首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.

Background

Determining the value of livestock breeds is essential to define conservation priorities, manage genetic diversity and allocate funds. Within- and between-breed genetic diversity need to be assessed to preserve the highest intra-specific variability. Information on genetic diversity and risk status is still lacking for many Creole cattle breeds from the Americas, despite their distinct evolutionary trajectories and adaptation to extreme environmental conditions.

Methods

A comprehensive genetic analysis of 67 Iberoamerican cattle breeds was carried out with 19 FAO-recommended microsatellites to assess conservation priorities. Contributions to global diversity were investigated using alternative methods, with different weights given to the within- and between-breed components of genetic diversity. Information on Iberoamerican plus 15 worldwide cattle breeds was used to investigate the contribution of geographical breed groups to global genetic diversity.

Results

Overall, Creole cattle breeds showed a high level of genetic diversity with the highest level found in breeds admixed with zebu cattle, which were clearly differentiated from all other breeds. Within-breed kinships revealed seven highly inbred Creole breeds for which measures are needed to avoid further genetic erosion. However, if contribution to heterozygosity was the only criterion considered, some of these breeds had the lowest priority for conservation decisions. The Weitzman approach prioritized highly differentiated breeds, such as Guabalá, Romosinuano, Cr. Patagonico, Siboney and Caracú, while kinship-based methods prioritized mainly zebu-related breeds. With the combined approaches, breed ranking depended on the weights given to the within- and between-breed components of diversity. Overall, the Creole groups of breeds were generally assigned a higher priority for conservation than the European groups of breeds.

Conclusions

Conservation priorities differed significantly according to the weight given to within- and between-breed genetic diversity. Thus, when establishing conservation programs, it is necessary to also take into account other features. Creole cattle and local isolated breeds retain a high level of genetic diversity. The development of sustainable breeding and crossbreeding programs for Creole breeds, and the added value resulting from their products should be taken into consideration to ensure their long-term survival.  相似文献   

2.
本文根据华中型20个猪品种27个微卫星DNA标记的研究数据, 应用Weitzman方法, 即通过估计总体遗传多样性、期望多样性、品种对总体遗传多样性的贡献、边际遗传多样性、保种潜力等指标, 评估华中型20个猪品种的遗传多样性, 并通过构建品种间遗传多样性的最大似然树, 图示化展示20个品种间遗传多样性的相互关系。20个华中型猪品种的总体遗传多样性是11,707, 期望多样性占总的遗传多样性的66.96%, 金华猪、皖南花猪、嵊县花猪和乐平猪是对总体遗传多样性贡献最大的4个品种, 其贡献率分别是8.90%、7.46%、7.40%和7.04%, 保种潜力最大的4个品种分别是金华猪、嵊县花猪、杭猪和大花白猪。根据遗传多样性进行聚类分析, 大致可将华中型猪分为3类: 大围子猪、沙子岭猪、宁乡猪等分布于湖南、湖北的品种为一类; 南城猪、嵊县花猪与杭猪聚成另一类; 金华猪与皖南花猪单独聚成一类。研究结果可为我国华中型地方猪种遗传多样性的最大化保护和利用提供科学决策依据, 本文也对Weitzman方法在应用中的关键性问题进行了探讨。  相似文献   

3.
The quantitative assessment of genetic diversity within and between populations is important for decision making in genetic conservation plans. In this paper we define the genetic diversity of a set of populations, S, as the maximum genetic variance that can be obtained in a random mating population that is bred from the set of populations S. First we calculated the relative contribution of populations to a core set of populations in which the overlap of genetic diversity was minimised. This implies that the mean kinship in the core set should be minimal. The above definition of diversity differs from Weitzman diversity in that it attempts to conserve the founder population (and thus minimises the loss of alleles), whereas Weitzman diversity favours the conservation of many inbred lines. The former is preferred in species where inbred lines suffer from inbreeding depression. The application of the method is illustrated by an example involving 45 Dutch poultry breeds. The calculations used were easy to implement and not computer intensive. The method gave a ranking of breeds according to their contributions to genetic diversity. Losses in genetic diversity ranged from 2.1% to 4.5% for different subsets relative to the entire set of breeds, while the loss of founder genome equivalents ranged from 22.9% to 39.3%.  相似文献   

