首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Ugulava NB  Gibney BR  Jarrett JT 《Biochemistry》2000,39(17):5206-5214
Biotin synthase catalyzes the insertion of a sulfur atom into the saturated C6 and C9 carbons of dethiobiotin. This reaction has long been presumed to occur through radical chemistry, and recent experimental results suggest that biotin synthase belongs to a family of enzymes that contain an iron-sulfur cluster and reductively cleave S-adenosylmethionine, forming an enzyme or substrate radical, 5'-deoxyadenosine, and methionine. Biotin synthase (BioB) is aerobically purified as a dimer of 38 kDa monomers that contains two [2Fe-2S](2+) clusters per dimer. Maximal in vitro biotin synthesis requires incubation of BioB with dethiobiotin, AdoMet, reductants, exogenous iron, and crude bacterial protein extracts. It has previously been shown that reduction of BioB with dithionite in 60% ethylene glycol produces one [4Fe-4S](2+/1+) cluster per dimer. In the present work, we use UV/visible and electron paramagnetic resonance spectroscopy to show that [2Fe-2S] to [4Fe-4S] cluster conversion occurs through rapid dissociation of iron from the protein followed by rate-limiting reassociation. While in 60% ethylene glycol the product of dithionite reduction is one [4Fe-4S](2+) cluster per dimer, the product in water is one [4Fe-4S](1+) cluster per dimer. Further, incubation with excess iron, sulfide, and dithiothreitol produces protein that contains two [4Fe-4S](2+) clusters per dimer; subsequent reduction with dithionite produces two [4Fe-4S](1+) clusters per BioB dimer. BioB that contains two [4Fe-4S](2+/1+) clusters per dimer is rapidly and reversibly reduced and oxidized, suggesting that this is the redox-active form of the iron-sulfur cluster in the anaerobic enzyme.  相似文献   

2.
Biotin synthase is an iron-sulfur protein that utilizes AdoMet to catalyze the presumed radical-mediated insertion of a sulfur atom between the saturated C6 and C9 carbons of dethiobiotin. Biotin synthase (BioB) is aerobically purified as a dimer that contains [2Fe-2S](2+) clusters and is inactive in the absence of additional iron and reductants, and anaerobic reduction of BioB with sodium dithionite results in conversion to enzyme containing [4Fe-4S](2+) and/or [4Fe-4S](+) clusters. To establish the predominant cluster forms present in biotin synthase in anaerobic assays, and by inference in Escherichia coli, we have accurately determined the extinction coefficient and cluster content of the enzyme under oxidized and reduced conditions and have examined the equilibrium reduction potentials at which cluster reductions and conversions occur as monitored by UV/visible and EPR spectroscopy. In contrast to previous reports, we find that aerobically purified BioB contains ca. 1.2-1.5 [2Fe-2S](2+) clusters per monomer with epsilon(452) = 8400 M(-)(1) cm(-)(1) per monomer. Upon reduction, the [2Fe-2S](2+) clusters are converted to [4Fe-4S] clusters with two widely separate reduction potentials of -140 and -430 mV. BioB reconstituted with excess iron and sulfide in 60% ethylene glycol was found to contain two [4Fe-4S](2+) clusters per monomer with epsilon(400) = 30 000 M(-)(1) cm(-)(1) per monomer and is reduced with lower midpoint potentials of -440 and -505 mV, respectively. Finally, as predicted by the measured redox potentials, enzyme incubated under typical anaerobic assay conditions is repurified containing one [2Fe-2S](2+) cluster and one [4Fe-4S](2+) cluster per monomer. These results indicate that the dominant stable cluster state for biotin synthase is a dimer containing two [2Fe-2S](2+) and two [4Fe-4S](2+) clusters.  相似文献   

