首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was examined whether lactate influences postischaemic hemodynamic recovery as a function of the duration of ischaemia and whether changes in high-energy phosphate metabolism under ischaemic and reperfused conditions could be held responsible for impairment of cardiac function. To this end, isolated working rat hearts were perfused with either glucose (11 mM), glucose (11 mM) plus lactate (5 mM) or glucose (11 mM) plus pyruvate (5 mM). The extent of ischaemic injury was varied by changing the intervals of ischaemia, i.e. 15, 30 and 45 min. Perfusion by lactate evoked marked depression of functional recovery after 30 min of ischaemia. Perfusion by pyruvate resulted in marked decline of cardiac function after 45 min of ischaemia, while in glucose perfused hearts hemodynamic performance was still recovered to some extent after 45 min of ischaemia. Hence, lactate accelerates postischaemic hemodynamic impairment compared to glucose and pyruvate. The marked decline in functional recovery of the lactate perfused hearts cannot be ascribed to the extent of degradation of high-energy phosphates during ischaemia as compared to glucose and pyruvate perfused hearts. Glycolytic ATP formation (evaluated by the rate of lactate production) can neither be responsible for loss of cardiac function in the lactate perfused hearts. Moreover, failure of reenergization during reperfusion, the amount of nucleosides and oxypurines lost or the level of high-energy phosphates at the end of reperfusion cannot explain lactate-induced impairment. Alternatively, the accumulation of endogenous lactate may have contributed to ischaemic damage in the lactate perfused hearts after 30 min of ischaemia as it was higher in the lactate than in the glucose or pyruvate perfused hearts. It cannot be excluded that possible beneficial effects of the elevated glycolytic ATP formation during 15 to 30 min of ischaemia in the lactate perfused hearts are counterbalanced by the detrimental effects of lactate accumulation.  相似文献   

2.
OBJECTIVES: Numerous mechanisms have been proposed to participate in adaptation of heart to ischaemia by ischaemic preconditioning. We have described previously a release of cardio-protective protein fraction during ischaemic preconditioning of dog heart. In the current study the effect of high soluble protein fraction (HS fraction) released from isolated perfused rat liver after ischaemia and reperfusion was examined on isolated perfused rat heart during ischaemia-reperfusion injury. METHODS: Livers were subjected to 30 or 60 min ischaemia followed with 120 min reperfusion. HS fraction was isolated using ammonium sulphate precipitation and dissolved in perfusion solution before Langendorf perfusion of isolated rat hearts. The protein pattern of HS fraction was detected with SDS-PAGE and western blot with ConA and anti ConA antibody. Hearts were then subjected to 20 min ischaemia followed by 20 min reperfusion. During reperfusion, the haemodynamic parameters of hearts were measured. Heart levels of adenine nucleotide were measured in HClO4 extracts using HPLC on C18 column. RESULTS: Liver ischaemia induced changes in protein pattern of HS fraction released from the liver during reperfusion period. Particularly, we registered an increase in amount of several low-molecular weight proteins and decreased amount of high-molecular weight proteins. Proteins in this fraction isolated from perfusate after liver ischaemia interact with ConA with lower intensity as proteins isolated from perfusate after control non-ischaemic condition. HS fraction isolated from perfusate after ischaemia and reperfusion of liver had beneficial effect on heart function during 20 min ischaemia and subsequent 20 min reperfusion, documented by: i) decrease of arrhythmia score from 2 to 1 in 5 min of reperfusion and from 2 to 0 in 10 min of reperfusion; ii) improved heart contractility monitored as stabilised [dP/dt]max and increased Q parameter; iii) increased coronary flow. Proteins isolated from liver perfused under control non-ischaemic condition did not induce similar effects. The stabilisation of heart haemodynamics, observed after administration of HS proteins isolated from perfusate after ischaemia and reperfusion was associated with slight increase in ATP and ADP levels as well as decrease in AMP level.  相似文献   

