首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Significant reduction was observed in the population of plant-parasitic nematodes, Meloidogyne incognita, Rotylenchulus reniformis and Tylenchorhynchus brassicae infesting eggplant and cauliflower when given root-dip treatment in the leaf extracts of Argemone maxicana and Solanum xanthocarpum at different concentrations and dip durations. The root-knot development and larval penetration of second stage juveniles of M. incognita were also inhibited, may be due to bare-root dip treatment in leaf extracts of both the weed plants. Leaf extracts of S. xanthocarpum caused more inhibition in root-knot development, nematode multiplication of reniform and stunt nematodes than that of A. maxicana. Plant growth improvement was noted which seems to be due to dip treatment and reduction in the population of parasitic nematodes. The efficacy of root-dip treatment with respect to improvement in plant growth of eggplant and cauliflower and reduction in root-knot development and nematode population, increased with increasing the concentration of leaf extracts and dip durations.  相似文献   

2.
An increase in the inoculum level of root‐knot nematode, Meloidogyne incognita and the reniform nematode, Rotylenchulus reniformis resulted in a relative decrease in plant growth parameters of chickpea. Consequently water absorption capability of roots was impaired. M. incognita caused greater reduction than R. reniformis at the same inoculum level. In concomitant inoculation of M. incognita and R. reniformis there was greater suppression in plant growth of chickpea. The suppression in concomitant inoculations was less than the sum of the suppression caused by the same levels of inoculations of the individual species. The multiplication rate of the nematodes decreased as the inoculum level increased. The results also suggest competition for feeding sites between the two nematode species. The multiplication rate of one species progressively decrease with the increase in the inoculum levels of the other nematode.  相似文献   

3.
【目的】建立一种基于环介导等温扩增(loop-mediated isothermal amplification,LAMP)技术,从植物罹病组织中直接检测3种常见的根结线虫,为根结线虫的监测和防治提供技术支持。【方法】分别采用3种根结线虫的种类特异性引物对所选择的根结线虫的DNA片段进行PCR扩增,扩增产物纯化、回收并测序。根据3种根结线虫的测序结果,针对种类特异区段,采用PrimerExplorerV4软件,分别设计3种根结线虫的LAMP引物。设计的引物组人工合成后,以提取的纯化种群线虫DNA为模板,分别进行引物组的特异性测试,筛选出分别针对3种根结线虫的最佳引物组。【结果】研究设计的3种根结线虫的LAMP特异性引物能够直接从植物根结中检测出南方、花生、爪哇3种常见根结线虫,LAMP快速检测体系为:dNTPS浓度为1 mmol·L~(-1),Mg~(2+)的浓度为5 mmol·L~(-1),不添加甜菜碱,反应时间为45 min。【结论】本实验建立的南方、花生、爪哇根结线虫LAMP快速分子检测方法,具有特异性强、灵敏度高、简单、快速、经济等特征,能够从罹病植物组织中快速准确地检测出南方、花生和爪哇根结线虫,具有极高的实践应用价值。  相似文献   

4.
Fifteen economically important plant species were tested for their suitability to commonly occurring plant parasitic nematodes viz, Hoplolaimus indicus, Helicotylenchus indicus, Tylenchus filiformis, Rotylenchulus reniformis, Tylenchorhynchus brassicae, Pratylenchus zeae and Meloidogyne incognita. The plants reacted differently to different nematodes. Moreover, eight fruit trees/plants were also tested for their suitability to nematodes.  相似文献   

