首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
UVB irradiation of human skin is known to induce pathophysiological processes as oxidative stress and inflammation. HaCaT keratinocytes represent a well-established in vitro model system to investigate the influence of UVB irradiation on cell cultures. It was the aim of these investigations to study the effects of moderate UVB doses on cellular and mitochondrial integrity of HaCaT keratinocytes, biomarkers of oxidative stress and antioxidant protection by superoxide dismutases. F2-isoprostane concentrations were UVB dose-dependently enhanced reaching a plateau at 50 mJ/cm2. Cell viability was reduced and apoptosis was enhanced with increasing UVB doses. The activities of the respiratory chain complexes were practically not altered at lower UVB doses, up to 50 mJ/cm2, whereas remarkable decreases, also for the levels of cardiolipin species, were seen at 100 mJ/cm2. As an adaptive response to the enhanced oxidative stress, protein levels of MnSOD increased about 3-fold at 50 mJ/cm2 and decreased at higher doses. From the data it can be concluded that keratinocytes are sufficiently protected at low UVB doses, whereas higher doses lead to irreversible cell damage.  相似文献   

2.
Apoptosis is an active form of cell death that is initiated by a variety of stimuli, including reactive oxygen species (ROS) and ultraviolet (UV) radiation. Poly (ADP-ribose) (PAR) is formed upon activation of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP), and therefore was suggested as a new marker of apoptosis. Since DNA of epidermal cells represents a well-known chromophore for UVB irradiation, and UVB is known to generate H2O2 in keratinocytes, we hypothesized that PAR is a very sensitive marker of UVB- and H2O2-induced apoptosis in keratinocytes. In order to test this hypothesis, human immortalized keratinocytes (HaCaT) were UVB-irradiated or treated with H2O2, and subsequently apoptosis was identified by comparing conventional parameters such as morphological analysis, DNA laddering, and TUNEL assay, with PAR formation. Both, UVB and H2O2 treatment induced PAR formation in HaCaT cells in a dose-dependent manner, and its formation was detected as early as 4 h after irradiation, and at lower UVB doses (10 mJ/cm2) than observed by DNA laddering and the TUNEL assay. In conclusion, the detection of PAR formation is a very sensitive and early method for the identification of apoptotic cells in UVB-induced apoptosis of human keratinocytes.  相似文献   

3.
UVB radiation damages keratinocytes, potentially inducing chronic skin damage, cutaneous malignancy, and suppression of the immune system. Naturally occurring agents have been considered for prevention and treatment of various kinds of cancer, including skin cancer. Inositol hexaphosphate (IP6), an antioxidant, is a naturally occurring polyphosphorylated carbohydrate that has shown a strong anticancer activity in several experimental models. We assessed the protective effects of IP6 against UVB irradiationinduced injury and photocarcinogenesis by using HaCaT cells (human immortalized keratinocytes) and SKH1 hairless mice. We found that IP6 counteracts the harmful effects of UVB irradiation and increases the viability and survival of UVB-exposed cells. Treatment with IP6 after UVB irradiation (30 mJ/cm(2)) arrested cells in the G(1) and G(2) M phases while decreasing the S phase of the cell cycle. Treatment with IP6 also decreased UVB-induced apoptosis and caspase 3 activation. Topical application of IP6 followed by exposure to UVB irradiation in SKH1 hairless mice decreased tumor incidence and multiplicity as compared with control mice. Our results suggest that IP6 protects HaCaT cells from UVB-induced apoptosis and mice from UVB-induced tumors.  相似文献   

4.
Selenoproteins have been shown to exhibit a variety of biological functions, including antioxidant functions, maintaining cellular redox balance, and heavy metal detoxification. UV irradiation-induced damage is partially mediated by increased oxygen radical production. The present study is designed to examine the antioxidative effects of human selenoprotein H (hSelH) after brief period of UVB irradiation on the murine hippocampal neuronal cell line Ht22. Ht22 cells were stably transfected with the hSelH gene or with MSCV empty vector and exposed to UVB irradiation with or without the presence of serum. The results showed that cell viability was significantly higher in hSelH-transfected cells compared to the MSCV vector-transfected cells after 24 h of recovery with or without the presence of serum in the media. Further studies revealed that while the number of superoxide anion (O2*-) positive cells was increased following a 7 mJ/cm(2) of UVB irradiation and 5 h of recovery, overexpression of hSelH significantly reduced superoxide production. These results suggest that hSelH overexpression protects cells from UVB irradiation-induced cell death by reducing the O2*- formation.  相似文献   