4.
This study is aimed at establishing priorities for the optimal conservation of genetic diversity among a comprehensive group of 40 cattle breeds from the Iberian Peninsula. Different sets of breed contributions to diversity were obtained with several methods that differ in the relative weight attributed to the within- and between-breed components of the genetic variation. The contributions to the Weitzman diversity and the expected heterozygosity (He) account for between- and within-breed variation only, respectively. Contributions to the core set obtained for several kinship matrices, incorporate both sources of variation, as well as the combined contributions of Ollivier and Foulley and those of Caballero and Toro. In general, breeds that ranked high in the different core set applications also ranked high in the contribution to the global He, for example, Sayaguesa, Retinta, Monchina, Berrenda en Colorado or Marismeña. As expected, the Weitzman method prioritised breeds with low contributions to the He, like Mallorquina, Menorquina, Berrenda en Negro, Mostrenca, Vaca Palmera or Mirandesa, all showing highly negative contributions to He – that is, their removal would significantly increase the average He. Weighing the within- and between-breed components with the FST produced a balanced set of contributions in which all the breeds ranking high in both approaches show up. Unlike the other methods, the contributions to the diversity proposed by Caballero and Toro prioritised a good number of Portuguese breeds (Arouquesa, Barrosã, Mertolenga and Preta ranking highest), but this might be caused by a sample size effect. Only Sayaguesa ranked high in all the methods tested. Considerations with regard to the conservation scheme should be made before adopting any of these approaches: in situv. cryoconservation, selection and adaptation within the breeds v. crossbreeding or the creation of synthetic breeds. There is no general consensus with regard to balancing within- and between-breed diversity and the decision of which source to favour will depend on the particular scenario. In addition to the genetic information, other factors, such as geographical, historical, economic, cultural, etc., also need to be considered in the formulation of a conservation plan. All these aspects will ultimately influence the distribution of resources by the decision-makers.  相似文献   

5.
This study was undertaken to determine the genetic structure, evolutionary relationships, and the genetic diversity among 18 local cattle breeds from Spain, Portugal, and France using 16 microsatellites. Heterozygosities, estimates of Fst, genetic distances, multivariate and diversity analyses, and assignment tests were performed. Heterozygosities ranged from 0.54 in the Pirenaica breed to 0.72 in the Barrosã breed. Seven percent of the total genetic variability can be attributed to differences among breeds (mean Fst = 0.07; P < 0.01). Five different genetic distances were computed and compared with no correlation found to be significantly different from 0 between distances based on the effective size of the population and those which use the size of the alleles. The Weitzman recursive approach and a multivariate analysis were used to measure the contribution of the breeds diversity. The Weitzman approach suggests that the most important breeds to be preserved are those grouped into two clusters: the cluster formed by the Mirandesa and Alistana breeds and that of the Sayaguesa and Tudanca breeds. The hypothetical extinction of one of those clusters represents a 17% loss of diversity. A correspondence analysis not only distinguished four breed groups but also confirmed results of previous studies classifying the important breeds contributing to diversity. In addition, the variation between breeds was sufficiently high so as to allow individuals to be assigned to their breed of origin with a probability of 99% for simulated samples.  相似文献   