5.
Avermectins are macrocyclic lactones produced by Streptomyces avermitilis. Abamectin is a blend of B1a and B1b avermectins that is being used as a seed treatment to control plant-parasitic nematodes on cotton and some vegetable crops. No LD50 values, data on nematode recovery following brief exposure, or effects of sublethal concentrations on infectivity of the plant-parasitic nematodes Meloidogyne incognita or Rotylenchulus reniformis are available. Using an assay of nematode mobility, LD50 values of 1.56 μg/ml and 32.9 μg/ml were calculated based on 2 hr exposure for M. incognita and R. reniformis, respectively. There was no recovery of either nematode after exposure for 1 hr. Mortality of M. incognita continued to increase following a 1 hr exposure, whereas R. reniformis mortality remained unchanged at 24 hr after the nematodes were removed from the abamectin solution. Sublethal concentrations of 1.56 to 0.39 μg/ml for M. incognita and 32.9 to 8.2 μg/ml for R. reniformis reduced infectivity of each nematode on tomato roots. The toxicity of abamectin to these nematodes was comparable to that of aldicarb.  相似文献   

6.
Plant protoplast technology is being investigated as a means of transferring root-knot nematode resistance factors from Solanum sisymbriifolium into the susceptible S. melongena. Solanum sisymbriifolium plants regenerated from callus lost resistance to Meloidogyne javanica but retained resistance to M. incognita. Tomato plants cloned from leaf discs of the root-knot nematode resistant ''Patriot'' were completely susceptible to M. incognita, while sections of stems and leaves rooted in sand in the absence of growth hormones retained resistance. Changes in resistance persisted for three generations. It is postulated that the exogenous hormonal constituents of the culture medium are modifying the expression of genetic resistance.  相似文献   

7.
To determine the presence and level of root-knot nematode (Meloidogyne spp.) infestation in Southern California bell pepper (Capsicum annuum) fields, soil and root samples were collected in April and May 2012 and analyzed for the presence of root-knot nematodes. The earlier samples were virtually free of root-knot nematodes, but the later samples all contained, sometimes very high numbers, of root-knot nematodes. Nematodes were all identified as M. incognita. A nematode population from one of these fields was multiplied in a greenhouse and used as inoculum for two repeated pot experiments with three susceptible and two resistant bell pepper varieties. Fruit yields of the resistant peppers were not affected by the nematodes, whereas yields of two of the three susceptible pepper cultivars decreased as a result of nematode inoculation. Nematode-induced root galling and nematode multiplication was low but different between the two resistant cultivars. Root galling and nematode reproduction was much higher on the three susceptible cultivars. One of these susceptible cultivars exhibited tolerance, as yields were not affected by the nematodes, but nematode multiplication was high. It is concluded that M. incognita is common in Southern California bell pepper production, and that resistant cultivars may provide a useful tool in a nonchemical management strategy.  相似文献   

8.
Culture filtrates of selected soil fungi, namely Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Fusarium oxysporum, Penicillium vermiculatum and Rhizopus nigricans exhibited variable response to egg hatching and mortality of the root-knot nematode, Meloidogyne incognita. Higher concentrations of the culture filtrates of all the fungi inhibited egg hatching and proved to be toxic to the juveniles of M. incognita. In addition, development of the gall and multiplication of M. incognita were also found adversely affected in varying degrees on all the plants of Vigna radiata treated with the filtrates. The culture filtrate of A. niger showed highest toxicity to the nematode than those of any other fungus tested. Soil drench application of the culture filtrates gave better seedling growth and least nematode multiplication in comparison to seed soaking treatment.  相似文献   

9.
Studies were made to determine the efficacy of Paecilomyces lilacinus in management of root-knot nematode (Meloidogyne incognita) in soil amended with various organic matters. The soil amendments with organic additives except gram and rice husks significantly reduced the multiplication of M. incognita and the root galling caused by root-knot nematode which consequently increased the plant growth. The greatest improvement in plant growth and reduced reproduction factor and root galling was recorded in soil amendment with leaves of Calotropis procera while the least was in kail saw dust. The best protection against M. incognita was observed on the integration of organic additives with P. lilacinus, which resulted increased plant growth and reduced population build-up of nematodes and root gallings. The leaves of C. procera with P. lilacinus were most effective than all other organic materials used among the different integrated approaches. The organic amendments also increased the parasitism of P. lilacinus on M. incognita.  相似文献   