5.
UVB radiation causes about 90% of non-melanoma skin cancers by damaging DNA either directly or indirectly by increasing levels of reactive oxygen species (ROS). Skin, chronically exposed to both endogenous and environmental pro-oxidant agents, contains a well-organised system of chemical and enzymatic antioxidants. However, increased or prolonged free radical action can overwhelm ROS defence mechanisms, contributing to the development of cutaneous diseases. Thus, new strategies for skin protection comprise the use of food antioxidants to counteract oxidative stress. Resveratrol, a phytoalexin from grape, has gained a great interest for its ability to influence several biological mechanisms like redox balance, cell proliferation, signal transduction pathways, immune and inflammatory response. Therefore, the potential of resveratrol to modify skin cell response to UVB exposure could turn out to be a useful option to protect skin from sunlight-induced degenerative diseases. To investigate into this matter, HaCaT cells, a largely used model for human skin keratinocytes, were treated with 25 or 100 µM resveratrol for 2 and 24 hours prior to UVB irradiation (10 to 100 mJ/cm2). Cell viability and molecular markers of proliferation, oxidative stress, apoptosis, and autophagy were analyzed. In HaCaT cells resveratrol pretreatment: reduces UVB-induced ROS formation, enhances the detrimental effect of UVB on HaCaT cell vitality, increases UVB-induced caspase 8, PARP cleavage, and induces autophagy. These findings suggest that resveratrol could exert photochemopreventive effects by enhancing UVB-induced apoptosis and by inducing autophagy, thus reducing the odds that damaged cells could escape programmed cell death and initiate malignant transformation.  相似文献   

6.
Previous investigations demonstrated that pyruvate protects human keratinocytes against cell damage stemming from exposure to ultraviolet B (UVB) radiation. This study endeavoured to elucidate the protective capacity of aromatic pyruvates (e.g., phenylpyruvate (PPyr), 4-hydroxyphenylpyruvate (HPPyr), and indole-3-pyruvate (IPyr)) against UVB-induced injury to skin cells, both in vitro and in vivo. Cultured human HaCaT keratinocytes were irradiated with UVB light (60 mJ/cm2) and maintained with or without test compounds (1–25 mM). In addition, the dorsal skin of hairless mice (HR-1) was treated with test compounds (100 µmol) and exposed to UVB light (1 J/cm2) for two times. The ability of the test compounds to ameliorate UVB-induced cytotoxicity and inflammation was then assessed. Aromatic pyruvates reduced cytotoxicity in UVB-irradiated HaCaT keratinocytes, and also diminished the expression of interleukin 1β (IL-1β) and interleukin 6 (IL-6). IPyr was more efficacious than either PPyr or HPPyr. Furthermore, only IPyr inhibited cyclooxygenase-2 (Cox-2) expression at both the mRNA and the protein level in UVB-treated keratinocytes. Topical application of IPyr to the dorsal skin of hairless mice reduced the severity of UVB-induced skin lesions, the augmentation of dermal thickness, and transepithelial water loss. Overproduction of IL-1β and IL-6 in response to UVB radiation was also suppressed in vivo by the topical administration of IPyr. These data strongly suggest that IPyr might find utility as a UVB-blocking reagent in therapeutic strategies to lessen UVB-induced inflammatory skin damage.  相似文献   

