional structural organization of the membrane to exert its activity. The aim of this study was to further characterize the lipid membranes that facilitate ostreolysin binding by analyzing their lipid phase domain structure. Fourier-transformed infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) were used to analyze the ordering and dynamics of membrane lipids and the membrane domain structure of a series of unilamellar liposomes prepared by systematically changing the lipid components and their ratios. Our results corroborate the earlier conclusion that the average membrane fluidity of ostreolysin-susceptible liposomes alone cannot account for the membrane activity of the protein. Combined with previous data computer-aided interpretation of EPR spectra strongly suggests that chemical properties of membrane constituents, their specific distribution, and physical characteristics of membrane nanodomains, resulting from the presence of sterol and sphingomyelin (or a highly ordered phospholipid, dipalmitoylphosphatidylcholine), are essential prerequisites for ostreolysin membrane binding and pore-formation.  相似文献   

3.
Ostreolysin, a pore-forming protein from the edible oyster mushroom (Pleurotus ostreatus), is a member of the aegerolysin protein family, a novel group of small acidic proteins found in bacteria, molds, mushrooms, and plants. It binds to lipid rafts and interacts specifically with cholesterol-rich lipid domains. In this study, ostreolysin was classified as a single-domain all-beta-structured protein on the basis of cDNA sequencing. pH-induced and thermally induced unfolding of ostreolysin was studied by means of CD, UV absorption, and intrinsic tryptophan fluorescence to characterize conformational transitions associated with its functional properties, i.e., binding to lipid membranes, pore forming activity on lipid vesicles, and hemolysis. At 25 degrees C and between pH 6 and 9, ostreolysin adopted a monomeric and thermodynamically stable nativelike conformation, characterized by rigid tertiary structure and predominantly beta-sheet secondary structure. Between pH 2 and 3, the protein underwent an irreversible transition to a partially unfolded, molten globule-like state which bound ANS, and exhibited disrupted tertiary structure and enhanced non-native alpha-helical structure. Functional studies showed that, unlike colicins and some other bacterial pore-forming toxins, the acid-induced molten globule-like state of ostreolysin is not relevant for lipid binding and pore formation. Instead, the compact native state was necessary for binding to cholesterol/sphingomyelin multilamellar vesicles, optimally in the pH range from 6 to 7, and for pore formation and hemolysis, maximally between pH 7 and 8.  相似文献   

4.
P-glycoprotein (P-gp) appears to be associated within specialized raftlike membrane microdomains. The activity of P-gp is sensitive to its lipid environment, and a functional association in raft microdomains will require that P-gp retains activity in the microenvironment. Purified hamster P-gp was reconstituted in liposomes comprising sphingomyelin and cholesterol, both highly enriched in membrane microdomains and known to impart a liquid-ordered phase to bilayers. The activity of P-gp was compared with that of proteoliposomes composed of crude egg phosphatidylcholine (unsaturated) or dipalmitoyl phosphatidylcholine (saturated) in the presence or absence of cholesterol. The maximal rate of ATP hydrolysis was not significantly altered by the nature of the lipid species. However, the potencies of nicardipine and XR9576 to modulate the ATPase activity of P-gp were increased in the sphingolipid-based proteoliposomes. The drug-P-gp interaction was investigated by measurement of the rates of [(3)H]XR9576 association and dissociation from the transporter. The lipid environment of P-gp did not affect these kinetic parameters of drug binding. In summary, P-gp retains function in liquid-ordered cholesterol and sphingolipid model membranes in which the communication between the transmembrane and the nucleotide binding domains after drug binding to the protein is more efficient.  相似文献   

5.
Heterogeneities in cell membranes due to the ordering of lipids and proteins are thought to play an important role in enabling protein and lipid trafficking throughout the secretory pathway and in maintaining cell polarization. Protein-coated vesicles provide a major mechanism for intracellular transport of select cargo, which may be sorted into lipid microdomains; however, the mechanisms and physical constraints for lipid sorting by protein coats are relatively unexplored. We studied the influence of membrane-tethered protein coats on the sorting, morphology, and phase behavior of liquid-ordered lipid domains in a model system of giant unilamellar vesicles composed of dioleoylphosphatidylcholine, sphingomyelin, and cholesterol. We created protein-coated membranes by forming giant unilamellar vesicles containing a small amount of biotinylated lipid, thereby creating binding sites for streptavidin and avidin proteins in solution. We found that individual tethered proteins colocalize with the liquid-disordered phase, whereas ordered protein domains on the membrane surface colocalize with the liquid-ordered phase. These observations may be explained by considering the thermodynamics of this coupled system, which maximizes its entropy by cosegregating ordered protein and lipid domains. In addition, protein ordering inhibits lipid domain rearrangement and modifies the morphology and miscibility transition temperature of the membrane, most dramatically near the critical point in the membrane phase diagram. This observation suggests that liquid-ordered domains are stabilized by contact with ordered protein domains; it also hints at an approach to the stabilization of lipid microdomains by cross-linked protein clusters or ordered protein coats.  相似文献   