3.
Biotin synthase is an adenosylmethionine-dependent radical enzyme that catalyzes the substitution of sulfur for hydrogen at the saturated C6 and C9 positions in dethiobiotin. The structure of the biotin synthase monomer is an (alpha/beta)(8) barrel that contains one [4Fe-4S](2+) cluster and one [2Fe-2S](2+) cluster that encapsulate the substrates AdoMet and dethiobiotin. The air-sensitive [4Fe-4S](2+) cluster and the reductant-sensitive [2Fe-2S](2+) cluster have unique coordination environments that include close proximity to AdoMet and DTB, respectively. The relative positioning of these components, as well as several conserved protein residues, suggests at least two potential catalytic mechanisms that incorporate sulfur from either the [2Fe-2S](2+) cluster or a cysteine persulfide into the biotin thiophane ring. This review summarizes an accumulating consensus regarding the physical and spectroscopic properties of each FeS cluster, and discusses possible roles for the [4Fe-4S](2+) cluster in radical generation and the [2Fe-2S](2+) cluster in sulfur incorporation.  相似文献   

4.
Biotin synthase (BioB) converts dethiobiotin into biotin by inserting a sulfur atom between C6 and C9 of dethiobiotin in an S-adenosylmethionine (SAM)-dependent reaction. The as-purified recombinant BioB from Escherichia coli is a homodimeric molecule containing one [2Fe-2S](2+) cluster per monomer. It is inactive in vitro without the addition of exogenous Fe. Anaerobic reconstitution of the as-purified [2Fe-2S]-containing BioB with Fe(2+) and S(2)(-) produces a form of BioB that contains approximately one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per monomer ([2Fe-2S]/[4Fe-4S] BioB). In the absence of added Fe, the [2Fe-2S]/[4Fe-4S] BioB is active and can produce up to approximately 0.7 equiv of biotin per monomer. To better define the roles of the Fe-S clusters in the BioB reaction, M?ssbauer and electron paramagnetic resonance (EPR) spectroscopy have been used to monitor the states of the Fe-S clusters during the conversion of dethiobiotin to biotin. The results show that the [4Fe-4S](2+) cluster is stable during the reaction and present in the SAM-bound form, supporting the current consensus that the functional role of the [4Fe-4S] cluster is to bind SAM and facilitate the reductive cleavage of SAM to generate the catalytically essential 5'-deoxyadenosyl radical. The results also demonstrate that approximately (2)/(3) of the [2Fe-2S] clusters are degraded by the end of the turnover experiment (24 h at 25 degrees C). A transient species with spectroscopic properties consistent with a [2Fe-2S](+) cluster is observed during turnover, suggesting that the degradation of the [2Fe-2S](2+) cluster is initiated by reduction of the cluster. This observed degradation of the [2Fe-2S] cluster during biotin formation is consistent with the proposed sacrificial S-donating function of the [2Fe-2S] cluster put forth by Jarrett and co-workers (Ugulava et al. (2001) Biochemistry 40, 8352-8358). Interestingly, degradation of the [2Fe-2S](2+) cluster was found not to parallel biotin formation. The initial decay rate of the [2Fe-2S](2+) cluster is about 1 order of magnitude faster than the initial formation rate of biotin, indicating that if the [2Fe-2S] cluster is the immediate S donor for biotin synthesis, insertion of S into dethiobiotin would not be the rate-limiting step. Alternatively, the [2Fe-2S] cluster may not be the immediate S donor. Instead, degradation of the [2Fe-2S] cluster may generate a protein-bound polysulfide or persulfide that serves as the immediate S donor for biotin production.  相似文献   

5.
Biotin synthase (BioB) catalyzes the insertion of a sulfur atom between the C6 and C9 carbons of dethiobiotin. Reconstituted BioB from Escherichia coli contains a [4Fe-4S](2+/1+) cluster thought to be involved in the reduction and cleavage of S-adenosylmethionine (AdoMet), generating methionine and the reactive 5'-deoxyadenosyl radical responsible for dethiobiotin H-abstraction. Using EPR and M?ssbauer spectroscopy as well as methionine quantitation we demonstrate that the reduced S = 1/2 [4Fe-4S](1+) cluster is indeed capable of injecting one electron into AdoMet, generating one equivalent of both methionine and S = 0 [4Fe-4S](2+) cluster. Dethiobiotin is not required for the reaction. Using site-directed mutagenesis we show also that, among the eight cysteines of BioB, only three (Cys-53, Cys-57, Cys-60) are essential for AdoMet reductive cleavage, suggesting that these cysteines are involved in chelation of the [4Fe-4S](2+/1+) cluster.  相似文献   