6.
A set of eleven pig breeds originating from six European countries, and including a small sample of wild pigs, was chosen for this study of genetic diversity. Diversity was evaluated on the basis of 18 microsatellite markers typed over a total of 483 DNA samples collected. Average breed heterozygosity varied from 0.35 to 0.60. Genotypic frequencies generally agreed with Hardy-Weinberg expectations, apart from the German Landrace and Schwäbisch-Hällisches breeds, which showed significantly reduced heterozygosity. Breed differentiation was significant as shown by the high among-breed fixation index (overall FST = 0.27), and confirmed by the clustering based on the genetic distances between individuals, which grouped essentially all individuals in 11 clusters corresponding to the 11 breeds. The genetic distances between breeds were first used to construct phylogenetic trees. The trees indicated that a genetic drift model might explain the divergence of the two German breeds, but no reliable phylogeny could be inferred among the remaining breeds. The same distances were also used to measure the global diversity of the set of breeds considered, and to evaluate the marginal loss of diversity attached to each breed. In that respect, the French Basque breed appeared to be the most "unique" in the set considered. This study, which remains to be extended to a larger set of European breeds, indicates that using genetic distances between breeds of farm animals in a classical taxonomic approach may not give clear resolution, but points to their usefulness in a prospective evaluation of diversity.  相似文献   

7.
French and Asian subsets of chicken breeds were first analysed using 22 microsatellites and then compared to the AVIANDIV European set using 14 loci. Positive correlations were observed between F IT or F ST and typological values or variance of markers using the multivariate analysis mcoa . The first axis of the multivariate representation separated Asian from European breeds, revealing breeds with Asian ancestor. Using all or 14 loci, correct assignation rate was always higher than 93%. The Weitzman index and the aggregate diversity D were calculated using 22 loci within French and Asian breeds. The French breed Coucou de Rennes and the Hua-Tung breed seemed to contribute the most to the global diversity of each subset. This approach on French-only breeds and then on French with AVIANDIV domestic breeds (14 loci) showed that the Marans breed contributed the most. The AVIANDIV framework could be useful to evaluate the genetic diversity of local breeds and to help in connecting national and regional conservation policies.  相似文献   

8.

Background

Native pig breeds in the Iberian Peninsula are broadly classified as belonging to either the Celtic or the Mediterranean breed groups, but there are other local populations that do not fit into any of these groups. Most of the native pig breeds in Iberia are in danger of extinction, and the assessment of their genetic diversity and population structure, relationships and possible admixture between breeds, and the appraisal of conservation alternatives are crucial to adopt appropriate management strategies.

Methods

A panel of 24 microsatellite markers was used to genotype 844 animals representing the 17 most important native swine breeds and wild populations existing in Portugal and Spain and various statistical tools were applied to analyze the results.

Results

Genetic diversity was high in the breeds studied, with an overall mean of 13.6 alleles per locus and an average expected heterozygosity of 0.80. Signs of genetic bottlenecks were observed in breeds with a small census size, and population substructure was present in some of the breeds with larger census sizes. Variability among breeds accounted for about 20% of the total genetic diversity, and was explained mostly by differences among the Celtic, Mediterranean and Basque breed groups, rather than by differences between domestic and wild pigs. Breeds clustered closely according to group, and proximity was detected between wild pigs and the Mediterranean cluster of breeds. Most breeds had their own structure and identity, with very little evidence of admixture, except for the Retinto and Entrepelado varieties of the Mediterranean group, which are very similar. Genetic influence of the identified breed clusters extends beyond the specific geographical areas across borders throughout the Iberian Peninsula, with a very sharp transition from one breed group to another. Analysis of conservation priorities confirms that the ranking of a breed for conservation depends on the emphasis placed on its contribution to the between- and within-breed components of genetic diversity.

Conclusions

Native pig breeds in Iberia reveal high levels of genetic diversity, a solid breed structure and a clear organization in well-defined clusters.  相似文献   

9.
Recent studies in the literature have appliedphylogenetic methods based on genetic distancesto set priorities for conservation of domesticanimal breeds. While these methods may beappropriate for between-species conservation,they are clearly inappropriate forwithin-species breed conservation, because theyignore within-breed variation. In this paper weshow the basic tools to analyse geneticdiversity in subdivided populations withinspecies, and illustrate the errors incurred byapplying methods based exclusively on geneticdistances. We also show that maximisation ofgenetic diversity (minimisation of coancestryor kinship) is equivalent to maximisation ofeffective population size, as in undividedpopulations, and derive a generalisation ofprevious equations for the prediction ofeffective size. Finally, we discuss thestrategies for conservation in the light of thetheory.  相似文献   