10.
Predatory behavior of a nematode is usually determined through gut content observation or prey delimitation counts. In this experiment, Mononchus and Neoactinolaimus predation of Rotylenchulus reniformis or Meloidogyne incognita was determined using a PCR-based nematode gut content analysis. Soil samples naturally infested with Mononchus were placed in tubes and potential prey nematodes R. reniformis, M. incognita, or a mixture of both were introduced. The gut contents of Mononchus were assayed for the DNA from R. reniformis or M. incognita using PCR specific primers. A higher % of Mononchus tested positive for DNA of R. reniformis than for M. incognita when the prey were added alone. However, when provided with both prey species, Mononchus was tested positive for DNA of M. incognita more frequently than for R. reniformis. Percent Mononchus testing positive for DNA of R. reniformis correlated positively with the abundance of R. reniformis, but this relationship was not observed between Mononchus and M. incognita. Neoactinolaimus was added to aqueous solution containing a mixture of free-living nematodes and R. reniformis. More Neoactinolaimus tested positive for DNA of R. reniformis than other predatory or omnivorous nematodes in the same samples. Based on regression analysis, the presence of fungivorous and other predatory nematodes in the soil could distract Neoactinolaimus from predation on R. reniformis. Our results suggested that Prismatolaimus, Mesodiplogasteroides and Eudorylaimus could also prey on R. reniformis. Although less than 40% of the predatory or omnivorous nematodes tested preyed on R. reniformis, this level of predation could contribute to reducing the population densities of plant-parasitic nematodes in the soil.  相似文献   

11.
Summary The interaction between the VA mycorrhizal fungus,Glomus fasciculatus and the root-knot nematodes,Meloidogyne incognita andM. javanica, and their effects on the growth and phosphorus nutrition of tomato was studied in a red sandy loam soil of pH 6.0. Inoculation of tomato roots with root-knot nematodes enhanced infection and spore production byG. fasciculatus. Inoculation of tomato plants withG. fasciculatus significantly reduced the number and size of the root-knot galls produced byM. incognita andM. javanica. Inoculation withG. fasciculatus although improved plant growth and its total phosphorus content compared to the uninoculated plants, the difference were not statistically significant.  相似文献   

12.
In order to develop biological control methods that are effective against the root-knot nematode Meloidogyne incognita (Kofoid and White) chitwood, the activity of ethanolic and aqueous extracts of wild plant species distributed on Okinawa Island on the viability and mobility of second stage M. incognita juveniles (J2s) was evaluated. Eleven of the 29 extracts immobilized at least half of the J2 stage nematodes in an in vitro assay. Aqueous extracts of Bidens pilosa L. var. radiata Scherff, Hydrocotyle dichondroides Makino, Oxalis corymbosa DC., Oxalis corniculata L., and Stenactis annus (L.) Cass gave 90% or better immobilization activity. Among these, B. pilosa var. radiata had the highest activity. Significant immobilization, lethality, repellence and egg hatching inhibition were observed with extracts from each B. pilosa plant part, but especially from leaves. The effects of plant extracts on the mobility of M. incognita were higher than on the free-living nematode Panagrolaimus sp., suggesting that M. incognita could be suppressed using B. pilosa extracts without significantly affecting beneficial nematodes.  相似文献   

13.
Plant growth-promoting rhizobacterium, Pseudomonas fluorescens strain BICC602 suppresses root-knot nematode (Meloidogyne incognita) by enhancing defence mechanism leading to induced systemic resistance in cowpea (Vigna unguiculata) cv. L.Walp. and tomato (Solanum lycopersicum) cv. Pusa Ruby. In cowpea, the soil treatment proved more effective than foliar spray on root galling and eggs in roots. However, which factors are necessary in the induction of resistance response in plants against nematodes by BICC602 is not yet known. Salicylic acid (SA) production by some bacteria acts as endogenous signal for the activation of certain plant defence responses. In a split-root trial with tomato as a host plant and M. incognita as challenging parasite, BICC602 induces systemic resistance in tomato plants. Based on the results, it is assumed that P. fluorescens-induced resistance against M. incognita in cowpea and tomato is made either through SA-dependent or SA-independent transduction pathway.  相似文献   