6.
Taylor AM  Stoll S  Britt RD  Jarrett JT 《Biochemistry》2011,50(37):7953-7963
Biotin synthase catalyzes the conversion of dethiobiotin (DTB) to biotin through the oxidative addition of sulfur between two saturated carbon atoms, generating a thiophane ring fused to the existing ureido ring. Biotin synthase is a member of the radical SAM superfamily, composed of enzymes that reductively cleave S-adenosyl-l-methionine (SAM or AdoMet) to generate a 5'-deoxyadenosyl radical that can abstract unactivated hydrogen atoms from a variety of organic substrates. In biotin synthase, abstraction of a hydrogen atom from the C9 methyl group of DTB would result in formation of a dethiobiotinyl methylene carbon radical, which is then quenched by a sulfur atom to form a new carbon-sulfur bond in the intermediate 9-mercaptodethiobiotin (MDTB). We have proposed that this sulfur atom is the μ-sulfide of a [2Fe-2S](2+) cluster found near DTB in the enzyme active site. In the present work, we show that formation of MDTB is accompanied by stoichiometric generation of a paramagnetic FeS cluster. The electron paramagnetic resonance (EPR) spectrum is modeled as a 2:1 mixture of components attributable to different forms of a [2Fe-2S](+) cluster, possibly distinguished by slightly different coordination environments. Mutation of Arg260, one of the ligands to the [2Fe-2S] cluster, causes a distinctive change in the EPR spectrum. Furthermore, magnetic coupling of the unpaired electron with (14)N from Arg260, detectable by electron spin envelope modulation (ESEEM) spectroscopy, is observed in WT enzyme but not in the Arg260Met mutant enzyme. Both results indicate that the paramagnetic FeS cluster formed during catalytic turnover is a [2Fe-2S](+) cluster, consistent with a mechanism in which the [2Fe-2S](2+) cluster simultaneously provides and oxidizes sulfide during carbon-sulfur bond formation.  相似文献   

7.
The enzyme cofactor and essential vitamin biotin is biosynthesized in bacteria, fungi, and plants through a pathway that culminates with the addition of a sulfur atom to generate the five-membered thiophane ring. The immediate precursor, dethiobiotin, has methylene and methyl groups at the C6 and C9 positions, respectively, and formation of a thioether bridging these carbon atoms requires cleavage of unactivated CH bonds. Biotin synthase is an S-adenosyl-l-methionine (SAM or AdoMet) radical enzyme that catalyzes reduction of the AdoMet sulfonium to produce 5'-deoxyadenosyl radicals, high-energy carbon radicals that can directly abstract hydrogen atoms from dethiobiotin. The available experimental and structural data suggest that a [2Fe-2S](2+) cluster bound deep within biotin synthase provides a sulfur atom that is added to dethiobiotin in a stepwise reaction, first at the C9 position to generate 9-mercaptodethiobiotin, and then at the C6 position to close the thiophane ring. The formation of sulfur-containing biomolecules through a radical reaction involving an iron-sulfur cluster is an unprecedented reaction in biochemistry; however, recent enzyme discoveries suggest that radical sulfur insertion reactions may be a distinct subgroup within the burgeoning Radical SAM superfamily. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.  相似文献   