7.
Oxidative stress and lipid peroxidation are major causes of skin injury induced by ultraviolet (UV) irradiation. Ferroptosis is a form of regulated necrosis driven by iron-dependent peroxidation of phospholipids and contributes to kinds of tissue injuries. However, it remains unclear whether the accumulation of lipid peroxides in UV irradiation-induced skin injury could lead to ferroptosis. We generated UV irradiation-induced skin injury mice model to examine the accumulation of the lipid peroxides and iron. Lipid peroxides 4-HNE, the oxidative enzyme COX2, the oxidative DNA damage biomarker 8-OHdG, and the iron level were increased in UV irradiation-induced skin. The accumulation of iron and lipid peroxidation was also observed in UVB-irradiated epidermal keratinocytes without actual ongoing ferroptotic cell death. Ferroptosis was triggered in UV-irradiated keratinocytes stimulated with ferric ammonium citrate (FAC) to mimic the iron overload. Although GPX4 protected UVB-injured keratinocytes against ferroptotic cell death resulted from dysregulation of iron metabolism and the subsequent increase of lipid ROS, keratinocytes enduring constant UVB treatment were markedly sensitized to ferroptosis. Nicotinamide mononucleotide (NMN) which is a direct and potent NAD+ precursor supplement, rescued the imbalanced NAD+/NADH ratio, recruited the production of GSH and promoted resistance to lipid peroxidation in a GPX4-dependent manner. Taken together, our data suggest that NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation-induced skin injury and inhibits oxidative skin damage. NMN or ferroptosis inhibitor might become promising therapeutic approaches for treating oxidative stress-induced skin diseases or disorders.  相似文献   

8.
The study aimed to identify endogenous lipid mediators of metabolic and inflammatory responses of human keratinocytes to solar UV irradiation. Physiologically relevant doses of solar simulated UVA+UVB were applied to human skin surface lipids (SSL) or to primary cultures of normal human epidermal keratinocytes (NHEK). The decay of photo-sensitive lipid-soluble components, alpha-tocopherol, squalene (Sq), and cholesterol in SSL was analysed and products of squalene photo-oxidation (SqPx) were quantitatively isolated from irradiated SSL. When administered directly to NHEK, low-dose solar UVA+UVB induced time-dependent inflammatory and metabolic responses. To mimic UVA+UVB action, NHEK were exposed to intact or photo-oxidised SSL, Sq or SqPx, 4-hydroxy-2-nonenal (4-HNE), and the product of tryptophan photo-oxidation 6-formylindolo[3,2-b]carbazole (FICZ). FICZ activated exclusively metabolic responses characteristic for UV, i.e. the aryl hydrocarbon receptor (AhR) machinery and downstream CYP1A1/CYP1B1 gene expression, while 4-HNE slightly stimulated inflammatory UV markers IL-6, COX-2, and iNOS genes. On contrast, SqPx induced the majority of metabolic and inflammatory responses characteristic for UVA+UVB, acting via AhR, EGFR, and G-protein-coupled arachidonic acid receptor (G2A). CONCLUSIONS/SIGNIFICANCE: Our findings indicate that Sq could be a primary sensor of solar UV irradiation in human SSL, and products of its photo-oxidation mediate/induce metabolic and inflammatory responses of keratinocytes to UVA+UVB, which could be relevant for skin inflammation in the sun-exposed oily skin.  相似文献   

9.
The nuclear self-Ags targeted in systemic lupus erythematosus translocate to the cell membrane of UV-irradiated apoptotic keratinocytes and may represent an important source of self-immunization. It is hard to understand how the noninflammatory milieu accompanying most apoptosis might provoke an immunogenic response leading to autoantibodies. We have found that the precise amount of keratinocyte UV exposure is crucial in determining the rate of apoptosis, the amount of inflammatory cytokine production, and the degree of autoantigen translocation. Low doses of UVB (相似文献   