3.
The capability of cyclohexylphenol exaprolol of protecting the ischaemic myocardium during ischaemic cardiac arrest was assessed in the isolated working rat heart. Exaprolol added to the perfusion medium in a dose of 10(-7) mol.l-1 only minimally influenced the left ventricular function (reduced the stroke volume by 18.84% and cardiac output by 14.63%). The hearts were subjected to global ischaemia for 75 min at 26 degrees C and subsequently reperfused for 60 min at 37 degrees C. The recovery of left ventricular function following reperfusion, expressed as a percentage of preischaemic functional performance was used as an indicator of the ischaemic tolerance of the heart. The effect of exaprolol on sarcolemmal (Na+ + K+)-, Mg2+- and Ca2+-ATPase activities was also examined. Exaprolol-pretreated hearts revealed better postischaemic recovery of the left ventricular dP/dt max and stroke volume as well as improved efficiency in the transformation of chemical energy to mechanical work. Exaprolol in 10(-4) mol.l-1 concentration significantly stimulated the specific activity of sarcolemmal (Na+ + K+)-ATPase. Possible mechanisms of the salutary effect of exaprolol on the ischaemic heart are discussed.  相似文献   

4.
Our study is designed to correlate nitrite concentration, an index of nitric oxide (NO) release with mast cell peroxidase (MPO), a marker of cardiac mast cell degranulation and cardioprotective effect of ischaemic preconditioning in isolated perfused rat heart subjected to 30 min of global ischaemia and 30 min of reperfusion. Ischaemic preconditioning, comprised of four episodes of 5 min global ischaemia and 5 min of reperfusion, markedly reduced the release of lactate dehydrogenase (LDH) and creatine kinase (CK) in coronary effluent and incidence of ventricular premature beats (VPBs) and ventricular tachycardia and fibrillation (VT/VF) during reperfusion phase. Ischaemia-reperfusion induced release of MPO was markedly reduced in ischaemic preconditioned hearts. Increased release of nitrite was noted during reperfusion phase after sustained ischaemia in preconditioned hearts as compared to control hearts. No alterations in the release of nitrite was observed immediately after ischaemic preconditioning. However, ischaemic preconditioning markedly increased the release of MPO prior to global ischaemia. It is proposed that cardioprotective and antiarrhythmic effect of ischaemic preconditioning may be ascribed to degranulation of cardiac mast cells. Depletion of cytotoxic mediators during ischaemic preconditioning and consequent decreased release of these mediators during sustained ischaemia-reperfusion may be associated with preservation of structures in isolated rat heart responsible for NO release.  相似文献   

5.
[14C]inosine in a range of concentrations of 20 microM to 1 mM was administered to the isolated perfused rat heart for 30 min. The incorporation of the nucleoside into myocardial adenine nucleotides increased for extracellular concentrations of the precursor up to 50 microM, reaching a plateau at 60 nmol . g-1 X 30 min-1 with concentrations ranging between 50 and 200 microM. The supply of 500 microM and 1 mM of inosine induced a further increase in cardiac adenine nucleotide synthesis to about 200 nmol . g-1 X 30 min-1. When supplied during low flow ischaemia (0.5 mL . min-1, 30 min.), 1 mM of inosine protected the heart against ATP degradation, while 100 microM of inosine was inefficacious. In the presence of 1 mM of inosine on reperfusion the adenine nucleotide content of the heart was similar to that observed in the absence of the nucleoside. The incorporation of [14C]inosine into adenine nucleotides was, in this last condition, below the value measured before ischaemia. Inosine administration was effective in protecting the heart against ischaemic breakdown of glycogen and favoured postischaemic restoration of glycogen stores.  相似文献   

6.
High-cholesterol diets alter myocardial and vascular NO-cGMP signaling and have been implicated in ischaemic/reperfusion injury. We investigated the effects of dietary red palm oil (RPO) containing fatty acids, carotonoids, tocopherols and tocotrienols on myocardial ischaemic tolerance and NO-cGMP pathway function in the rat. Wistar rats were fed a standard rat chow+/-RPO, or a standard rat chow+cholesterol+/-RPO diet. Myocardial mechanical function and NO-cGMP signaling pathway intermediates were determined before, during and after 25 min ischaemia. RPO-supplementation improved aortic output recovery and increased myocardial ischaemic cGMP concentrations. Simulated ischaemia (hypoxia) increased cardiomyocyte nitric oxide levels in the two RPO supplemented groups, but not in control non-supplemented groups. RPO supplementation also increased hypoxic nitric oxide levels in the control diet fed, but not the cholesterol fed rats. These data suggest that dietary RPO may improve myocardial ischaemic tolerance by increasing bioavailability of NO and improving NO-cGMP signaling in the heart.  相似文献   