8.
Biotin synthase (BS) is an AdoMet-dependent radical enzyme that catalyzes the insertion of sulfur into saturated C6 and C9 atoms in the substrate dethiobiotin. To facilitate sulfur insertion, BS catalyzes the reductive cleavage of AdoMet to methionine and 5'-deoxyadenosyl radicals, which then abstract hydrogen atoms from the C6 and C9 positions of dethiobiotin. The enzyme from Escherichia coli is purified as a dimer that contains one [2Fe-2S]2+ cluster per monomer and can be reconstituted in vitro to contain an additional [4Fe-4S]2+ cluster per monomer. Since each monomer contains each type of cluster, the dimeric enzyme could contain one active site per monomer, or could contain a single active site at the dimer interface. To address these possibilities, and to better understand the manner in which biotin synthase controls radical generation and reactivity, we have examined the binding of AdoMet and DTB to reconstituted biotin synthase. We find that both the [2Fe-2S]2+ cluster and the [4Fe-4S]2+ cluster must be present for tight substrate binding. Further, substrate binding is highly cooperative, with the affinity for AdoMet increasing >20-fold in the presence of DTB, while DTB binds only in the presence of AdoMet. The stoichiometry of binding is ca. 2:1:1 AdoMet:DTB:BS dimer, suggesting that biotin synthase has a single functional active site per dimer. AdoMet binding, either in the presence or in the absence of DTB, leads to a decrease in the magnitude of the UV-visible absorption band at approximately 400 nm that we attribute to changes in the coordination environment of the [4Fe-4S]2+ cluster. Using these spectral changes as a probe, we have examined the kinetics of AdoMet and DTB binding, and propose an ordered binding mechanism that is followed by a conformational change in the enzyme-substrate complex. This kinetic analysis suggests that biotin synthase is evolved to bind AdoMet both weakly and slowly in the absence of DTB, while both the rate of binding and the affinity for AdoMet are increased in the presence of DTB. Cooperative binding of AdoMet and DTB may be an important mechanism for limiting the production of 5'-deoxyadenosyl radicals in the absence of the correct substrate.  相似文献   

9.
Biotin synthase, a member of the "radical SAM" family, catalyzes the final step of the biotin biosynthetic pathway, namely, the insertion of a sulfur atom into dethiobiotin (DTB). The active form of the enzyme contains two iron-sulfur clusters, a [4Fe-4S](2+) cluster liganded by Cys-53, Cys-57, and Cys-60 and the S-adenosylmethionine (AdoMet or SAM) cosubstrate and a [2Fe-2S](2+) cluster liganded by Cys-97, Cys-128, Cys-188, and Arg-260. Single-point mutation of each of these six conserved cysteines produced inactive variants. In this work, mutants of other highly conserved residues from the Y(150)NHNLD motif are described. They have properties similar to those of the wild-type enzyme with respect to their cluster content and characteristics. For all of them, the as-isolated form, which contains an air-stable [2Fe-2S](2+) center, can additionally accommodate an air-sensitive [4Fe-4S](2+) center which is generated by incubation under anaerobic conditions with Fe(2+) and S(2-). Their spectroscopic properties are similar to those of the wild type. However, they are inactive, except the mutant H152A that exhibits a weak activity. We show that the mutants, inactive in producing biotin, are also unable to cleave AdoMet and to produce the deoxyadenosyl radical (AdoCH(2)(*)). In the case of H152A, a value of 5.5 +/- 0.4 is found for the 5'-deoxyadenosine (AdoCH(3)):biotin ratio, much higher than the value of 2.8 +/- 0.3 usually observed with the wild type. This reveals a greater contribution of the abortive process in which the AdoCH(2)(*) radical is quenched by hydrogen atoms from the protein or from some components of the system. Thus, in this case, the coupling between the production of AdoCH(2)(*) and its reaction with the hydrogen at C-6 and C-9 of DTB is less efficient than that in the wild type, probably because of geometry's perturbation within the active site.  相似文献   