10.
The quantitative assessment of genetic diversity within and between populations is important for decision-making in genetic conservation plans. In our study, we applied the livestock core set method to define the contribution of 15 cattle breeds, 11 of which are Portuguese indigenous cattle breeds, to genetic diversity. In livestock core set theory genetic diversity is defined as the maximum genetic variance that can be obtained in a random-mating population that is bred from the populations present in that core set. Two methods to estimate marker-estimated kinships to obtain the contributions to the core set were used in this study: the weighted log-linear model (WLM) and the weighted log-linear mixed model (WLMM). The breeds that contributed most to diversity in the core set were Holstein-Friesian followed by the Portuguese Mertolenga and Cachena for both WLM and WLMM methods. The ranking of relative contributions of cattle breeds was maintained when we considered only the Portuguese cattle breeds. Furthermore, we were able to identify the marginal contributions and respective losses of diversity for each of the 11 Portuguese cattle breeds when we considered a subset of populations that are not threatened of being lost (the Safe set composed of the four exotic breeds present in this study). When WLM was used losses in genetic diversity ranged from 2.68 to 0.65% while the loss in founder genome equivalents ranged from 37.37 to 8.43% for Mertolenga and Brava de Lide breeds respectively. When WLMM was used losses in genetic diversity and founder genome equivalents were less extreme than for the WLM method, ranging from 1.27 to 0.69 and 26.8 to 12.99 respectively.  相似文献   

11.
The genetic structure and diversity of 10 Chinese indigenous egg-type duck breeds were investigated using 29 microsatellite markers. The total number of animals examined were 569, on average 57 animals per breed were selected. The microsatellite marker set analysed provided 177 alleles (mean 6.1 alleles per locus, ranging from 3 to 10). All populations showed high levels of heterozygosity with the lowest estimate of 0.539 for the Jinding ducks, and the highest 0.609 observed for Jingjiang partridge ducks. The global heterozygote deficit across all populations (F IT) amounted to −0.363. About 10% of the total genetic variability originated from differences among breeds, with all loci contributing significantly. An unrooted consensus tree was constructed using the NeighborNet tree based on the Reynold’s genetic distance. The structure software was used to assess genetic clustering of these egg-type duck breeds. Clustering analysis provided an accurate representation of the current genetic relations among the breeds. An integrated analysis was undertaken to obtain information on the population dynamics in Chinese indigenous egg-type duck breeds, and to better determine the conservation priorities.  相似文献   

12.
A genetic analysis was performed on three indigenous Danish horse breeds using 12 microsatellite markers from a standard kit for parental testing. These three breeds are all considered endangered based on their small population sizes. Genetic variation in these three breeds was comparable to other horse breeds in Europe, and they do not seem to be at immediate danger of extinction caused by genetic deterioration. The Knabstrupper breed had more genetic variation, as measured by expected heterozygosity and allelic richness, than the other two breeds (Frederiksborg and Jutland). F(ST) statistics and population assignments confirmed population differentiation into three distinct breeds. The Frederiksborg and Knabstrupper breeds were closer to each other than to the Jutland breed. When establishing conservation priorities for the breeds, the priorities will depend on the conservation goals. Different methods for establishing conservation priorities are also discussed.  相似文献   