6.
Ceramide-induced alterations in the lateral organization of membrane proteins can be involved in several biological contexts, ranging from apoptosis to viral infections. In order to investigate such alterations in a simple model, we used a combined approach of atomic force microscopy, scanning fluorescence correlation spectroscopy and confocal fluorescence imaging to study the partitioning of different membrane components in sphingomyelin/dioleoyl-phosphatidylcholine/cholesterol/ceramide supported bilayers. Such model membranes exhibit coexistence of liquid-disordered, liquid-ordered (raft-like) and ceramide-rich lipid phases. Our results show that components with poor affinity toward the liquid-ordered phase, such as several fluorescent lipid analogues or the synaptic protein Synaptobrevin 2, are excluded from ceramide-rich domains. Conversely, we show for the first time that the raft-associated protein placental alkaline phosphatase (GPI-PLAP) and the ganglioside GM1 are enriched in such domains, while exhibiting a strong decrease in lateral diffusion. Analogue modulation of the local concentration and dynamics of membrane proteins/receptors by ceramide can be of crucial importance for the biological functions of cell membranes.  相似文献   

7.
Ceramide-induced alterations in the lateral organization of membrane proteins can be involved in several biological contexts, ranging from apoptosis to viral infections. In order to investigate such alterations in a simple model, we used a combined approach of atomic force microscopy, scanning fluorescence correlation spectroscopy and confocal fluorescence imaging to study the partitioning of different membrane components in sphingomyelin/dioleoyl-phosphatidylcholine/cholesterol/ceramide supported bilayers. Such model membranes exhibit coexistence of liquid-disordered, liquid-ordered (raft-like) and ceramide-rich lipid phases. Our results show that components with poor affinity toward the liquid-ordered phase, such as several fluorescent lipid analogues or the synaptic protein Synaptobrevin 2, are excluded from ceramide-rich domains. Conversely, we show for the first time that the raft-associated protein placental alkaline phosphatase (GPI-PLAP) and the ganglioside GM1 are enriched in such domains, while exhibiting a strong decrease in lateral diffusion. Analogue modulation of the local concentration and dynamics of membrane proteins/receptors by ceramide can be of crucial importance for the biological functions of cell membranes.  相似文献   

8.
The mushroom Pleurotus ostreatus has been reported to produce the hemolytic proteins ostreolysin (OlyA), pleurotolysin A (PlyA) and pleurotolysin B (PlyB). The present study of the native and recombinant proteins dissects out their lipid-binding characteristics and their roles in lipid binding and membrane permeabilization. Using lipid-binding studies, permeabilization of erythrocytes, large unilamellar vesicles of various lipid compositions, and electron microscopy, we show that OlyA, a PlyA homolog, preferentially binds to membranes rich in sterol and sphingomyelin, but it does not permeabilize them. The N-terminally truncated Δ48PlyB corresponds to the mature and active form of native PlyB, and it has a membrane attack complex-perforin (MACPF) domain. Δ48PlyB spontaneously oligomerizes in solution, and binds weakly to various lipid membranes but is not able to perforate them. However, binding of Δ48PlyB to the cholesterol and sphingomyelin membranes, and consequently, their permeabilization is dramatically promoted in the presence of OlyA. On these membranes, Δ48PlyB and OlyA form predominantly 13-meric oligomers. These are rosette-like structures with a thickness of ∼9 nm from the membrane surface, with 19.7 nm and 4.9 nm outer and inner diameters, respectively. When present on opposing vesicle membranes, these oligomers can dimerize and thus promote aggregation of vesicles. Based on the structural and functional characteristics of Δ48PlyB, we suggest that it shares some features with MACPF/cholesterol-dependent cytolysin (CDC) proteins. OlyA is obligatory for the Δ48PlyB permeabilization of membranes rich in cholesterol and sphingomyelin.  相似文献   