10.
Biotin synthase, a member of the "radical SAM" family, catalyzes the final step of the biotin biosynthetic pathway, namely, the insertion of a sulfur atom into dethiobiotin. The as-isolated enzyme contains a [2Fe-2S](2+) cluster, but the active enzyme requires an additional [4Fe-4S](2+) cluster, which is formed in the presence of Fe(NH(4))(2)(SO(4))(2) and Na(2)S in the in vitro assay. The role of the [4Fe-4S](2+) cluster is to mediate the electron transfer to SAM, while the [2Fe-2S](2+) cluster is involved in the sulfur insertion step. To investigate the selenium version of the reaction, we have depleted the enzyme of its iron and sulfur and reconstituted the resulting apoprotein with FeCl(3) and Na(2)Se to yield a [2Fe-2Se](2+) cluster. This enzyme was assayed in vitro with Na(2)Se in place of Na(2)S to enable the formation of a [4Fe-4Se](2+) cluster. Selenobiotin was produced, but the activity was lower than that of the as-isolated [2Fe-2S](2+) enzyme in the presence of Na(2)S. The [2Fe-2Se](2+) enzyme was additionally assayed with Na(2)S, to reconstitute a [4Fe-4S](2+) cluster, in case the latter was more efficient than a [4Fe-4Se](2+) cluster for the electron transfer. Indeed, the activity was improved, but in that case, a mixture of biotin and selenobiotin was produced. This was unexpected if one considers the [2Fe-2S](2+) center as the sulfur source (either as the ultimate donor or via another intermediate), unless some exchange of the chalcogenide has taken place in the cluster. This latter point was seen in the resonance Raman spectrum of the reacted enzyme which clearly indicated the presence of both the [2Fe-2Se](2+) and [2Fe-2S](2+) clusters. No exchange was observed in the absence of reaction. These observations bring supplementary proof that the [2Fe-2S](2+) cluster is implicated in the sulfur insertion step.  相似文献   

11.
Biotin synthase, the enzyme that catalyzes the last step of the biosynthesis of biotin, contains only [2Fe-2S](2+) clusters when isolated under aerobic conditions. Previous results showed that reconstitution with an excess of FeCl(3) and Na(2)S under reducing and anaerobic conditions leads to either [4Fe-4S](2+), [4Fe-4S](+), or a mixture of [4Fe-4S](2+) and [2Fe-2S](2+) clusters. To determine whether any of these possibilities or other different cluster configuration could correspond to the physiological in vivo state, we have used (57)Fe M?ssbauer spectroscopy to investigate the clusters of biotin synthase in whole cells. The results show that, in aerobically grown cells, biotin synthase contains a mixture of [4Fe-4S](2+) and [2Fe-2S](2+) clusters. A mixed [4Fe-4S](2+):[2Fe-2S](2+) cluster form has already been observed under certain in vitro conditions, and it has been proposed that both clusters might each play a significant role in the mechanism of biotin synthase. Their presence in vivo is now another argument in favor of this mixed cluster form.  相似文献   

12.
Broach RB  Jarrett JT 《Biochemistry》2006,45(47):14166-14174
Biotin synthase (BS) is an S-adenosylmethionine (AdoMet)-dependent radical enzyme that catalyzes the addition of sulfur to dethiobiotin. Like other AdoMet radical enzymes, BS contains a [4Fe-4S] cluster that is coordinated by a highly conserved CxxxCxxC sequence motif and by the methionyl amine and carboxylate of AdoMet. The close association of the [4Fe-4S]+ cluster with AdoMet facilitates reductive cleavage of the sulfonium and the generation of transient 5'-deoxyadenosyl radicals, which are then proposed to sequentially abstract hydrogen atoms from the substrate to produce carbon radicals at C9 and C6 of dethiobiotin. BS also contains a [2Fe-2S]2+ cluster located approximately 4-5 A from dethiobiotin, and we have proposed that a bridging sulfide of this cluster quenches the substrate radicals, leading to formation of the thiophane ring of biotin. In BS from Escherichia coli, the [2Fe-2S]2+ cluster is coordinated by cysteines 97, 128, and 188, and the atypical metal ligand, arginine 260. The evolutionary conservation of an arginine guanidinium as a metal ligand suggests a novel role for this residue in tuning the reactivity or stability of the [2Fe-2S]2+ cluster. In this work, we explore the effects of mutagenesis of Arg260 to Ala, Cys, His, and Met. Although perturbations in a number of characteristics of the [2Fe-2S]2+ cluster and the proteins are noted, the reconstituted enzymes have in vitro single-turnover activities that are 30-120% of that of the wild type. Further, in vivo expression of each mutant enzyme was sufficient to sustain growth of a bioB- mutant strain on dethiobiotin-supplemented medium, suggesting the enzymes were active and efficiently reconstituted by the in vivo iron-sulfur cluster (ISC) assembly system. Although we cannot exclude an as-yet-unidentified in vivo role in cluster repair or retention, we can conclude that Arg260 is not essential for the catalytic reaction of BS.  相似文献   