14.
The effects of soil type and initial inoculum density (Pi) on the reproductive and damage potentials of Meloidogyne incognita and Rotylenchulus reniformis on cotton were evaluated in microplot experiments from 1991 to 1993. The equilibrium nematode population density for R. reniformis on cotton was much greater than that of M. incognita, indicating that cotton is a better host for R. reniformis than M. incognita. Reproduction of M. incognita was greater in coarse-textured soils than in fine-textured soils, whereas R. reniformis reproduction was greatest in a Portsmouth loamy sand with intermediate percentages of clay plus silt. Population densities of M. incognita were inversely related to the percentage of silt and clay, but R. reniformis was favored by moderate levels of clay plus silt (ca. 28%). Both M. incognita races 3 and 4 and R. reniformis effected suppression of seed-cotton yield in all soil types evaluated. Cotton-yield suppression was greatest in response to R. reniformis at high Pi. Cotton maturity, measured as percentage of open bolls at different dates, was affected by the presence of nematodes in all 3 years.  相似文献   

15.
Experiments were conducted in the greenhouse to assess root galling and egg production of three root-knot nematode species, Meloidogyne arenaria, M. incognita, and M. javanica, on several weeds common to Florida agricultural land. Weeds evaluated were Amaranthus retroflexus (redroot pigweed), Cyperus esculentus (yellow nutsedge), Eleusine indica (goosegrass), Portulaca oleracea (common purslane), and Solanum americanum (American black nightshade). Additionally, although it is recommended as a cover crop in southern regions of the U.S., Aeschynomene americana (American jointvetch) was evaluated as a weed following the detection of root galling in a heavy volunteer infestation of an experimental field in southeastern Florida. Weeds were propagated from seed and inoculated with 1000 nematode eggs when plants reached the two true-leaf stage. Tomato (Solanum lycopersicum ‘Rutgers’) was included as a positive control. Aeschynomene americana and P. oleracea roots supported the highest number of juveniles (J2) and had the highest number of eggs/g of root for all three species of Meloidogyne tested. However, though P. oleracea supported very high root levels of the three nematode species tested, its fleshy roots did not exhibit severe gall symptoms. Low levels of apparent galling, combined with high egg production, increase the potential for P. oleracea to support populations of these three species of root-knot nematodes to a degree that may not be appropriately recognized. This research quantifies the impact of P. oleracea as a host for M. arenaria, M. incognita, and M. javanica compared to several other important weeds commonly found in Florida agricultural production, and the potential for A. americana to serve as an important weed host of the three species of root-knot nematode tested in southern regions of Florida.  相似文献   

16.
The root-knot nematode Meloidogyne incognita is one of the most damaging plant parasitic nematodes in the world. In this study, the effect of cystatin from Amaranthus hypochondriacus (AhCPI) as a potential control agent for M. incognita was explored. In vitro bioassays demonstrated that AhCPI affects the growth and development of eggs and the infectivity of juveniles (J2) of M. incognita, such as mortality and slower development, showing characteristic tissue damage. Mortality levels were quantified by Probit analysis, estimating LC50s of 1.4 mg/mL for eggs and 0.028 mg/mL for J2. In planta bioassays showed that infected tomato seedlings treated with 0.056 mg/mL of AhCPI showed a 60% reduction in the number of galls, as compared with untreated J2-inoculated seedlings. Under greenhouse conditions, three applications of 10 mL of AhCPI (1.4 mg/mL) in the soil around the stem of M. incognita-infected tomato plants, reduced the number of galls by 93 ± 8%, as compared to the control M. incognita-infected plants. The application of AhCPI to the infected plants increased the yield (10.7%) of harvested tomato fruits, as compared to infected plants. These results show the potential of AhCPI for the control of M. incognita in tomato plants.  相似文献   

