首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mesophyll cells and bundle sheath strands were isolated rapidly from leaves of the C4 species Digitaria pentzii Stent. (slenderstem digitgrass) by a chopping and differential filtration technique. Rates of CO2 fixation in the light by mesophyll and bundle sheath cells without added exogenous substrates were 6.3 and 54.2 micromoles of CO2 per milligram of chlorophyll per hour, respectively. The addition of pyruvate or phosphoenolpyruvate to the mesophyll cells increased the rates to 15.2 and 824.6 micromoles of CO2 per milligram of chlorophyll per hour, respectively. The addition of ribose 5-phosphate increased the rate for bundle sheath cells to 106.8 micromoles of CO2 per milligram of chlorophyll per hour. These rates are comparable to those reported for cells isolated by other methods. The Km(HCO3) for mesophyll cells was 0.9 mm; for bundle sheath cells it was 1.3 mm at low, and 40 mm at higher HCO3 concentrations. After 2 hours of photosynthesis by mesophyll cells in 14CO2 and phosphoenolpyruvate, 88% of the incorporated 14C was found in organic acids and 0.8% in carbohydrates; for bundle sheath cells incubated in ribose 5-phosphate and ATP, more than 58% of incorporated 14C was found in carbohydrates, mainly starch, and 32% in organic acids. These findings, together with the stimulation of CO2 fixation by phosphoenolpyruvate for mesophyll cells and by ribose 5-phosphate plus ATP for bundle sheath cells, and the location of phosphoenolpyruvate and ribulose bisphosphate carboxylases in mesophyll and bundle sheath cells, respectively, are in accord with the scheme of C4 photosynthesis which places the Calvin cycle in the bundle sheath and C4 acid formation in mesophyll cells.  相似文献   

2.
We used a pale-green maize (Zea mays L.) mutant that fails to accumulate ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to test the working hypothesis that the regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase (PEPC) by its Ca2+-insensitive protein-serine/threonine kinase (PEPC kinase) in the C4 mesophyll cytosol depends on cross-talk with a functional Calvin cycle in the bundle sheath. Wild-type (W22) and bundle sheath defective2-mutable1 (bsd2-m1) seeds were grown in a controlled environment chamber at 100 to 130 μmol m−2 s−1 photosynthetic photon flux density, and leaf tissue was harvested 11 d after sowing, following exposure to various light intensities. Immunoblot analysis showed no major difference in the amount of polypeptide present for several mesophyll- and bundle-sheath-specific photosynthetic enzymes apart from Rubisco, which was either completely absent or very much reduced in the mutant. Similarly, leaf net CO2-exchange analysis and in vitro radiometric Rubisco assays showed that no appreciable carbon fixation was occurring in the mutant. In contrast, the sensitivity of PEPC to malate inhibition in bsd2-m1 leaves decreased significantly with an increase in light intensity, and there was a concomitant increase in PEPC kinase activity, similar to that seen in wild-type leaf tissue. Thus, although bsd2-m1 mutant plants lack an operative Calvin cycle, light activation of PEPC kinase and its target enzyme are not grossly perturbed.  相似文献   

3.
Oxygen inhibition of leaf slice photosynthesis in Panicum milioides increased from 20% to 30% at 21% O2 in the presence of maleate, a phosphoenolpyruvate carboxylase inhibitor. The increased O2 sensitivity was completely reversed by the addition of malate and aspartate, the stable products of the phosphoenolpyruvate carboxylase reaction. The C4 acids, malate and aspartate, also reduced O2 inhibition of photosynthesis by isolated bundle sheath strands, but not mesophyll protoplasts. Similarly, only bundle sheath strands exhibited an active C4 acid-dependent O2 evolution. Compartmentation of C4 cycle enzymes, with pyruvate, Pi dikinase in the mesophyll and NAD-malic enzyme in the bundle sheath, was demonstrated. It is concluded that reduced photorespiration in P. milioides is due to a limited potential for C4 photosynthesis permitting an increase in pCO2 at the site of bundle sheath ribulosebisphosphate carboxylase.  相似文献   