9.
Lipid rafts and ceramide (Cer)-platforms are membrane domains that play an important role in several biological processes. Cer-platforms are commonly formed in the plasma membrane by the action of sphingomyelinase (SMase) upon hydrolysis of sphingomyelin (SM) within lipid rafts. The interplay among SMase activity, initial membrane properties (i.e., phase behavior and lipid lateral organization) and lipid composition, and the amount of product (Cer) generated, and how it modulates membrane properties were studied using fluorescence methodologies in model membranes. The activity of SMase was evaluated by following the hydrolysis of radioactive SM. It was observed that 1), the enzyme activity and extent of hydrolysis are strongly dependent on membrane physical properties but not on substrate content, and are higher in raft-like mixtures, i.e., mixtures with liquid-disordered/liquid-ordered phase separation; and 2), Cer-induced alterations are also dependent on membrane composition, specifically the cholesterol (Chol) content. In the lowest-Chol range, Cer segregates together with SM into small (∼8.5 nm) Cer/SM-gel domains. With increasing Chol, the ability of Cer to recruit SM and form gel domains strongly decreases. In the high-Chol range, a Chol-enriched/SM-depleted liquid-ordered phase predominates. Together, these data suggest that in biological membranes, Chol in particular and raft domains in general play an important role in modulating SMase activity and regulating membrane physical properties by restraining Cer-induced alterations.  相似文献   

10.
Equinatoxin-II is a eukaryotic pore-forming toxin belonging to the family of actinoporins. Its interaction with model membranes is largely modulated by the presence of sphingomyelin. We have used large unilamellar vesicles and lipid monolayers to gain further information about this interaction. The coexistence of gel and liquid-crystal lipid phases in sphingomyelin/phosphatidylcholine mixtures and the coexistence of liquid-ordered and liquid-disordered lipid phases in phosphatidylcholine/cholesterol or sphingomyelin/phosphatidylcholine/cholesterol mixtures favor membrane insertion of equinatoxin-II. Phosphatidylcholine vesicles are not permeabilized by equinatoxin-II. However, the localized accumulation of phospholipase C-generated diacylglycerol creates conditions for toxin activity. By using epifluorescence microscopy of transferred monolayers, it seems that lipid packing defects arising at the interfaces between coexisting lipid phases may function as preferential binding sites for the toxin. The possible implications of such a mechanism in the assembly of a toroidal pore are discussed.  相似文献   

11.
Equinatoxin II is a pore-forming protein of the actinoporin family. After membrane binding, it inserts its N-terminal α-helix and forms a protein/lipid pore. Equinatoxin II activity depends on the presence of sphingomyelin in the target membrane; however, the role of this specificity is unknown. On the other hand, sphingomyelin is considered an essential ingredient of lipid rafts and promotes liquid-ordered/liquid-disordered phase separation in model membranes that mimic raft composition. Here, we used giant unilamellar vesicles to simultaneously investigate the effect of sphingomyelin and phase separation on the membrane binding and permeabilizing activity of Equinatoxin II. Our results show that Equinatoxin II binds preferentially to the liquid-ordered phase over the liquid-disordered one and that it tends to concentrate at domain interfaces. In addition, sphingomyelin strongly enhances membrane binding of the toxin but is not sufficient for membrane permeabilization. Under the same experimental conditions, Equinatoxin II formed pores in giant unilamellar vesicles containing sphingomyelin only when liquid-ordered and -disordered phases coexisted. Our observations demonstrate the importance of phase boundaries for Equinatoxin II activity and suggest a double role of sphingomyelin as a specific receptor for the toxin and as a promoter of the membrane organization necessary for Equinatoxin II action.  相似文献   