13.
Biotin synthase, the enzyme which catalyzes the last step of the biosynthesis of biotin, contains only (2Fe-2S)(2+) clusters when isolated under aerobic conditions. Previous results showed that reduction by dithionite or photoreduced deazaflavin converts the (2Fe-2S)(2+) to (4Fe-4S)(2+,+). However, until now, no detailed investigation concerning the fate of the (2Fe-2S)(2+) during reduction under assay conditions (NADPH, flavodoxin, flavodoxin reductase) has been realized. Here, we show by M?ssbauer spectroscopy on a partially purified fraction overexpressing the enzyme that, in the presence of a S(2)(-) source and Fe(2+), there is conversion of the predominant (2Fe-2S)(2+) clusters into a 1:1 mixture of (2Fe-2S)(2+) and (4Fe-4S)(2+). No change in this cluster composition was observed in the presence of the physiological reducing system. When the reaction was allowed to proceed by addition of the substrate dethiobiotin, the (4Fe-4S)(2+) was untouched whereas the (2Fe-2S)(2+) was degraded into a new species. This is consistent with the hypothesis that the reduced (4Fe-4S) cluster is involved in mediating the cleavage of AdoMet and that the (2Fe-2S)(2+) is the sulfur source for biotin.  相似文献   

14.
Biotin synthase (BioB) catalyses the final step in the biosynthesis of biotin. Aerobically purified biotin synthase contains one [2Fe-2S]2+ cluster per monomer. However, active BioB contains in addition a [4Fe-4S]2+ cluster which can be formed either by reconstitution with iron and sulfide, or on reduction with sodium dithionite. Here, we use EPR spectroscopy to show that mutations in the conserved YNHNLD sequence of Escherichia coli BioB affect the formation and stability of the [4Fe-4S]1+ cluster on reduction with dithionite and report the observation of a new [2Fe-2S]1+ cluster. These results serve to illustrate the dynamic nature of iron-sulfur clusters in biotin synthase and the role played by the protein in cluster interconversion.  相似文献   

15.
Taylor AM  Farrar CE  Jarrett JT 《Biochemistry》2008,47(35):9309-9317
Biotin synthase (BS) catalyzes the oxidative addition of a sulfur atom to dethiobiotin (DTB) to generate the biotin thiophane ring. This enzyme is an S-adenosylmethionine (AdoMet) radical enzyme that catalyzes the reductive cleavage of AdoMet, generating methionine and a transient 5'-deoxyadenosyl radical. In our working mechanism, the 5'-deoxyadenosyl radical oxidizes DTB by abstracting a hydrogen from C6 or C9, generating a dethiobiotinyl carbon radical that is quenched by a sulfide from a [2Fe-2S] (2+) cluster. A similar reaction sequence directed at the other position generates the second C-S bond in the thiophane ring. Since the BS active site holds only one AdoMet and one DTB, it follows that dissociation of methionine and 5'-deoxyadenosine and binding of a second equivalent of AdoMet must be intermediate steps in the formation of biotin. During these dissociation-association steps, a discrete DTB-derived intermediate must remain bound to the enzyme. In this work, we confirm that the conversion of DTB to biotin is accompanied by the reductive cleavage of 2 equiv of AdoMet. A discrepancy between DTB consumption and biotin formation suggests the presence of an intermediate, and we use liquid chromatography and mass spectrometry to demonstrate that this intermediate is indeed 9-mercaptodethiobiotin, generated at approximately 10% of the total enzyme concentration. The amount of intermediate observed is increased when the reaction is run with substoichiometric levels of AdoMet or with the defective enzyme containing the Asn153Ser mutation. The retention of 9-mercaptodethiobiotin as a tightly bound intermediate is consistent with a mechanism involving the stepwise radical-mediated oxidative abstraction of sulfide from an iron-sulfur cluster.  相似文献   