4.
Mesophyll cells and bundle sheath strands were isolated from Cyperus rotundus L. leaf sections infiltrated with a mixture of cellulase and pectinase followed by a gentle mortar and pestle grind. The leaf suspension was filtered through a filter assembly and mesophyll cells and bundle sheath strands were collected on 20-μm and 80-μm nylon nets, respectively. For the isolation of leaf epidermal strips longer leaf cross sections were incubated with the enzymes and gently ground as above. Loosely attached epidermal strips were peeled off with forceps. The upper epidermis, which lacks stomata, could be clearly distinguished from the lower epidermis which contains stomata. Microscopic evidence for identification and assessment of purity is provided for each isolated tissue.Enzymes related to the C4-dicarboxylic acid cycle such as phosphoenolpyruvate carboxylase, malate dehydrogenase (NADP+), pyruvate, Pi dikinase were found to be localized, ≥98%, in mesophyll cells. Enzymes related to operating the reductive pentose phosphate cycle such as RuDP carboxylase, phosphoribulose kinase, and malic enzyme are distributed, ≥99%, in bundle sheath strands. Other photosynthetic enzymes such as aspartate aminotransferase, pyrophosphatase, adenylate kinase, and glyceraldehyde 3-P dehydrogenase (NADP+) are quite active in both mesophyll and bundle sheath tissues.Enzymes involved in photorespiration such as RuDP oxygenase, catalase, glycolate oxidase, hydroxypyruvate reductase (NAD+), and phosphoglycolate phosphatase are preferentially localized, ≥84%, in bundle sheath strands.Nitrate and nitrite reductase can be found only in mesophyll cells, while glutamate dehydrogenase is present, ≥96%, in bundle sheath strands.Starch- and sucrose-synthesizing enzymes are about equally distributed between the mesophyll and bundle sheath tissues, except that the less active phosphorylase was found mainly in bundle sheath strands. Fructose-1,6-diP aldolase, which is a key enzyme in photosynthesis and glycolysis leading to sucrose and starch synthesis, is localized, ≥90%, in bundle sheath strands. The glycolytic enzymes, phosphoglyceromutase and enolase, have the highest activity in mesophyll cells, while the mitochondrial enzyme, cytochrome c oxidase, is more active in bundle sheath strands.The distribution of total nutsedge leaf chlorophyll, protein, and PEP carboxylase activity, using the resolved leaf components, is presented. 14CO2 Fixation experiments with the intact nutsedge leaves and isolated mesophyll and bundle sheath tissues show that complete C4 photosynthesis is compartmentalized into mesophyll CO2 fixation via PEP carboxylase and bundle sheath CO2 fixation via RuDP carboxylase. These results were used to support the proposed pathway of carbon assimilation in C4-dicarboxylic acid photosynthesis and to discuss the individual metabolic characteristics of intact mesophyll cells, bundle sheath cells, and epidermal tissues.  相似文献   

5.
Lipid peroxidation and the degradation of cytochrome P-450 heme   总被引:8,自引:0,他引:8  
The enzyme content and functional capacities of mesophyll chloroplasts from Atriplex spongiosa and maize have been investigated. Accompanying evidence from graded sequential blending of leaves confirmed that mesophyll cells contain all of the leaf pyruvate, Pi dikinase, and PEP carboxylase activities and a major part of the adenylate kinase and pyrophosphatase. 3-Phosphoglycerate kinase, NADP glyceraldehyde-3-P-dehydrogenase, and triose-P isomerase activities were about equally distributed between mesophyll and bundle sheath cells but other Calvin cycle enzymes were very largely or solely located in bundle sheath cells. In A. spongiosa extracts of predominantly mesophyll origin the proportion of the released pyruvate, Pi dikinase, adenylate kinase, pyrophosphatase, 3-phosphoglycerate kinase, and NADP glyceraldehyde-3-P dehydrogenase retained in pelleted chloroplasts was similar but varied between 30 and 80% in different preparations. The proportion of these enzymes and NADP malate dehydrogenase recovered in maize chloroplast preparations varied between 15 and 35%. Washed chloroplasts retained most of the activity of these enzymes but ribulose diphosphate carboxylase and other Calvin cycle enzyme activities were undetectable. Among the evidence for the integrity of these chloroplasts was their capacity for light-dependent conversion of pyruvate to phosphoenolpyruvate and O2 evolution when 3-phosphoglycerate or oxaloacetate were added. These results support our previous conclusions about the function of mesophyll chloroplasts in C4-pathway photosynthesis and clearly demonstrate that they lack Calvin cycle activity.  相似文献   