12.
Although reverse cholesterol transport from peripheral cell types is mediated through plasma membrane microdomains termed lipid rafts, almost nothing is known regarding the existence, protein/lipid composition, or structure of these putative domains in liver hepatocytes, cells responsible for the net removal of cholesterol from the body. Lipid rafts purified from hepatocyte plasma membranes by a nondetergent affinity chromatography method were: i) present at 33 +/- 3% of total plasma membrane protein; ii) enriched in key proteins of the reverse cholesterol pathway [scavenger receptor class B type I (SR-B1), ABCA1, P-glycoprotein (P-gp), sterol carrier protein-2 (SCP-2)]; iii) devoid of caveolin-1; iv) enriched in cholesterol, sphingomyelin, GM1, and phospholipids low in polyunsaturated fatty acid and double bond index; and v) exhibited an intermediate liquid-ordered lipid phase with significant transbilayer fluidity gradient. Ablation of the gene encoding SCP-2 significantly altered lipid rafts to: i) increase the proportion of lipid rafts present, thereby increasing raft total content of ABCA1, P-gp, and SR-B1; ii) increase total phospholipids while decreasing GM1 in lipid rafts; iii) decrease the fluidity of lipid rafts, consistent with the increased intermediate liquid-ordered phase; and iv) abolish the lipid raft transbilayer fluidity gradient. Thus, despite the absence of caveolin-1 in liver hepatocytes, lipid rafts represented nearly one-third of the mouse hepatocyte plasma membrane proteins and displayed unique protein, lipid, and biophysical properties that were differentially regulated by SCP-2 expression.  相似文献   

13.
Here we have studied how the length of the pyrene-labeled acyl chain (n) of a phosphatidylcholine, sphingomyelin, or galactosylceramide affects the partitioning of these lipids between 1), gel and fluid domains coexisting in bovine brain sphingomyelin (BB-SM) or BB-SM/spin-labeled phosphatidylcholine (PC) bilayers or 2), between liquid-disordered and liquid-ordered domains in BB-SM/spin-labeled PC/cholesterol bilayers. The partitioning behavior was deduced either from modeling of pyrene excimer/monomer ratio versus temperature plots, or from quenching of the pyrene monomer fluorescence by spin-labeled PC. New methods were developed to model excimer formation and pyrene lipid quenching in segregated bilayers. The main result is that partition to either gel or liquid-ordered domains increased significantly with increasing length of the labeled acyl chain, probably because the pyrene moiety attached to a long chain perturbs these ordered domains less. Differences in partitioning were also observed between phosphatidylcholine, sphingomyelin, and galactosylceramide, thus indicating that the lipid backbone and headgroup-specific properties are not severely masked by the pyrene moiety. We conclude that pyrene-labeled lipids could be valuable tools when monitoring domain formation in model and biological membranes as well as when assessing the role of membrane domains in lipid trafficking and sorting.  相似文献   

14.
The concept of lipid rafts and the intense work toward their characterization in biological membranes has spurred a renewed interest in the understanding of domain formation, particularly in the case of cholesterol-containing membranes. The thermodynamic principles underlying formation of domains, rafts, or cholesterol/phospholipid complexes are reviewed here, along with recent work in model and biological membranes. A major motivation for this review was to present those concepts in a way appropriate for the broad readership that has been drawn to the field. Evidence from a number of different techniques points to the conclusion that lipid-lipid interactions are generally weak; therefore, in most cases, massive phase separations are not to be expected in membranes. On the contrary, small, dynamic lipid domains, possibly stabilized by proteins are the most likely outcome. The results on mixed lipid bilayers are used to discuss recent experiments in biological membranes. The clear indication is that proteins partition preferentially into fluid, disordered lipid domains, which is contrary to their localization in ordered, cholesterol/sphingomyelin rafts inferred from detergent extraction experiments on cell membranes. Globally, the evidence appears most consistent with a membrane model in which the majority of the lipid is in a liquid-ordered phase, with dispersed, small, liquid-disordered domains, where most proteins reside. Co-clustering of proteins and their concentration in some membrane areas may occur because of similar preferences for a particular domain but also because of simultaneous exclusion from other lipid phases. Specialized structures, such as caveolae, which contain high concentrations of cholesterol and caveolin are not necessarily similar to bulk liquid-ordered phase.  相似文献   