7.
The role of cyclic nucleotides in sperm capacitation is equivocal. Using conditions known to support mouse sperm capacitation after 120 min incubation in vitro, the cAMP and cGMP contents of epididymal spermatozoa were measured and the cGMP/cAMP ratio determined. The initial high cAMP content detected upon release of spermatozoa decreased within 30 min to a lower plateau, which was then maintained throughout incubation. With the cGMP content remaining approximately constant, the cGMP/cAMP ratio increased over 120 min. In the presence of 2 mM caffeine, an increased cAMP content was noted at 0 and 30 min before a fall to the plateau level. To investigate cyclic nucleotide metabolism, adenylate cyclase and phosphodiesterase activities were compared in two sperm populations, one essentially uncapacitated and the other incubated for 120 min. Adenylate cyclase activity, higher in the presence of 2 mM Mn2+ compared to Mg2+, showed increased activity at 120 min compared to 30 min incubation, while phosphodiesterase activity decreased during this period. The ability of spermatozoa to form adenosine and inosine from cAMP indicated endogenous 5′-nucleotidase and deaminase, as well as phosphodiesterase, activities. Although the endogenous cAMP content appeared to remain constant during the time that acrosome loss, hyperactivated motility and fertilizing ability can be demonstrated, activities of the enzymes responsible for cAMP metabolism indicate an increased potential for cAMP availability and turnover. The increased cGMP/cAMP ratio may also play a role during capacitation.  相似文献   

8.
In this study the mass of polyphosphoinositides as well as the turnover of [3H]inositol phospholipids and [3H]inositol phosphates during ischaemia and short periods of reperfusion were studied in the isolated perfused rat heart. Since the phosphoinositides located within the sarcolemma are precursors for release of inositoltrisphosphate (InsP3) and diacylglycerol, sarcolemmal membranes (rather than whole tissue) isolated at the end of the experimental procedure, were used. Hearts were prelabelled with [3H]inositol and subsequently perfused with 10 mM LiCI to block the phosphatidylinositol (PI) pathway. The results showed that 20 min of global ischaemia depressed the amount of [3H]inositol present in both sarcolemmal phosphatidylinositol-4-phosphate (PI-4-P) and phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2), as well as in the cytosolic [3H]inositol phosphates, [3H]InsP2 and [3H]InsP3. The mass of the sarcolemmal inositol phospholipids remained unchanged during ischaemia. Reperfusion caused an immediate (within 30 sec) increase in the amount of [3H]inositol in sarcolemmal PI, PI-4-P and PI-4,5-P2. PI-4-P levels showed a transient increase after 30 seconds postischaemic reperfusion, while the mass of the other sarcolemmal inositol phospholipids, PI and PI-4,5-P2, remained unchanged. [3H]Insp, [3H]InsP2 and [3H]InsP3 also increased significantly in comparison to ischaemic hearts after only 30 sec postischaemic reperfusion.In summary, the results obtained indicate inhibition of the PI pathway during ischaemia with an immediate significant stimulation upon reperfusion. In view of the capacity of InsP3 to mobilize Ca2+ the possibility exists that stimulation of this pathway during reperfusion may play a role in the intracellular Ca2+ overload, characteristic of postischaemic reperfusion.  相似文献   