6.
Regulation of the light activation of C4 phosphoenolpyruvate-carboxylase (PEPC) protein kinase (PEPC-PK) and the ensuing phosphorylation of its cytosolic target protein were studied in intact mesophyll cells (MC) and protoplasts (MP) isolated from dark-adapted leaves of Digitaria sanguinalis [L.] Scop, (hairy crabgrass). The apparent in-situ phosphorylation state of PEPC (EC 4.1.1.31) was assessed by the sensitivity of its activity in desalted MC- and MP-extracts to l-malate under suboptimal assay conditions, while the activity-state of PEPC-PK was determined by in-vitro 32P-labeling of purified maize or recombinant sorghum PEPC by these extracts. In-situ pretreatment of intact MC at pH 8.0 by illumination and calcium addition led to significant decreases in PEPC malate sensitivity and increases in PEPC-kinase activity that were negated by the addition of EGTA to the external cell medium. Similarly, in-situ pretreatment of MP with light plus NH4Cl at pH 7.6 led to significant decreases in malate sensitivity which did not occur when a Ca2+ ionophore and EGTA were included in the suspension medium. In contrast, neither EGTA nor exogenous Ca2+ had a major direct effect on the in-vitro activity of PEPC-PK extracted from Digitaria MC and MP. Preincubation of intact MC with 5 mM 3-phosphoglycerate or pyruvate at pH 8.0 in the dark led to significant decreases in PEPC malate sensitivity and increases in PEPC-PK activity which were not observed with various other exogenous metabolites. These collective in-situ experiments with isolated C4 MC and MP (i) support our earlier hypothesis that alkalization of cytosolic pH is involved in the PEPC-PK signal-transduction cascade (see J.-N. Pierre et al., Eur J Biochem, 1992,210: 531–537), (ii) suggest that intracellular calcium is involved in the PEPC-kinase signal-transduction chain, but at a step upstream of PEPC-PK per se, and (iii) provide direct evidence that the bundle-sheath-derived, C4-pathway intermediates 3-PGA and/or pyruvate also play a role in this signal-transduction cascade which ultimately effects the up-regulation of PEPC in the C4 mesophyll cytosol.Abbreviations BS bundle-sheath - CAM Crassulacean acid metabolism - DHAP dihydroxyacetone phosphate - FPLC fast-protein liquid chromatography - Glc6P glucose 6-phosphate - I0.5 50% inhibition constant - MC mesophyll cell(s) - MP me-sophyll protoplast(s) - PEP phosphoenolpyruvate - PEPC PEP carboxylase - PEPC-PK PEPC protein-Ser/Thr kinase - 2-PGA 2-phosphoglycerate - 3-PGA 3-phosphoglycerate - PPFD photosynthetic photon flux density - Pyr pyruvate - Ser serine The authors thank Ms. Jill Myatt for her help with some of the MC preparations. This work was supported in part by grants INT-9115566 and MCB-9315928 from the U.S. National Science Foundation (to R.C.). S.M.G.D. was a recipient of an NSERC of Canada Post-Doctoral Fellowship. This paper is Journal Series No. 11 395 of the University of Nebraska Agricultural Research Division.  相似文献   

7.
A procedure is described for isolating and purifying mesophyll protoplasts and bundle sheath protoplasts of the C4 plant Panicum miliaceum. Following enzymic digestion of leaf tissue, mesophyll protoplasts and bundle sheath protoplasts are released and purified by density centrifugation. The lower density of mesophyll protoplasts allowed rapid separation of the two protoplast types. Evidence for separation of mesophyll protoplasts and bundle sheath protoplasts (up to 95% purity) is provided from light microscopy (based on size difference in both chloroplasts and protoplasts), levels of marker enzymes in the preparations (i.e. pyruvate, Pi dikinase and phosphoenolpyruvate carboxylase for mesophyll and ribulose-1,5-bisphosphate carboxylase for bundle sheath), and differences in substrate-dependent O2 evolution by chloroplasts isolated from protoplasts.  相似文献   

8.
Mature leaves of Cyperus rotundus, Cyperus polystachyos, Digitaria decumbens, and Digitaria sanguinalis were separated, using pectinase and cellulase, into pure preparations of mesophyll cells and bundle sheath strands. Assays on these distinct leaf cell types show a clear compartmentation of phosphoenolpyruvate carboxylase, >98%, into mesophyll cells and of ribulose-1, 5-diphosphate carboxylase and malic enzyme, >98%, into the bundle sheath strands. The results clearly establish that the major CO2 uptake in mesophyll cells is via a β-carboxylation and that both a decarboxylation and a carboxylation reaction occurs in the bundle sheath strands of plants using C4-dicarboxylic acid photosynthesis.  相似文献   