13.
Extinction of breeds threatens genetic diversity of livestock species. The need to conserve genetic diversity is widely accepted but involves in general two questions: (i) is the expected loss of diversity in a set of breeds within a defined future time horizon large enough to establish a conservation plan, and if so (ii) which breeds should be prioritised for such a conservation plan? The present study uses a marker assisted methodology to address these questions. The methodology combines core set diversity measures with a stochastic method for the estimation of expected future diversity and breed marginal diversities. The latter is defined as the change in the total diversity of all breeds caused by a one unit decrease in extinction probability of a particular breed. The stochastic method was validated by means of simulations. A large field data set consisting of 44 North Eurasian cattle breeds was analysed using simplified determined extinction probabilities. The results show that the expected loss of diversity in this set within the next 20 to 50 years is between 1 and 3% of the actual diversity, provided that the extinction probabilities which were used are approximately valid. If this loss is to be reduced, it is sufficient to include those three to five breeds with the highest marginal diversity in a conservation scheme.  相似文献   

14.
Six local chicken breeds are registered in Hungary and are regarded as Hungarian national treasures: Hungarian White, Yellow and Speckled, and Transylvanian Naked Neck White, Black and Speckled. Three Hungarian academic institutes have maintained these genetic resources for more than 30 years. The Hungarian Yellow, the Hungarian Speckled and the Transylvanian Naked Neck Speckled breeds were kept as duplicates in two separate subpopulations since time of formation of conservation flocks at different institutes. In this study, we investigated genetic diversity of these nine Hungarian chicken populations using 29 microsatellite markers. We assessed degree of polymorphism and relationships within and between Hungarian breeds on the basis of molecular markers, and compared the Hungarian chicken populations with commercial lines and European local breeds. In total, 168 alleles were observed in the nine Hungarian populations. The F ST estimate indicated that about 22% of the total variation originated from variation between the Hungarian breeds. Clustering using structure software showed clear separation between the Hungarian populations. The most frequent solutions were found at K  = 5 and K  = 6, respectively, classifying the Transylvanian Naked Neck breeds as a separate group of populations. To identify genetic resources unique to Hungary, marker estimated kinships were estimated and a safe set analysis was performed. We show that the contribution of all Hungarian breeds together to the total diversity of a given set of populations was lower when added to the commercial lines than when added to the European set of breeds.  相似文献   

15.
The Iberian breed is the most important pig population of the Mediterranean type. The genetic structure of two strains (Torbiscal and Guadyerbas) and three varieties (Retinto, Entrepelado and Lampi?o) of this breed was studied using 173 pigs genotyped for 36 microsatellites. In addition, 40 pigs of the related Duroc breed were also analysed. In the 1960s, the Iberian breed's numbers were severely reduced by disease, due to economic change and to crossbreeding. Varieties are in danger of disappearance or blending. A new conservation strategy is required. An analysis was performed that allows us to ascertain the loss or gain of genetic diversity if one or several subpopulations are removed. The results are compared with those using the Weitzman method. The two methodologies produce conservation priorities that are completely different, the reason being that the Weitzman method does not take into account the within-population genetic diversity. We apply optimal contribution theory and a new procedure for cluster analysis, and discuss their value in the general framework of the problems of setting of priorities and tactics for the conservation of genetic resources.  相似文献   

16.
The use of DNA markers to evaluate genetic diversity is an important component of the management of animal genetic resources. The Food and Agriculture Organisation of the United Nations (FAO) has published a list of recommended microsatellite markers for such studies; however, other markers are potential alternatives. This paper describes results obtained with a set of amplified fragment length polymorphism (AFLP) markers as part of a genetic diversity study of European pig breeds that also utilized microsatellite markers. Data from 148 AFLP markers genotyped across samples from 58 European and one Chinese breed were analysed. The results were compared with previous analyses of data from 50 microsatellite markers genotyped on the same animals. The AFLP markers had an average within-breed heterozygosity of 0.124 but there was wide variation, with individual markers being monomorphic in 3-98% of the populations. The biallelic and dominant nature of AFLP markers creates a challenge for their use in genetic diversity studies as each individual marker contains limited information and AFLPs only provide indirect estimates of the allelic frequencies that are needed to estimate genetic distances. Nonetheless, AFLP marker-based characterization of genetic distances was consistent with expectations based on breed and regional distributions and produced a similar pattern to that obtained with microsatellites. Thus, data from AFLP markers can be combined with microsatellite data for measuring genetic diversity.  相似文献   