9.
We have shown earlier that proteins released from the heart during preconditioning may protect non-preconditioned heart during sustained ischaemia, similarly as preconditioning itself. In other our experiments we have documented that also proteins released from isolated rat liver during reperfusion after global ischaemia performed a protective effect on isolated rat heart against ischaemia-reperfusion injury. In the current study we examined the effect of liver ischaemia in situ on resistance of rat heart to ischaemia and reperfusion injury. Wistar rats (male) were subjected to liver ischaemia maintained by occlusion of portal vein and hepatic artery for 20 min, followed with 30-min reperfusion after reopening of both vessels. Then the hearts were isolated and perfused according to Langendorf. Hearts, after initial stabilisation (15 min), were subjected to 20-min ischaemia and 30-min reperfusion. During reperfusion, the haemodynamic parameters of hearts were measured. The protein pattern of high soluble fraction (HS fraction) isolated from rat blood by precipitation with ammonium sulphate was detected by SDS-PAGE. Our results showed improved parameters of pressure and contractility in the group after liver ischaemia (ischaemic group), presented by decreased diastolic pressure and increased LVDP((S-D)) in comparison with levels of these parameters in the control group. We also observed improved heart contraction-relaxation cycles parameters (dP/dt)(max) and (dP/dt)(min) in ischaemic group as compared with the control group. On the other hand, there were no significant differences in heart rate and coronary flow between both experimental groups. SDS-PAGE showed changed protein pattern in HS fraction, particularly the levels of several low molecular weight proteins increased. We conclude that liver ischaemia induced a higher resistance of heart against ischaemia-reperfusion injury. We propose that release of some cardioprotective proteins present in HS fraction can also contribute to this cardioprotection.  相似文献   

10.
Since recent findings indicate the involvement of G-proteins in the mechanisms of ischaemic preconditioning (PC), the present study was aimed to investigate the role of adrenergic mechanisms, such as G-proteins and stimulation of adrenergic receptors, in this phenomenon. For this purpose, isolated Langendorff-perfused rat hearts were subjected to regional ischaemia (30 min occlusion of LAD) followed by reperfusion. The effect of PC (a single 5 min occlusion/reperfusion before a long occlusion) on ischaemia- and reperfusion-induced arrhythmias was studied in conjunction with an assessment of G-proteins in the myocardial tissue by means of Western blotting and ADP-ribosylation with bacterial toxins. To follow the link between G-proteins and adrenergic receptors, their stimulation by exogenous norepinephrine (NE) was applied to test whether it can mimic the effect of PC on arrhythmias. Thirty min ischaemia and subsequent reperfusion induced high incidence of ventricular tachycardia (VT) and fibrillation (VF). PC significantly reduced a total number of extrasystoles, incidence of VT and abolished VF. It was, however, insufficient to suppress reperfusion-induced sustained VF. Measurement of G-proteins revealed that PC led to a reduction of stimulatory Gs proteins, whereas inhibitory Gi proteins were increased. NE (50 nmol) introduced in a manner similar to PC (5 min infusion, 10 min normal perfusion) reduced ischaemic arrhythmias in the same way, as PC. In addition, in NE-pretreated hearts reperfusion induced mostly transient VF, which was spontaneously reverted to a normal sinus rhythm. A transient increase in heart rate and perfusion pressure during NE infusion completely waned before the onset of ischaemia, indicating that antiarrhythmic effect was not related to haemodynamic changes and to conditions of myocardial perfusion. Conclusion: Antiarrhythmic effect of PC may be mediated by a stimulation of adrenergic receptors coupled to appropriate G-proteins. Consequently, the inhibition of adenylate cyclase activity and reduction in cAMP level, as well as the activation of protein kinase C may be considered as two possible pathways leading to a final response.  相似文献   

11.
Methylprednisolone (MP), a synthetic glucocorticoid, is widely used clinically and experimentally as acute antiinflammatory treatment. The molecular actions of MP indicate that pretreatment with this drug may be cardioprotective. We investigated if giving rats MP prior to excising their hearts for Langendorff-perfusion protected cardiac function against oxidative stress, and if this was mediated by increasing antioxidant defence or influencing myocardial nitric oxide synthase (NOS). Rats (n=6-11 in each group) were injected with MP (40 mg/kg i.m.) or vehicle 24 and 12 h before Langendorff-perfusion with 30 min global ischaemia and 60 min reperfusion, or 10 min perfusion with 180 μmol/L hydrogen peroxide. Other hearts were exposed to 30 min global ischaemia 5 days after MP-injection. Additional hearts were sampled before, during, and after ischaemia for analyzing tissue activity of antioxidant enzymes. Tissue endothelial and inducible NOS (eNOS and iNOS) were investigated by immunoblotting and semiquantitative RT-PCR in a time-course after MP injection. Pretreatment with MP improved left ventricular function and increased coronary flow during postischaemic reperfusion, and this effect was sustained 5 days afterwards. When exposing hearts to hydrogen peroxide, MP improved coronary flow. Catalase, glutathione peroxidase, and oxidized glutathione were increased during reperfusion of MP-treated hearts compared to vehicle only. MP did not influence eNOS at protein or mRNA level. iNOS could not be detected by immunoblotting, indicating low cardiac enzyme content. Its mRNA initially increased the first hour after injection, thereafter decreased. In conclusions, pretreating rats with MP protects the heart against ischaemia-reperfusion dysfunction. This effect could be due to increase of tissue antioxidant activity during reperfusion. MP did not influence cardiac eNOS. mRNA for iNOS was influenced by MP, but the corresponding protein could not be detected.  相似文献   