9.
Phosphoenolpyruvate carboxylase (PEPC; EC4.1.1.31) plays a key role during C(4) photosynthesis. The enzyme is activated by metabolites such as glucose-6-phosphate and inhibited by malate. This metabolite sensitivity is modulated by the reversible phosphorylation of a conserved serine residue near the N terminus in response to light. The phosphorylation of PEPC is modulated by a protein kinase specific to PEPC (PEPC-PK). To explore the role PEPC-PK plays in the regulation of C(4) photosynthetic CO(2) fixation, we have transformed Flaveria bidentis (a C(4) dicot) with antisense or RNA interference constructs targeted at the mRNA of this PEPC-PK. We generated several independent transgenic lines where PEPC is not phosphorylated in the light, demonstrating that this PEPC-PK is essential for the phosphorylation of PEPC in vivo. Malate sensitivity of PEPC extracted from these transgenic lines in the light was similar to the malate sensitivity of PEPC extracted from darkened wild-type leaves but greater than the malate sensitivity observed in PEPC extracted from wild-type leaves in the light, confirming the link between PEPC phosphorylation and the degree of malate inhibition. There were, however, no differences in the CO(2) and light response of CO(2) assimilation rates between wild-type plants and transgenic plants with low PEPC phosphorylation, showing that phosphorylation of PEPC in the light is not essential for efficient C(4) photosynthesis for plants grown under standard glasshouse conditions. This raises the intriguing question of what role this complexly regulated reversible phosphorylation of PEPC plays in C(4) photosynthesis.  相似文献   

10.
Control of C4 photosynthesis and Crassulacean acid metabolism (CAM) is, in part, mediated by the diel regulation of phosphoenolpyruvate carboxylase (PEPC) activity. The nature of this regulation of PEPC in the leaf cell cytoplasm of C4 and CAM plants is both metabolite-related and posttranslational. Specificially, the regulatory properties of the enzyme vary in accord with the physiological activity of C4 photosynthesis and CAM: PEPC is less sensitive to feedback inhibition by l-malate under light (C4 plants) or at night (CAM plants) than in darkness (C4) or during the day (CAM). While the view that a light-induced change in the aggregation state of the holoenzyme is a general mechanism for the diel regulation of PEPC activity in CAM plants is currently in dispute, there is no supportive in vivo evidence for such a tetramer/dimer interconversion in C4 plants. In contrast, a wealth of in vitro and in vivo data has accumulated in support of the view that the reversible phosphorylation of a specific, N-terminal regulatory serine residue in PEPC (e.g. Ser-15 or Ser-8 in the maize or sorghum enzymes, respectively) plays a key, if not cardinal, role in the posttranslational regulation of the carboxylase by light/dark or day/night transitions in both C4 and CAM plants, respectively.  相似文献   

11.
C4 plants have two carboxylases which function in photosynthesis. One, phosphoenolpyruvate carboxylase (PEPC) is localized in mesophyll cells, and the other, ribulose bisphosphate carboxylase (RuBPC) is found in bundle sheath cells. In contrast, C3 plants have only one photosynthetic carboxylase, RuBPC, which is localized in mesophyll cells. The expression of PEPC in C3 mesophyll cells is quite low relative to PEPC expression in C4 mesophyll cells. Two chimeric genes have been constructed consisting of the structural gene encoding β-glucuronidase (GUS) controlled by two promoters from C4 (maize) photosynthetic genes: (i) the PEPC gene (pepc) and (ii) the small subunit of RuBPC (rbcS). These constructs were introduced into a C3 cereal, rice. Both chimeric genes were expressed almost exclusively in mesophyll cells in the leaf blades and leaf sheaths at high levels, and no or very little activity was observed in other cells. The expression of both genes was also regulated by light. These observations indicate that the regulation systems which direct cell-specific and light-inducible expression of pepc and rbcS in C4 plants are also present in C3 plants. Nevertheless, expression of endogenous pepc in C3 plants is very low in C3 mesophyll cells, and the cell specificity of rbcS expression in C3 plants differs from that in C4 plants. Rice nuclear extracts were assayed for DNA-binding protein(s) which interact with a cis-regulatory element in the pepc promoter. Gel-retardation assays indicate that a nuclear protein with similar DNA-binding specificity to a maize nuclear protein is present in rice. The possibility that differences in pepc expression in a C3 plant (rice) and C4 plant (maize) may be the result of changes in cis-acting elements between pepc in rice and maize is discussed. It also appears that differences in the cellular localization of rbcS expression are probably due to changes in a trans-acting factor(s) required for rbcS expression.  相似文献   