10.
Thrombomodulin (TM) is an endothelial cell surface anticoagulant glycoprotein that performs antimetastatic, angiogenic, adhesive, and anti-inflammatory functions in various tissues. It is also expressed in epidermal keratinocytes. We found that a physiological dose (10 mJ/cm2) of mid-wavelength ultraviolet irradiation (UVB) significantly induced TM expression via the p38mitogen-activated protein kinase (MAPK)/cyclic AMP response element (CRE) signaling pathway in the epidermal keratinocyte cell line HaCaT; this shows that TM regulates the survival of HaCaT cells. SB203580, a p38MAPK inhibitor, significantly decreased TM expression and the viability of cells exposed to UVB. Furthermore, overexpression of TM markedly increased cell viability, and it was abrogated by TM small interfering RNA (siRNA), suggesting that TM may play an important role in exerting cytoprotective effect on epidermal keratinocytes against low-dose UVB.  相似文献   

11.
Based on our recent observation that enhanced IL-18 expression positively correlates with malignant skin tumors, such as SCC and melanoma, we examined the possible role of UVB, known to be associated with skin cancer development, in the enhancement of IL-18 production using primary human epidermal keratinocytes and human keratinocyte cell line HaCaT. After cells were exposed to UVB irradiation in vitro, IL-18 production was examined by Northern blot analysis and ELISA, and it was found that IL-18 production is enhanced by UVB irradiation in a dose- and time-dependent manner. In addition, we confirmed that it is functionally active form of IL-18 using the inhibitor of caspase-1. The effect of UVB irradiation was blocked by antioxidant, N-acetyl-L-cysteine (NAC), which suggested the involvement of reactive oxygen intermediates (ROI) in the signal transduction of UVB irradiation-enhanced IL-18 synthesis. We also found that UVB irradiation increased AP-1 binding activity by using EMSA with AP-1-specific oligonucleotide. Furthermore, inhibitors of UVB-induced AP-1 activity, such as PD98059, blocked enhanced IL-18 production, indicating that AP-1 activation is required for UVB-induced IL-18 production. Taken together, our results suggest that UVB irradiation-enhanced IL-18 production is selectively mediated through the generation of ROI and the activation of AP-1.  相似文献   

12.
Both phosphatidylinositol 3-kinase (PI3K)/Akt and NF-kappaB pathways function to promote cellular survival following stress. Recent evidence indicates that the anti-apoptotic activity of these two pathways may be functionally dependent. Ultraviolet (UV) irradiation causes oxidative stress, which can lead to apoptotic cell death. Human skin cells (keratinocytes) are commonly exposed to UV irradiation from the sun. We have investigated activation of the PI3K/Akt and NF-kappaB pathways and their roles in protecting human keratinocytes (KCs) from UV irradiation-induced apoptosis. This activation of PI3K preceded increased levels (3-fold) of active/phosphorylated Akt. UV (50 mJ/cm2 from UVB source) irradiation caused rapid recruitment of PI3K to the epidermal growth factor receptor (EGFR). Pretreatment of KCs with EGFR inhibitor PD169540 abolished UV-induced Akt activation/phosphorylation, as did the PI3K inhibitors LY294002 or wortmannin. This inhibition of Akt activation was associated with a 3-4-fold increase of UV-induced apoptosis, as measured by flow cytometry and DNA fragmentation ELISA. In contrast to Akt, UV irradiation did not detectably increase nuclear localization of NF-kappaB, indicating that it was not strongly activated. Consistent with this observation, interference with NF-kappaB activation by adenovirus-mediated overexpression of dominant negative IKK-beta or IkappaB-alpha did not increase UV-induced apoptosis. However, adenovirus-mediated overexpression of constitutively active Akt completely blocked UV-induced apoptosis observed with PI3K inhibition by LY294002, whereas adenovirus mediated overexpression of dominant negative Akt increased UV-induced apoptosis by 2-fold. Inhibition of UV-induced activation of Akt increased release of mitochondrial cytochrome c 3.5-fold, and caused appearance of active forms of caspase-9, caspase-8, and caspase-3. Constitutively active Akt abolished UV-induced cytochrome c release and activation of caspases-9, -8, and -3. These data demonstrate that PI3K/Akt is essential for protecting human KCs against UV-induced apoptosis, whereas NF-kappaB pathway provides little, if any, protective role.  相似文献   