15.
Detection of immiscible lipid domains in biological membranes offers an alternative support to protein sorting. Liquid ordered domains ("rafts") comprising cholesterol and saturated sphingolipids incorporate saturated glycosyl-phosphatidylinositol (GPI)-anchored or acylated (palmitoyl- and myristoyl-) proteins or particular transmembrane protein sequences. These lipid domains can be isolated in the form of Detergent resistant membranes (DRM) from biological plasma membrane preparations. Caveolae appear to be a differentiated fraction of plasma membranes comprising such numerous cross-linked microdomains associated with caveolin in different cell types. While the biological relevance of such membrane domains is evidenced in vivo by co-patching of proteins sharing the identical affinity for sphingolipids and by the disruption of co-patching following cell cholesterol depletion, only a few physical studies confort the principle of membrane heterogeneity. Results are now presented where cholesterol addition in a tertiary lipid mixture forces outphase-separation, as a realistic model where the lipid segregation can promote protein sorting to the segregated Lo phase. A lipid mixture comprising phosphatidylserine, phosphatidylethanolamine and sphingomyelin of natural origin in the ratio (1/4/3: mole/mole) has been rendered neatly heterogeneous after the addition of cholesterol (27 mole%). Xray diffraction (Small angle Xray scattering) showed the splitting of two neatly resolved lamellar diffractions in the presence of cholesterol. Above 37 degrees C the heterogeneity was traceable by a broadened diffraction spot up to the complete get-to-liquid transition of sphingomyelin at temperatures > 40 degrees C where the spot became again symmetrical and narrow. The large temperature range where the immiscible lamellar phases are detected, the specific requirement for cholesterol association with sphingomyelin, the positive influence of calcium and the reversibility of domain formation support the occurrence for such domains at the inner side of the plasma membrane whereon lipids-bound proteins concentrate.  相似文献   

16.
Miller EC  Helmkamp GM 《Biochemistry》2003,42(45):13250-13259
Both isoforms of rat phosphatidylinositol transfer protein (PITP) mediate the intermembrane transfer of sphingomyelin (CerPCho). In the plasma membrane, CerPCho often segregates with cholesterol into microdomains such as lipid rafts and caveolae. To test the hypothesis that PITP exhibits a preference for CerPCho- and cholesterol-rich membranes, we prepared unilamellar vesicles containing variable amounts of these two lipids. We also used CerPCho species with different acyl composition and treated vesicles with agents known to sequester and remove cholesterol. We observed that the beta isoform of rat PITP was more sensitive to membrane cholesterol than was the alpha isoform, as shown by increases in specific activities of lipid transfer of 2-6-fold. A relatively high membrane content of cholesterol (mole fraction > 0.4) was required to elicit such enhancements. Treatment of cholesterol-rich membranes with a series of beta cyclodextrins demonstrated that, upon depletion of cholesterol from participating membranes, the PITPbeta activity changes were fully reversible. We finally noted that the mechanism by which cholesterol enhances the activity of PITPbeta appeared to involve a decreased affinity of the protein for the membrane surface, in a manner that was independent of vesicle size and membrane microviscosity. We conclude that PITPbeta interacts transiently but productively with the liquid-ordered phase formed by CerPCho and cholesterol and discuss the possibility of PITP interactions in vivo with sphingolipid- and cholesterol-rich membrane microdomains.  相似文献   

17.
Crane JM  Tamm LK 《Biophysical journal》2004,86(5):2965-2979
Sterols play a crucial regulatory and structural role in the lateral organization of eukaryotic cell membranes. Cholesterol has been connected to the possible formation of ordered lipid domains (rafts) in mammalian cell membranes. Lipid rafts are composed of lipids in the liquid-ordered (l(o)) phase and are surrounded with lipids in the liquid-disordered (l(d)) phase. Cholesterol and sphingomyelin are thought to be the principal components of lipid rafts in cell and model membranes. We have used fluorescence microscopy and fluorescence recovery after photobleaching in planar supported lipid bilayers composed of porcine brain phosphatidylcholine (bPC), porcine brain sphingomyelin (bSM), and cholesterol to map the composition-dependence of l(d)/l(o) phase coexistence. Cholesterol decreases the fluidity of bPC bilayers, but disrupts the highly ordered gel phase of bSM, leading to a more fluid membrane. When mixed with bPC/bSM (1:1) or bPC/bSM (2:1), cholesterol induces the formation of l(o) phase domains. The fraction of the membrane in the l(o) phase was found to be directly proportional to the cholesterol concentration in both phospholipid mixtures, which implies that a significant fraction of bPC cosegregates into l(o) phase domains. Images reveal a percolation threshold, i.e., the point where rafts become connected and fluid domains disconnected, when 45-50% of the total membrane is converted to the l(o) phase. This happens between 20 and 25 mol % cholesterol in 1:1 bPC/bSM bilayers and between 25 and 30 mol % cholesterol in 2:1 bPC/bSM bilayers at room temperature, and at approximately 35 mol % cholesterol in 1:1 bPC/bSM bilayers at 37 degrees C. Area fractions of l(o) phase lipids obtained in multilamellar liposomes by a fluorescence resonance energy transfer method confirm and support the results obtained in planar lipid bilayers.  相似文献   