12.
Three to four families of nuclear genes encode different isoforms of phosphoenolpyruvate (PEP) carboxylase (PEPC): C4-specific, C3 or etiolated, CAM and root forms. C4 leaf PEPC is encoded by a single gene (ppc) in sorghum and maize, but multiple genes in the C4-dicot Flaveria trinervia. Selective expression of ppc in only C4-mesophyll cells is proposed to be due to nuclear factors, DNA methylation and a distinct gene promoter. Deduced amino acid sequences of C4-PEPC pinpoint the phosphorylatable serine near the N-terminus, C4-specific valine and serine residues near the C-terminus, conserved cysteine, lysine and histidine residues and PEP binding/catalytic sites. During the PEPC reaction, PEP and bicarbonate are first converted into carboxyphosphate and the enolate of pyruvate. Carboxyphosphate decomposes within the active site into Pi and CO2, the latter combining with the enolate to form oxalacetate. Besides carboxylation, PEPC catalyzes a HCO3 --dependent hydrolysis of PEP to yield pyruvate and Pi. Post-translational regulation of PEPC occurs by a phosphorylation/dephosphorylation cascade in vivo and by reversible enzyme oligomerization in vitro. The interrelation between phosphorylation and oligomerization of the enzyme is not clear. PEPC-protein kinase (PEPC-PK), the enzyme responsible for phosphorylation of PEPC, has been studied extensively while only limited information is available on the protein phosphatase 2A capable of dephosphorylating PEPC. The C4 ppc was cloned and expressed in Escherichia coli as well as tobacco. The transformed E. coli produced a functional/phosphorylatable C4 PEPC and the transgenic tobacco plants expressed both C3 and C4 isoforms. Site-directed mutagenesis of ppc indicates the importance of His138, His579 and Arg587 in catalysis and/or substrate-binding by the E. coli enzyme, Ser8 in the regulation of sorghum PEPC. Important areas for further research on C4 PEPC are: mechanism of transduction of light signal during photoactivation of PEPC-PK and PEPC in leaves, extensive use of site-directed mutagenesis to precisely identify other key amino acid residues, changes in quarternary structure of PEPC in vivo, a high-resolution crystal structure, and hormonal regulation of PEPC expression.Abbreviations OAA oxalacetate - PEP phosphoenolpyruvate - PEPC PEP carboxylase - PEPC-PK PEPC-protein kinase - PPDK pyruvate, orthophosphate dikinase - Rubisco ribulose 1,5-bis-phosphate carboxylase/oxygenase - CAM Crassulacean acid metabolism  相似文献   

13.
Arundinella hirta L. is a C4 plant having an unusual C4 leaf anatomy. Besides mesophyll and bundle sheath cells, A. hirta leaves have specialized parenchyma cells which look morphologically like bundle sheath cells but which lack vascular connections and are located between veins, running parallel to them. Activities of phosphoenolpyruvate and ribulose-1,5-bisphosphate carboxylases and phosphoenolpyruvate carboxykinase, NADP-and NAD-malic enzymes were determined for whole leaf extracts and isolated mesophyll protoplasts, specialized parenchyma cells, and bundle sheath cells. The data indicate that A. hirta is a NADP-malic enzyme type C4 species. In addition, specialized parenchyma cells and bundle sheath cells are enzymatically alike. Compartmentation of enzymes followed the C4 pattern with phosphoenolpyruvate carboxylase being restricted to mesophyll cells while ribulose-1,5-bisphosphate carboxylase and decarboxylating enzymes were restricted to bundle sheath and specialized parenchyma cells.  相似文献   

14.
Two-dimensional electrophoresis was performed on proteins of bundle sheath and mesophyll cells isolated from the C4 grass Digitaria sanguinalis (L.) Scop. Two-dimensional maps of these proteins were constructed and ribulose-1,5-biphosphate carboxylase and phosphoenolpyruvate carboxylase were identified. Of the total number of proteins found in both cell types, 36% were found only in bundle sheath cells, 17% only in mesophyll cells, and 47% in both cell types. By comparison, the distributions of 48 enzymes assayed in these cell types were 35%, 21%, and 44%, respectively.