12.
NO has been implicated in the mechanism of ischaemic preconditioning. To verify this hypothesis further we have attempted to reproduce effects of ischaemic preconditioning by nitric oxide donors administration prior to the ischaemia. The effect of glyceryl trinitrate (GTN) and 3-morpholino-sydnonimine-hydrochloride (SIN- 1), NO donors, on reperfusion induced ventricular tachycardia (VT) and ventricular fibrillation (VF) in Langendorff perfused rat hearts subjected to 10 min regional ischaemia followed by 10 min reperfusion were examined. Results: GTN, 500 M and SIN-1, 10 M, administered for 5 min and washed for another 5 min prior to ischaemia (to mimic ischaemic preconditioning), almost completely abolished reperfusion induced VF. GTN and SIN-1, administered at the time of reperfusion, increased the incidence of sustained VF and the duration of VT and VF. When given 5 min before the ischaemia and throughout the ischaemia and the reperfusion, SIN-1 abolished VF. Adenosine, 10 M, applied according to the above three protocols, did not affect reperfusion arrhythmias, although adenosine induced changes in coronary flow and post-ischaemic reflow were similar to those produced by the NO donors. In conclusions: (1) NO is able to mimic the effect of ischaemic preconditioning on reperfusion arrhythmias in rat heart, supporting the view that NO may be one of the endogenous substances triggering ischaemic preconditioning; (2) In crystalloid-perfused heart, NO may be deleterious when its administration is restricted to the reperfusion period.  相似文献   

13.
In the isolated guinea pig hearts suppression of endothelium-dependent (Acetylcholine, Substance P, postocclusive hyperaemia) and endothelium-independent (Sodium nitroprusside, PGE1) responses after 30 min subglobal ischaemia (reduction of coronary flow to 5%) were analysed in hearts which were not preconditioned or preconditioned by various protocols. Preconditioning consisted of single 5 min ischaemia (IP5) or single 10 min ischaemia (IP10) or double 5 min ischaemia (IP5 + 5). Thirty minutes of ischaemia followed by reperfusion reduced both endothelium-dependent and endothelium-independent responses approximately by 30-50% and slightly suppressed basal coronary flow by 10%. IP5 and IP5 + 5 protected against postischaemic suppression of responses to NaNP but not against postischaemic impairment of SP, ACh, and POH responses. The endothelium-dependent responses and postischaemic suppression of basal coronary flow were protected by IP10 only. In summary, in the isolated guinea pig heart the 30-min ischaemia impairs vasodilator responses to both endothelium-dependent and endothelium-independent agents. Ischaemic preconditioning protects both endothelial and smooth muscle cells function against this impairment, though endothelial cells require a more extensive preconditioning to put in motion protective mechanisms than smooth muscle cells do. Independent mechanisms of IP in endothelial cells and in smooth muscle cells are suggested.  相似文献   