16.
Biotin synthase, a member of the "radical-SAM" family, produces biotin by inserting a sulfur atom between C-6 and C-9 of dethiobiotin. Each of the two saturated carbon atoms is activated through homolytic cleavage of a C-H bond by a deoxyadenosyl radical, issued from the monoelectronic reduction of S-adenosylmethionine (SAM or AdoMet). An important unexplained observation is that the enzyme produces only 1 mol of biotin per enzyme monomer. Some possible reasons for this absence of multiple turnovers are considered here, in connection with the postulated mechanisms. There is a general agreement among several groups that the active form of biotin synthase contains one (4Fe-4S)(2+,1+) center, which mediates the electron transfer to AdoMet, and one (2Fe-2S)(2+) center, which is considered the sulfur source [Ugulava, N. B., Sacanell, C. J., and Jarrett, J. T. (2001) Biochemistry 40, 8352-8358; Tse Sum Bui, B., Benda, R., Schunemann, V., Florentin, D., Trautwein, A. X., and Marquet, A. (2003) Biochemistry 42, 8791-8798; Jameson, G. N. L., Cosper, M. M., Hernandez, H. L., Johnson, M. K., and Huynh, B. H. (2004) Biochemistry 43, 2022-2031]. An alternative hypothesis considers that biotin synthase has a pyridoxal phosphate (PLP)-dependent cysteine desulfurase activity, producing a persulfide which could be the sulfur donor. The absence of turnover was explained by the inhibition due to deoxyadenosine, an end product of the reaction [Ollagnier-de Choudens, S., Mulliez, E., and Fontecave, M. (2002) FEBS Lett. 535, 465-468]. In this work, we show that our purified enzyme has no cysteine desulfurase activity and the required sulfide has to be added as Na(2)S. It cannot be replaced by cysteine, and consistently, PLP has no effect. We observed that deoxyadenosine does not inhibit the reaction either. On the other hand, if the (2Fe-2S)(2+) center is the sulfur source, its depletion after reaction could explain the absence of turnover. We found that after addition of fresh cofactors, including Fe(2+) and S(2)(-), either to the assay when one turn is completed or after purification of the reacted enzyme by different techniques, only a small amount of biotin (0.3-0.4 equiv/monomer) is further produced. This proves that an active enzyme cannot be fully reconstituted after one turn. When 9-mercaptodethiobiotin, which already contains the sulfur atom of biotin, is used as the substrate, the same turnover of one is observed, with similar reaction rates. We postulate that the same intermediate involving the (2Fe-2S) cluster is formed from both substrates, with a rate-determining step following the formation of this intermediate.  相似文献   

17.
Biotin synthase (BioB) is an S-adenosylmethionine radical enzyme that catalyzes addition of sulfur to dethiobiotin to form the biotin thiophane ring. In vitro, Escherichia coli BioB is active for only one turnover, during which the [2Fe-2S]2+ cluster is destroyed, one sulfide from the cluster is incorporated as the biotin thiophane sulfur, while Fe2+ ions and the remaining S2− ion are released from the protein. The present work examines the fate of the protein following the loss of the FeS clusters. We examine the quaternary structure and thermal stability of active and inactive states of BioB, and find that loss of either the [4Fe-4S]2+ or [2Fe-2S]2+ clusters results in destabilization but not global unfolding of BioB. Using susceptibility to limited proteolysis as a guide, we find that specific regions of the protein appear to be transiently unfolded following loss of these clusters. We also examine the in vivo degradation of biotin synthase during growth in low-iron minimal media and find that BioB is degraded by an apparent ATP-dependent proteolysis mechanism that sequentially cleaves small fragments starting at the C-terminus. BioB appears to be resistant to degradation and capable of multiple turnovers only under high-iron conditions that favor repair of the FeS clusters, a process most likely mediated by the Isc or Suf iron-sulfur cluster assembly systems.  相似文献   