Protein patterns were also compared with C4 plants exhibiting different decarboxylation pathways and, in both bundle sheath and mesophyll cells, proteins were found which were unique to each species. Bundle sheath proteins of one C4 species were found to be more like bundle sheath proteins of another C4 species than like mesophyll proteins of the same species.

  相似文献   

15.
A mechanical isolation procedure was developed to study the respiratory properties of mitochondria from the mesophyll and bundle sheath tissue of Panicum miliaceum, a NAD-malic enzyme C4 plant. A mesophyll fraction and a bundle sheath fraction were obtained from young leaves by differential mechanical treatment. The purity of both fractions was about 80%, based on analysis of the cross-contamination of ribulose bisphosphate carboxylase activity and phosphoenolpyruvate carboxylase activity.

Mitochondria were isolated from the two fractions by differential centrifugation and Percoll density gradient centrifugation. The enrichment of mitochondria relative to chloroplast material was about 75-fold in both preparations.

Both types of mitochondria oxidized NADH and succinate with respiratory control. Malate oxidation in mesophyll mitochondria was sensitive to KCN and showed good respiratory control. In bundle sheath mitochondria, malate oxidation was largely insensitive to KCN and showed no respiratory control. The oxidation was strongly inhibited by salicylhydroxamic acid, showing that the alternative oxidase was involved. The bundle sheath mitochondria of this type of C4 species contribute to C4 photosynthesis through decarboxylation of malate. Malate oxidation linked to an uncoupled, alternative pathway may allow decarboxylation to proceed without the restraints which might occur via coupled electron flow through the cytochrome chain.

  相似文献   

16.
Tashima  Maho  Yabiku  Takayuki  Ueno  Osamu 《Photosynthesis research》2021,147(2):211-227

C4-like plants represent the penultimate stage of evolution from C3 to C4 plants. Although Coleataenia prionitis (formerly Panicum prionitis) has been described as a C4 plant, its leaf anatomy and gas exchange traits suggest that it may be a C4-like plant. Here, we reexamined the leaf structure and biochemical and physiological traits of photosynthesis in this grass. The large vascular bundles were surrounded by two layers of bundle sheath (BS): a colorless outer BS and a chloroplast-rich inner BS. Small vascular bundles, which generally had a single BS layer with various vascular structures, also occurred throughout the mesophyll together with BS cells not associated with vascular tissue. The mesophyll cells did not show a radial arrangement typical of Kranz anatomy. These features suggest that the leaf anatomy of C. prionitis is on the evolutionary pathway to a complete C4 Kranz type. Phosphoenolpyruvate carboxylase (PEPC) and pyruvate, Pi dikinase occurred in the mesophyll and outer BS. Glycine decarboxylase was confined to the inner BS. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) accumulated in the mesophyll and both BSs. C. prionitis had biochemical traits of NADP-malic enzyme type, whereas its gas exchange traits were close to those of C4-like intermediate plants rather than C4 plants. A gas exchange study with a PEPC inhibitor suggested that Rubisco in the mesophyll could fix atmospheric CO2. These data demonstrate that C. prionitis is not a true C4 plant but should be considered as a C4-like plant.

  相似文献   

17.
Light microscopic examination of leaf cross-sections showed that Flaveria brownii A. M. Powell exhibits Kranz anatomy, in which distinct, chloroplast-containing bundle sheath cells are surrounded by two types of mesophyll cells. Smaller mesophyll cells containing many chloroplasts are arranged around the bundle sheath cells. Larger, spongy mesophyll cells, having fewer chloroplasts, are located between the smaller mesophyll cells and the epidermis. F. brownii has very low CO2 compensation points at different O2 levels, which is typical of C4 plants, yet it does show about 4% inhibition of net photosynthesis by 21% O2 at 30°C. Protoplasts of the three photosynthetic leaf cell types were isolated according to relative differences in their buoyant densities. On a chlorophyll basis, the activities of phosphoenolpyruvate carboxylase and pyruvate, Pi dikinase (carboxylation phase of C4 pathway) were highest in the larger mesophyll protoplasts, intermediate in the smaller mesophyll protoplasts, and lowest, but still present, in the bundle sheath protoplasts. In contrast, activities of ribulose 1,5-bisphosphate carboxylase, other C3 cycle enzymes, and NADP-malic enzyme showed a reverse gradation, although there were significant activities of these enzymes in mesophyll cells. As indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the banding pattern of certain polypeptides of the total soluble proteins from the three cell types also supported the distribution pattern obtained by activity assays of these enzymes. Analysis of initial 14C products in whole leaves and extrapolation of pulse-labeling curves to zero time indicated that about 80% of the CO2 is fixed into C4 acids (malate and aspartate), whereas about 20% of the CO2 directly enters the C3 cycle. This is consistent with the high activity of enzymes for CO2 fixation by the C4 pathway and the substantial activity of enzymes of the C3 cycle in the mesophyll cells. Therefore, F. brownii appears to have some capacity for C3 photosynthesis in the mesophyll cells and should be considered a C4-like species.  相似文献   