14.
15.
Translational repression induced during reperfusion of the ischaemic brain is significantly attenuated by ischaemic preconditioning. The present work was undertaken to identify the components of the translational machinery involved and to determine whether translational attenuation selectively modifies protein expression patterns during reperfusion. Wistar rats were preconditioned by 5-min sublethal ischaemia and 2 days later, 30-min lethal ischaemia was induced. Several parameters were studied after lethal ischaemia and reperfusion in rats with and without acquired ischaemic tolerance (IT). The phosphorylation pattern of the alpha subunit of eukaryotic initiation factor 2 (eIF2) in rats with IT was exactly the same as in rats without IT, reaching a peak after 30 min reperfusion and returning to control values within 4 h in both the cortex and hippocampus. The levels of phosphorylated eIF4E-binding protein after lethal ischaemia and eIF4E at 30 min reperfusion were higher in rats with IT, notably in the hippocampus. eIF4G levels diminished slightly after ischaemia and reperfusion, paralleling calpain-mediated alpha-spectrin proteolysis in rats with and without IT, but they did not show any further decrease after 30 min reperfusion in rats with IT. The phosphorylated levels of eIF4G, phosphatidylinositol 3-kinase-protein B (Akt) and extracellular signal-regulated kinases (ERKs) were very low after lethal ischaemia and increased following reperfusion. Ischaemic preconditioning did not modify the observed changes in eIF4G phosphorylation. All these results support that translation attenuation may occur through multiple targets. The levels of the glucose-regulated protein (78 kDa) remained unchanged in rats with and without IT. Conversely, our data establish a novel finding that ischaemia induces strong translation of growth arrest and DNA damage protein 34 (GADD34) after 4 h of reperfusion. GADD34 protein was slightly up-regulated after preconditioning, besides, as in rats without IT, GADD34 levels underwent a further clear-cut increase during reperfusion, this time as earlier as 30 min and coincident with translation attenuation.  相似文献   

16.
Cyclic nucleotide modulation of electrolyte transport across intestinal brushborder membranes is initiated by binding of cGMP and cAMP to high-affinity receptors at the interior of the microvilli. Previously these receptors have been identified by photoaffinity-labelling techniques as regulatory domains of cGMP- and cAMP-dependent protein kinases. In the present study, the receptor concentration in isolated brushborder membrane vesicles and their fractional saturation in absorptive and secretory states of the tissue were estimated. In microvillous membrane vesicles isolated from rat small intestine in the absorptive state, about 10% of the total number of cGMP receptors (25.5 pmol/mg protein) and 40% of all cAMP receptors (28.7 pmol/mg protein) were occupied by endogenous cyclic nucleotides. Luminal exposure of the intestinal segments in vivo to heat-stable Escherichia coli toxin for 3-5 min increased the occupancy of cGMP receptors by about 5-fold without affecting receptor-bound cAMP levels. In contrast, incubation with cholera toxin for 2 h increased the fractional saturation solely of cAMP receptors by 2-fold. Addition of heat-stable E. coli toxin to cholera toxin-pretreated segments, again raising the cGMP levels by 5-fold, did not reduce the amount of receptor-bound cAMP. This finding argues against the concept that increased levels of cAMP during cholera would mimick cGMP effects on ion transport by low-affinity binding to microvillar cGMP receptors. This analysis of local changes in cyclic nucleotide levels at the microvillous level might help to explore the mechanism of action of other secretagogues or antidiarrhoeal agents and to delineate a possible compartmentation of cGMP and cAMP pools within the intestinal mucosa responding differently to external signals.  相似文献   

17.
It has been recently shown that long-term thyroxine administration increases the tolerance of the heart to ischaemia. The present study investigated whether thyroxine induced cardioprotection involves alterations in the pattern of p38 mitogen activated protein kinase (p38MAPK) and c-Jun NH2-terminal kinases (JNKs) activation during ischaemia-reperfusion. L-thyroxine (T4) was administered in Wistar rats (25 g/100 g/day, subcutaneously) for 2 weeks (THYR), while normal animals served as controls (NORM). NORM and THYR isolated rat hearts were perfused in Langendorff mode and subjected to 10 or 20 min of zero-flow global ischaemia only and also to 20 min of ischaemia followed by 10, 20 or 45 min of reperfusion. Postischaemic recovery of left ventricular developed pressure at 45 min of reperfusion was expressed as % of the initial value. Activation of p38 MAPK and JNKs was assessed at the different times of the experimental setting by standard Western blotting techniques using a dual phospho p38MAPK and phospho JNKs (p46/p54) antibodies. Activation of p38 MAPK was significantly attenuated during ischaemia and reperfusion in thyroxine treated hearts compared to normal hearts. JNKs were found to be activated only during the reperfusion period. The levels of phospho JNKs were found to be lower in thyroxine treated hearts as compared to untreated hearts, though not at a statistically significant level. Postischaemic functional recovery was higher in THYR as compared to NORM, p < 0.05. In summary, in hearts pretreated with thyroxine, p38 MAPK was attenuated during ischaemia and at reperfusion and this was associated with improved postischaemic recovery of function.  相似文献   