13.
Continuous exposure to ultraviolet (UV) irradiation leads to a variety of skin damage, such as sunburn, pigmentation, premature ageing, and photocarcinogenesis. Various phytochemical extracts have been identified to efficiently protect sun exposed skin from UV induced photodamage. A Ficus deltoidea (Mas cotek) water extract has been widely used for women’s health in Malaysia. In a previous study from this lab, the F. deltoidea extract exhibited strong anti-melanogenic effects towards cultured B16F1 melanoma cells. Additional studies were intended to evaluate the effects of the F. deltoidea extract on antiphotoageing activity using cultured human dermal fibroblasts and immortalised human keratinocytes (HaCaT). Both TNF-α and cyclooxygenase (COX-2) play primary roles in the inflammation process upon UV irradiation and are known to be stimulated by UVB irradiation. Treatment with the F. deltoidea extract dramatically inhibited the UVinduced TNF-α, IL-1α, IL-6, and COX-2 expression. The decreased collagen synthesis of fibroblasts as a result of UVB exposure was restored to a normal level after treatment with the F. deltoidea extract. In addition, the enhanced MMP-1 expression upon UVB irradiation was downregulated by the F. deltoidea extract in a dose-dependent manner. The overall findings indicate that the F. deltoidea extract may exert a protective effect against UVB-induced damage in the skin that is useful for anti-photoageing cosmetic products.  相似文献   

14.
UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and hydrogen peroxide (H(2)O(2)) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H(2)O(2)-induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H(2)O(2)-induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D's critical role in UVB/oxidative stress-induced skin cell death.  相似文献   

15.
Members of NADPH oxidase (Nox) enzyme family are important sources of reactive oxygen species (ROS) and are known to be involved in several physiological functions in response to various stimuli including UV irradiation. UVB-induced ROS have been associated with inflammation, cytotoxicity, cell death, or DNA damage in human keratinocytes. However, the source and the role of UVB-induced ROS remain undefined.Here, we show that Nox1 is involved in UVB-induced p38/MAPK activation and cytotoxicity via ROS generation in keratinocytes. Nox1 knockdown or inhibitor decreased UVB-induced ROS production in human keratinocytes. Nox1 knockdown impaired UVB-induced p38 activation, accompanied by reduced IL-6 levels and attenuated cell toxicity. Treatment of cells with N-acetyl-L-cysteine (NAC), a potent ROS scavenger, suppressed p38 activation as well as consequent IL-6 production and cytotoxicity in response to UVB exposure. p38 inhibitor also suppressed UVB-induced IL-6 production and cytotoxicity. Furthermore, the blockade of IL-6 production by IL-6 neutralizing antibody reduced UVB-induced cell toxicity.In vivo assay using wild-type mice, the intradermal injection of lysates from UVB-irradiated control cells, but not from UVB-irradiated Nox1 knockdown cells, induced inflammatory swelling and IL-6 production in the skin of ears. Moreover, administration of Nox1 inhibitor suppressed UVB-induced increase in IL-6 mRNA expression in mice skin.Collectively, these data suggest that Nox1-mediated ROS production is required for UVB-induced cytotoxicity and inflammation through p38 activation and inflammatory cytokine production, such as IL-6. Thus, our findings suggest Nox1 as a therapeutic target for cytotoxicity and inflammation in response to UVB exposure.  相似文献   