18.
Phosphoenolpyruvate carboxylase (PEPC) activity was detected in aleurone-endosperm extracts of barley (Hordeum vulgare) seeds during germination, and specific anti-sorghum (Sorghum bicolor) C4 PEPC polyclonal antibodies immunodecorated constitutive 103-kD and inducible 108-kD PEPC polypeptides in western analysis. The 103- and 108-kD polypeptides were radiolabeled in situ after imbibition for up to 1.5 d in 32P-labeled inorganic phosphate. In vitro phosphorylation by a Ca2+-independent PEPC protein kinase (PK) in crude extracts enhanced the enzyme''s velocity and decreased its sensitivity to l-malate at suboptimal pH and [PEP]. Isolated aleurone cell protoplasts contained both phosphorylated PEPC and a Ca2+-independent PEPC-PK that was partially purified by affinity chromatography on blue dextran-agarose. This PK activity was present in dry seeds, and PEPC phosphorylation in situ during imbibition was not affected by the cytosolic protein-synthesis inhibitor cycloheximide, by weak acids, or by various pharmacological reagents that had proven to be effective blockers of the light signal transduction chain and PEPC phosphorylation in C4 mesophyll protoplasts. These collective data support the hypothesis that this Ca2+-independent PEPC-PK was formed during maturation of barley seeds and that its presumed underlying signaling elements were no longer operative during germination.Higher-plant PEPC (EC 4.1.1.31) is subject to in vivo phosphorylation of a regulatory Ser located in the N-terminal domain of the protein. In vitro phosphorylation by a Ca2+-independent, low-molecular-mass (30–39 kD) PEPC-PK modulates PEPC regulation interactively by opposing metabolite effectors (e.g. allosteric activation by Glc-6-P and feedback inhibition by l-malate; Andreo et al., 1987), decreasing significantly the extent of malate inhibition of the leaf enzyme (Carter et al., 1991; Chollet et al., 1996; Vidal et al., 1996; Vidal and Chollet, 1997). These metabolites control the rate of phosphorylation of PEPC via an indirect target-protein effect (Wang and Chollet, 1993; Echevarría et al., 1994; Vidal and Chollet, 1997).Several lines of evidence support the view that this protein-Ser/Thr kinase is the physiologically relevant PEPC-PK (Li and Chollet, 1993; Chollet et al., 1996; Vidal et al., 1996; Vidal and Chollet, 1997). The presence and inducible nature of leaf PEPC-PK have been established further in various C3, C4, and CAM plant species (Chollet et al., 1996). In all cases, CHX proved to be a potent inhibitor of this up-regulation process so that apparent changes in the turnover rate of PEPC-PK itself or another, as yet unknown, protein factor were invoked to account for this observation (Carter et al., 1991; Jiao et al., 1991; Chollet et al., 1996). Consistent with this proposal are recent findings about PEPC-PK from leaves of C3, C4, and CAM plants that determined activity levels of the enzyme to depend on changes in the level of the corresponding translatable mRNA (Hartwell et al., 1996).Using a cellular approach we previously showed in sorghum (Sorghum bicolor) and hairy crabgrass (Digitaria sanguinalis) that PEPC-PK is up-regulated in C4 mesophyll cell protoplasts following illumination in the presence of a weak base (NH4Cl or methylamine; Pierre et al., 1992; Giglioli-Guivarc''h et al., 1996), with a time course (1–2 h) similar to that of the intact, illuminated sorghum (Bakrim et al., 1992) or maize leaf (Echevarría et al., 1990). This light- and weak-base-dependent process via a complex transduction chain is likely to involve sequentially an increase in pHc, inositol trisphosphate-gated Ca2+ channels of the tonoplast, an increase in cytosolic Ca2+, a Ca2+-dependent PK, and PEPC-PK.Considerably less is known about the up-regulation of PEPC-PK and PEPC phosphorylation in nongreen tissues. A sorghum root PEPC-PK purified on BDA was shown to phosphorylate in vitro both recombinant C4 PEPC and the root C3-like isoform, thereby decreasing the enzyme''s malate sensitivity (Pacquit et al., 1993). PEPC from soybean root nodules was phosphorylated in vitro and in vivo by an endogenous PK (Schuller and Werner, 1993; Zhang et al., 1995; Zhang and Chollet, 1997). A Ca2+-independent nodule PEPC-PK containing two active polypeptides (32–37 kD) catalyzed the incorporation of phosphate on a Ser residue of the target enzyme and was modulated by photosynthate transported from the shoots (Zhang and Chollet, 1997). Regulatory seryl phosphorylation of a heterotetrameric (α2β2) banana fruit PEPC by a copurifying, Ca2+-independent PEPC-PK was shown to occur in vitro (Law and Plaxton, 1997). Although phosphorylation was also detected in vivo and found to concern primarily the α-subunit, PEPC exists mainly in the dephosphorylated form in preclimacteric, climacteric, and postclimacteric fruit.In a previous study we showed that PEPC undergoes regulatory phosphorylation in aleurone-endosperm tissue during germination of wheat seeds (Osuna et al., 1996). Here we report on PEPC and the requisite PEPC-PK in germinating barley (Hordeum vulgare) seeds. PEPC was highly phosphorylated by a Ca2+-independent Ser/Thr PEPC-PK similar to that found in other plant systems studied previously (Chollet et al., 1996); however, the PK was already present in the dry seed and its activity did not require protein synthesis during imbibition.  相似文献   