18.
Previous studies have shown that exogenous lactate impairs mechanical function of reperfused ischaemic hearts, while pyruvate improves post-ischaemic recovery. The aim of this study was to investigate whether the diverging influence of exogenous lactate and pyruvate on functional recovery can be explained by an effect of the exogenous substrates on endogenous protecting mechanisms against oxygen-derived free radicals. Isolated working rat hearts were perfused by a Krebs-Henseleit bicarbonate buffer containing glucose (5 mM) as basal substrate and either lactate (5 mM) or pyruvate (5 mM) as cosubstrate. In hearts perfused with glucose as sole substrate the activity of glutathione reductase was decreased by 32% during 30 min of ischaemia (p<0.10 versus control value), while the activity of superoxide dismutase and catalase was reduced by 27 and 35%, respectively, during 5 min of reperfusion (p<0.10 versus control value). The GSH level in the glucose group was reduced by 29% following 30 min of ischaemia and 35 min of reperfusion (p<0.10). In lactate- and pyruvateperfused hearts there were no significant decreases of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activity during 30 min of ischaemia, 5 min of reperfusion or 35 min of reperfusion. In pyruvate-perfused hearts the glutathione peroxidase activity was even increased by 43% during 30 min of ischaemia (p<0.05). Glutathione levels (reduced and oxidized) did not markedly change in the lactate and pyruvate groups. Thus, the endogenous defense mechanism against oxygen-derived free radicals is compromised at the onset of reperfusion when glucose as sole substrate is present, while addition of lactate or pyruvate prevents reduction of the endogenous capacity to scavenge oxygen-derived free radicals. The equivocal relationship between endogenous scavenging enzyme activity and haemodynamic recovery indicates that involvement of the endogenous antioxidants, if any, in functional recovery of the post-ischaemic heart is complex. Pyruvate may exert protective effects on mechanical function after mild ischaemia by functioning as exogenous scavenger in itself, as pyruvate is able to react with hydrogen peroxide.  相似文献   

19.
The therapeutic benefits of allopurinol pretreatment in renal ischaemia-reperfusion injury were investigated by monitoring renal malondialdehyde (MDA) and ATP levels together with calculated MDA/ATP ratio in ischaemic (45 min) and reperfused (15 min) rat kidneys. MDA levels remained unchanged during ischaemia, but increased after the subsequent reperfusion. ATP content of the ischaemic kidney was decreased significantly and the recovery of ATP was incomplete after the reperfusion, whereas the MDA/ATP ratio increased at both periods. Allopurinol pretreatment (40 mg kg(-1) iv) maintained higher ATP levels during the ischaemia and inhibited the MDA formation during the reperfusion and decreased the MDA/ATP ratio at both periods. Our findings demonstrate that allopurinol exerts a biphasic protective action by preserving tissue ATP and by inhibiting lipid peroxidation during ischaemia and the reperfusion period, respectively. These findings suggest the selective involvement of two protective mechanisms in the different periods of renal ischaemia-reperfusion injury. The MDA/ATP ratio could be a useful parameter for monitoring these protective actions of allopurinol simultaneously.  相似文献   

20.
The structure-linked latency of acid phosphatase and beta-galactosidase was studied in rat liver lobes made ischaemic for 1 or 2 h and then recirculated with blood for increasing periods. Free activity of acid phosphatase and unsedimentable activity of beta-galactosidase are increased in homogenates of ischaemic livers. When ischaemia had been maintained for 1 h, the recovery of normal latency for both enzymes was observed 1 h after re-establishment of the blood flow. After a 2 h period of ischaemia, unmasked activity markedly decreases during the first 1 h after restoration of blood flow; after that, a large and irreversible secondary rise takes place. Chlorpromazine, injected 30 min before or just after induction of ischaemia, extensively prevents the latency decrease occurring during restoration of blood flow. Modifications of the hydrolase distribution pattern obtained after differential centrifugation are in agreement with the latency changes. These results suggest that a 2 h ischaemia causes an alteration of the liver lysosomes that is largely reversible and that restoration of blood flow induces an irreversible alteration of these organelles. Chlorpromazine treatment prevents the irreversible lesion from taking place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号