16.
多糖是树莓功能性成分之一,具有抗炎、抗氧化、抗疲劳、降血糖、免疫调节等多种药理作用。但树莓多糖对紫外线造成的皮肤细胞光损伤是否具有防护作用尚未见报道。本研究旨在探究树莓粗多糖(raspberry crude polysaccharide,RCP)对中波紫外线(ultraviolet B,UVB)诱导的人永生化角质形成细胞(human immortalized keratinocytes,HaCaT)光损伤的防护作用。通过建立HaCaT细胞的UVB光损伤模型,利用CCK-8法测定细胞活力,酶联免疫吸附法(enzyme linked-immuno-sorbent assay,ELISA)和微板法测定HaCaT细胞中炎症因子、基质金属蛋白酶和抗氧化因子的含量,评估RCP的抗UVB活性。采用体外自由基清除实验检测RCP对DPPH自由基(DPPH·)和ABTS自由基(ABTS·+)的清除能力。结果表明,RCP能明显提高被UVB损伤的HaCaT细胞活力,且随浓度升高作用增强(P < 0.01或P < 0.05)。与未加入RCP处理的HaCaT细胞比较,人基质金属蛋白酶-3(matrix metalloproteinase-3,MMP-3)、人白介素-1β(interleukin-1β,IL-1β)、人白介素-6(interleukin-6,IL-6)、人肿瘤坏死因子-α(tumor necrosis factor α,TNF-α)的含量明显降低(P < 0.01或P < 0.05),超氧化物歧化酶(superoxide dismutase,SOD)、还原型谷胱甘肽(glutathione,GSH)以及人硫氧还蛋白(thioredoxin,TRX)的含量显著升高(P < 0.05)。此外,RCP对DPPH·和ABTS·+的最大清除率分别为91%和94%。以上结果表明,RCP能够通过降低炎症水平和缓解氧化应激来预防UVB对HaCaT细胞造成的光损伤,为天然抗UVB物质的研发提供新思路,也为树莓资源的高值化利用和精深开发提供参考。  相似文献   

17.
Ultraviolet (UV) irradiation causes photoageing through induction of matrix-degrading metalloproteinases (MMP), which are upregulated by activator protein-1 (AP-1) (Jun/Fos). The c-Jun kinase activity proves to be critically important in the regulation of AP-1 activity. Our previous studies showed that UV irradiation activates epidermal growth factor receptor (EGFR) and cytokine receptors leading to the activation of c-Jun kinase in cultured human skin keratinocytes in vitro and in human skin in vivo. However, the mechanism of UV-induced cell surface receptor activation and the crosstalk among growth factor receptor and cytokine receptors were not fully investigated. This study showed that UV (30 mJ/cm(2))-induced EGFR tyrosine phosphorylation in a manner similar to EGF (100 ng/ml), or IL-1beta (10 ng/ml) in cultured human keratinocytes. In all cases, EGFR tyrosine phosphorylation was completely inhibited by pretreatment of PD153035 (100 nM, 1 h). Also observed was that UV induced autophosphorylation of interleukin 1 receptor associated kinase (IRAK) in a manner analogous to IL-1beta or EGF. In both UV and EGF cases, the phosphorylation of IRAK was inhibited by pretreatment of PD153035. However, IL-1beta-induced IRAK activation was not affected by PD153035. In vitro kinase assay using GST-c-Jun as a substrate revealed that pretreatment of PD153035 completely inhibited UV- and IL-1-induced c-Jun kinase activity in cultured keratinocytes. Taken together, the above data suggest that EGFR plays dominant role in the crosstalk among growth factor receptor and cytokine receptors leading to the activation of c-Jun kinase upon UV irradiation, and that EGFR could be one of the targets for clinical and cosmetical prevention of UV-induced skin aging.  相似文献   

18.
Beak SM  Lee YS  Kim JA 《Biochimie》2004,86(7):425-429
The detrimental effects of ultraviolet B (UVB) irradiation have been connected with the enhanced generation of reactive oxygen species (ROS) by UVB. However, the exact source of ROS produced by UVB has not been clearly revealed yet. In this study, we determined the source of ROS production and its role in the UVB-induced activation of nuclear factor (NF)-kappaB in HaCaT human keratinocytes. UVB irradiation generated ROS in a dose-dependent manner, and this was significantly inhibited by diphenylene iodonium (DPI), apocynin (Apo) and neopterine (Neo), inhibitors of the NADPH oxidase, and indomethacin (Indo), a cyclooxygenase (COX) inhibitor, but not by the mitochondrial electron transport inhibitors and other cytosolic enzyme inhibitors. In addition, these inhibitors of the NADPH oxidase and COX significantly blocked the UVB irradiation-induced nuclear translocation of NF-kappaB. These results suggest that the NADPH oxidase and COX may be major sources for the UVB-induced ROS generation, and play an essential role in the activation of NF-kappaB which is involved in the expression of a variety of genes induced by UVB in HaCaT cells. These results further suggest that these enzymes may be good targets for the preventive strategy of UVB-induced skin injury.  相似文献   