19.
The intercellular distribution of assimilatory sulfate reduction enzymes between mesophyll and bundle sheath cells was analyzed in maize (Zea mays L.) and wheat (Triticum aestivum L.) leaves. In maize, a C4 plant, 96 to 100% of adenosine 5′-phosphosulfate sulfotransferase and 92 to 100% of ATP sulfurylase activity (EC 2.7.7.4) was detected in the bundle sheath cells. Sulfite reductase (EC 1.8.7.1) and O-acetyl-l-serine sulfhydrylase (EC 4.2.99.8) were found in both bundle sheath and mesophyll cell types. In wheat, a C3 species, ATP sulfurylase and adenosine 5′-phosphosulfate sulfotransferase were found at equivalent activities in both mesophyll and bundle sheath cells. Leaves of etiolated maize plants contained appreciable ATP sulfurylase activity but only trace adenosine 5′-phosphosulfate sulfotransferase activity. Both enzyme activities increased in the bundle sheath cells during greening but remained at negligible levels in mesophyll cells. In leaves of maize grown without addition of a sulfur source for 12 d, the specific activity of adenosine 5′-phosphosulfate sulfotransferase and ATP sulfurylase in the bundle sheath cells was higher than in the controls. In the mesophyll cells, however, both enzyme activities remained undetectable. The intercellular distribution of enzymes would indicate that the first two steps of sulfur assimilation are restricted to the bundle sheath cells of C4 plants, and this restriction is independent of ontogeny and the sulfur nutritional status of the plants.  相似文献   

20.
Mesophyll protoplasts and bundle sheath strands were isolated from maize leaves. Light microscopic observation showed the preparations were pure and without cross contamination. Protein blot analysis of mesophyll and bundle sheath cell soluble protein showed that the concentration of pyruvate orthophosphate dikinase (EC 2.7.9.1) is about one-tenth as much in the bundle sheath cells as in mesophyll cells, but about eight times greater than that found in wheat leaves, on the basis of soluble protein. Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was barely detectable in the bundle sheath cells, while ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and NADP-dependent malic enzyme (EC 1.3.1.37) were exclusively present in the bundle sheath cells and were absent in the mesophyll cells. Whereas pyruvate, Pi dikinase was previously considered localized only in mesophyll cells of C4 plants, these results clearly demonstrate the presence of appreciable quantities of the enzyme in the bundle sheath cells of the C4 species maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号