18.
The ESR spectra from different positional isomers of sphingomyelin and phosphatidylcholine spin-labeled in their acyl chain have been studied in sphingomyelin(cerebroside)-phosphatidylcholine mixed membranes that contain cholesterol. The aim was to investigate mechanisms by which cholesterol could stabilize possible domain formation in sphingolipid-glycerolipid membranes. The outer hyperfine splittings in the ESR spectra of sphingomyelin and phosphatidylcholine spin-labeled on the 5 C atom of the acyl chain were consistent with mixing of the components, but the perturbations on adding cholesterol were greater in the membranes containing sphingomyelin than in those containing phosphatidylcholine. Infrared spectra of the amide I band of egg sphingomyelin were shifted and broadened in the presence of cholesterol to a greater extent than the carbonyl band of phosphatidylcholine, which was affected very little by cholesterol. Two-component ESR spectra were observed from lipids spin-labeled on the 14 C atom of the acyl chain in cholesterol-containing membranes composed of sphingolipids, with or without glycerolipids (sphingomyelin/cerebroside and sphingomyelin/cerebroside/phosphatidylcholine mixtures). These results indicate the existence of gel-phase domains in otherwise liquid-ordered membranes that contain cholesterol. In the gel phase of egg sphingomyelin, the outer hyperfine splittings of sphingomyelin spin-labeled on the 14-C atom of the acyl chain are smaller than those for the corresponding spin-labeled phosphatidylcholine. In the presence of cholesterol, this situation is reversed; the outer splitting of 14-C spin-labeled sphingomyelin is then greater than that of 14-C spin-labeled phosphatidylcholine. This result provides some support for the suggestion that transbilayer interdigitation induced by cholesterol stabilizes the coexistence of gel-phase and "liquid-ordered" domains in membranes containing sphingolipids.  相似文献   

19.
Chemically simplified lipid mixtures are used here as models of the cell plasma membrane exoplasmic leaflet. In such models, phase separation and morphology transitions controlled by line tension in the liquid-disordered (Ld)?+?liquid-ordered (Lo) coexistence regime have been described [1]. Here, we study two four-component lipid mixtures at different cholesterol fractions: brain sphingomyelin (BSM) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). On giant unilamellar vesicles (GUVs) display a nanoscopic-to-macroscopic transition of Ld?+?Lo phase domains as POPC is replaced by DOPC, and this transition also depends on the cholesterol fraction. Line tension decreases with increasing cholesterol mole fractions in both lipid mixtures. For the ternary BSM/DOPC/Chol mixture, the published phase diagram [19] requires a modification to show that when cholesterol mole fraction is >~0.33, coexisting phase domains become nanoscopic.  相似文献   

20.
We have used fluorescence-quenching measurements to characterize the partitioning of a variety of indolyl-labeled phospho- and sphingolipids between gel or liquid-ordered and liquid-disordered lipid domains in several types of lipid bilayers where such domains coexist. In both cholesterol-free and cholesterol-containing lipid mixtures, sphingolipids with diverse polar headgroups (ranging from sphingomyelin and monoglycosylceramides to ganglioside GM1) show a net preference for partitioning into ordered domains, which varies modestly in magnitude with varying headgroup structure. The affinities of different sphingolipids for ordered lipid domains do not vary in a consistent manner with the size or other simple structural properties of the polar headgroup, such that for example ganglioside GM1 partitions between ordered and disordered lipid domains in a manner very similar to sphingomyelin. Ceramide exhibits a dramatically higher affinity for ordered lipid domains in both cholesterol-free and cholesterol-containing bilayers than do other sphingolipids. Our findings suggest that sphingolipids with a variety of headgroup structures will be enriched by substantial factors in liquid-ordered versus liquid-disordered regions of membranes, in a manner that is only modestly dependent on the nature of the polar headgroup. Ceramide is predicted to show a very strong enrichment in such domains, supporting previous suggestions that ceramide-mediated signaling may be compartmentalized to liquid-ordered (raft and raft-related) domains in the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号