19.
The expression and modulation of IL-1 alpha in murine keratinocytes   总被引:6,自引:0,他引:6  
Murine and human keratinocytes produce an IL-1-like factor that appears to be similar if not identical to monocyte-derived IL-1. IL-1 may be an important mediator in cutaneous inflammatory responses, however, little is currently known concerning factors that may modulate IL-1 expression in keratinocytes. To address this issue we examined the effect of LPS, UV, and the cell differentiation state on murine keratinocyte IL-1 mRNA expression. Our results indicated that as with the murine P388D1 monocyte cell line, PAM 212 keratinocytes constitutively express abundant amounts of IL-1 alpha mRNA. On exposure to LPS (100 micrograms/ml) for 8 h there was more than 10 times the increase in PAM 212 IL-1 alpha mRNA which was accompanied by a sixfold increase in supernatant IL-1 activity. Similarly UV irradiation had a significant effect on keratinocyte IL-1 alpha expression. High dose UV (300 mJ/cm2) inhibited PAM 212 IL-1 alpha expression at 4, 8, 24, 48 h post-UV whereas a lower dose of UV (100 mJ/cm2) inhibited UV at 4 and 8 h post-UV, but induced IL-1 expression at 24 and 48 h post-UV. The expression of IL-1 alpha varied with the differentiation state of the keratinocytes. Freshly removed newborn murine keratinocytes were found to constitutively express IL-1 alpha mRNA. Keratinocytes grown in low [Ca2+] tissue culture media (0.05 mM) for 6 days, functionally and phenotypically become undifferentiated and express increased quantities of IL-1 alpha mRNA, whereas cells grown in high [Ca2+] media (1.2 mM) for 6 days become terminally differentiated and IL-1 expression ceased. Keratinocytes cultured for 3 days in low [Ca2+] conditions expressed an intermediate level of IL-1 alpha. In contrast, little or no IL-1 beta mRNA was detected in either the PAM 212 cells or newborn murine keratinocytes. Thus LPS, UV, and cell differentiation state have a significant effect on expression of IL-1 alpha in murine keratinocytes.  相似文献   

20.
Cell level inflammatory signalling is a combination of initiation at cell membrane receptors and modulation by cytoplasmic regulatory proteins. For keratinocytes, the predominant cell type in the epidermis, this would include toll-like receptors (TLR) and cytoplasmic proteins that propagate or dampen post-receptor signalling. We previously reported that increased levels of tumor necrosis factor α induced protein 3-interacting protein 1 (TNIP1) in HaCaT keratinocytes leads to decreased expression of stress response and inflammation-associated genes. This finding suggested decreased TNIP1 levels, as seen in some cutaneous disease states, may produce the opposite effect, sensitizing cells to triggers of inflammatory signalling including those sensed by TLR. In this study of TNIP1-deficient HaCaT keratinocytes we examined intracellular signalling consequences especially those expected to produce gene expression changes downstream of TLR3 or TLR2/6 activation by Poly (I:C) or FSL-1, agonists modeling skin relevant pathogens. We found TNIP1-deficient keratinocytes are hyper-sensitive to TLR activation compared to control cells with a normal complement of TNIP1 and receiving the same agonist stimulation. TNIP1-deficient keratinocytes have increased levels of activated (phosphorylated) cytoplasmic mediators such as JNK and p38 and greater nuclear translocation of NF-κB and phospho-p38 when exposed to TLR ligands. This is consistent with significantly increased expression of several inflammatory cytokines and chemokines, such as IL-6 and IL-8. These results describe how decreased TNIP1 levels promote a hyper-sensitive state in HaCaT keratinocytes evidenced by increased activation of signalling molecules downstream of TLR agonists and increased expression of pro-inflammatory mediators. TNIP1 keratinocyte deficiency as reported for some skin diseases may predispose these cells to excessive inflammatory signalling upon exposure to viral or bacterial ligands for TLR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号