18.
The human proteins MOCS1A and MOCS1B catalyze the conversion of a guanosine derivative to precursor Z during molybdenum cofactor biosynthesis. MOCS1A shares homology with S-adenosylmethionine (AdoMet)-dependent radical enzymes, which catalyze the formation of protein and/or substrate radicals by reductive cleavage of AdoMet through a [4Fe-4S] cluster. Sequence analysis of MOCS1A showed two highly conserved cysteine motifs, one near the N terminus and one near the C terminus. MOCS1A was heterologously expressed in Escherichia coli and purified under aerobic and anaerobic conditions. Individual mutations of the conserved cysteines to serine revealed that all are essential for synthesis of precursor Z in vivo. The type and properties of the iron-sulfur (FeS) clusters were investigated using a combination of UV-visible absorption, variable temperature magnetic circular dichroism, resonance Raman, M?ssbauer, and EPR spectroscopies coupled with iron and acid-labile sulfide analyses. The results indicated that anaerobically purified MOCS1A is a monomeric protein containing two oxygen-sensitive FeS clusters, each coordinated by only three cysteine residues. A redox-active [4Fe-4S](2+,+) cluster is ligated by an N-terminal CX(3)CX(2)C motif as is the case with all other AdoMet-dependent radical enzymes investigated thus far. A C-terminal CX(2)CX(13)C motif that is unique to MOCS1A and its orthologs primarily ligates a [3Fe-4S](0) cluster. However, MOCS1A could be reconstituted in vitro under anaerobic conditions to yield a form containing two [4Fe-4S](2+) clusters. The N-terminal [4Fe-4S](2+) cluster was rapidly degraded by oxygen via a semistable [2Fe-2S](2+) cluster intermediate, and the C-terminal [4Fe-4S](2+) cluster was rapidly degraded by oxygen to yield a semistable [3Fe-4S](0) cluster intermediate.  相似文献   

19.
Agar JN  Krebs C  Frazzon J  Huynh BH  Dean DR  Johnson MK 《Biochemistry》2000,39(27):7856-7862
Iron-sulfur cluster biosynthesis in both prokaryotic and eukaryotic cells is known to be mediated by two highly conserved proteins, termed IscS and IscU in prokaryotes. The homodimeric IscS protein has been shown to be a cysteine desulfurase that catalyzes the reductive conversion of cysteine to alanine and sulfide. In this work, the time course of IscS-mediated Fe-S cluster assembly in IscU was monitored via anaerobic anion exchange chromatography. The nature and properties of the clusters assembled in discrete fractions were assessed via analytical studies together with absorption, resonance Raman, and M?ssbauer investigations. The results show sequential cluster assembly with the initial IscU product containing one [2Fe-2S](2+) cluster per dimer converting first to a form containing two [2Fe-2S](2+) clusters per dimer and finally to a form that contains one [4Fe-4S](2+) cluster per dimer. Both the [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU are reductively labile and are degraded within minutes upon being exposed to air. On the basis of sequence considerations and spectroscopic studies, the [2Fe-2S](2+) clusters in IscU are shown to have incomplete cysteinyl ligation. In addition, the resonance Raman spectrum of the [4Fe-4S](2+) cluster in IscU is best interpreted in terms of noncysteinyl ligation at a unique Fe site. The ability to assemble both [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU supports the proposal that this ubiquitous protein provides a scaffold for IscS-mediated assembly of clusters that are subsequently used for maturation of apo Fe-S proteins.  相似文献   

20.
Biotin synthase (BioB), an iron-sulfur enzyme, catalyzes the last step of the biotin biosynthesis pathway. The reaction consists in the introduction of a sulfur atom into two non-activated C-H bonds of dethiobiotin. Substrate radical activation is initiated by the reductive cleavage of S-adenosylmethionine (AdoMet) into a 5'-deoxyadenosyl radical. The recently described pyridoxal 5'-phosphate-bound enzyme was used to show that only one molecule of AdoMet, and not two, is required for the formation of one molecule of biotin. Furthermore 5'-deoxyadenosine, a product of the reaction, strongly inhibited biotin formation, an observation that may explain why BioB is not able to make more than one turnover. However this enzyme inactivation is not irreversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号