17.
Southern root knot nematode Meloidogyne incognita is the most widespread-species, causing serious yield losses in protected vegetables fields in the West Mediterranean region of Turkey. The knowledge of genetic variation within M. incognita is required for disease management and improvement of resistant varieties by breeding programs. In the present study, the isolates were classified into different groups based on sequence-related amplified polymorphism (SRAP) fingerprints. To our knowledge, this is the first study carried out on the characterization of M. incognita isolates using SRAP. The schematic diagram by tested primers to differentiate of M. incognita isolates was formed in discrimination of nematodes as an effective molecular tool since it is cost effective and easiness. Data presents a genetic variation on root-knot nematode species. These selected SRAP markers can be used to follow genetic structure and differentiation on M. incognita isolates in a certain region.  相似文献   

18.
The individual, concomitant and sequential inoculation of second stage juveniles (at 2000 J2/kg soil) of Meloidogyne incognita and Rhizoctonia solani (at 2 g mycelial mat/kg soil) showed significant reduction in plant growth parameters viz. plant length, fresh weight and dry weight as compared to control. The greatest reduction in plant growth parameters was recorded in the plants simultaneously inoculated with M. incognita and R. solani followed by sequential and individual inoculation. In sequential inoculation, plant inoculated with M. incognita 15 days prior to R. solani shows more reduction in comparison to plant inoculated with R. solani 15 days prior to M. incognita. Moreover, the multiplication of nematode and number of galls/root system were significantly reduced in concomitant and sequential inoculation as compared to individual inoculation, whereas the intensity of root-rot/root system caused by R. solani was increased in the presence of root-knot nematode M. incognita as compared to when R. solani was inoculated individually.  相似文献   

19.
Root and tuber crops are the most important commodities produced in many subtropical and tropical regions. Potato, Solanum tuberosum L. is a major food crop in many countries and it is produced in any significant amount in developed countries. Certain nematodes recognised as major parasites of potato are cyst, root-knot and lesion nematodes. Losses vary depending upon the cultivar and predominant environmental conditions. Losses can reach 25% or more and these losses consist of direct damage to the plant as well as reduction in tuber quality. Also, anatomical studies proved that the root-knot nematode, Meloidogyne incognita, caused giant cells as feeding sites in the stele region of potato roots accompanied with crushed and deformed xylem and vessel elements. Therefore, control measures depend upon the use of resistant cultivars, rotation with non-host plants, hot water treatment of infected tubers before planting, some biocontrol methods and utilisation of the nematicides as contact or as dips.  相似文献   

20.
The foliar response to different herbivores sharing the same hosts is an important topic for the study of plant-insect interactions. Plants evolve local and systemic resistant strategies to cope with herbivores. Many researchers have characterized the mechanisms of leaf responses to insect infestation; however, the fact that roots serve as systemic resistance modulators to leaf herbivores has been widely ignored. Here, we report that tomato (Solanum lycopersicum) plants infected with southern root-knot nematodes (Meloidogyne incognita)—which feed on the roots to form nodules—enhanced leaf defenses against aboveground attackers, specifically, the whitefly (Bemisia tabaci). Our results show that nematode infection reduced the whitefly population abundance because of conferring a stronger SA-dependent defense pathway against whitefly than in tomato plants without nematode infection. Meanwhile, nematode-infected tomato plant also activated the foliar JA-dependent defense pathway at 4 h after whitefly infestation. However, the foliar JA-dependent defense under whitefly infestation alone was suppressed, with the JA content being nearly 30 % lower than that in tomato plants co-infected with nematodes and whiteflies. Furthermore, nematode infection significantly decreased the plant nitrogen concentration in leaves and roots. As a result, nematode infection reduced the number of whiteflies by enhancing foliar SA-dependent defense, activating JA-dependent defense and decreasing nitrogen nutrition. Our results suggest that underground nematode infection significantly enhances the defense ability of tomato plants against whitefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号