17.
Microsatellites are commonly used to understand genetic diversity among livestock populations. Nevertheless, most studies have involved the processing of samples in one laboratory or with common standards across laboratories. Our objective was to identify an approach to facilitate the merger of microsatellite data for cross-country comparison of genetic resources when samples were not evaluated in a single laboratory. Eleven microsatellites were included in the analysis of 13 US and 9 Brazilian sheep breeds (N = 706). A Bayesian approach was selected and evaluated with and without a shared set of samples analyzed by each country. All markers had a posterior probability of greater than 0.5, which was higher than predicted as reasonable by the software used. Sensitivity analysis indicated no difference between results with or without shared samples. Cluster analysis showed breeds to be partitioned by functional groups of hair, meat, or wool types (K = 7 and 12 of STRUCTURE). Cross-country comparison of hair breeds indicated substantial genetic distances and within breed variability. The selected approach can facilitate the merger and analysis of microsatellite data for cross-country comparison and extend the utility of previously collected molecular markers. In addition, the result of this type of analysis can be used in new and existing conservation programs.  相似文献   

18.
The need for conservation of farm animal genetic resources is widely accepted. A key question is the choice of breeds to be conserved. For this purpose, a core set of breeds was introduced in that the total genetic variance of a hypothetical quantitative trait was maximised (MVT core set). For each breed the relative contribution to the core set was estimated and the breeds were ranked for conservation priority according to their relative contribution. The method was based on average kinships between and within breeds and these can be estimated using genetic marker data. The method was compared to a recently published core set method that maximises the variance of a hypothetical population that could be obtained by interbreeding the conserved breeds (MVO core set). The results show that the MVT (MVO) core set favours breeds with a high (low) within breed kinship that are not related to other breeds. Following this, the MVT core set method suggests conserving breeds that show a large difference in the respective population mean of a hypothetical quantitative trait. This maximises the speed of achieving selection response for this hypothetical selection direction. Additionally, bootstrap based methods for the estimation of the breed''s contribution to the core sets were introduced, substantially improving the accuracy of the contribution estimates.  相似文献   

19.
Preservation of rare genetic stocks requires assessment of within-population genetic diversity and between-population differentiation to make inferences on their degree of uniqueness. A total of 194 Tuscan cattle (44 Calvana, 35 Chianina, 25 Garfagnina, 31 Maremmana, 31 Mucca Pisana and 28 Pontremolese) individuals were genotyped for 34 microsatellite markers. Moreover, 56 samples belonging to Argentinean Creole and Asturiana de la Montaña cattle breeds were used as an outgroup. Genetic diversity was quantified in terms of molecular coancestry and allelic richness. STRUCTURE analyses showed that the Tuscan breeds have well-differentiated genetic backgrounds, except for the Calvana and Chianina breeds, which share the same genetic ancestry. The between-breed Nei's minimum distance (Dm) matrices showed that the pair Calvana–Chianina was less differentiated (0.049 ± 0.006). The endangered Tuscan breeds (Calvana, Garfagnina, Mucca Pisana and Pontremolese) made null or negative contributions to diversity, except for the Mucca Pisana contribution to allelic richness (CT = 1.8%). The Calvana breed made null or negative within-breed contributions (f¯W = 0.0%; CW = −0.4%). The Garfagnina and Pontremolese breeds made positive contributions to between-breed diversity but negative and high within-breed contributions, thus suggesting population bottleneck with allelic losses and increase of homozygosity in the population. Exclusion of the four endangered Tuscan cattle breeds did not result in losses in genetic diversity (f¯T = −0.7%; CT = −1.2%), whereas exclusion of the non-endangered breeds (Chianina and Maremmana) did (f¯T = 2.1%; CT = 3.9%); the simple exclusion of the Calvana breed from the former group led to losses in genetic diversity (f¯T = 0.47%; CT = 2.34%), indicating a diverse significance for this breed. We showed how quantifying both within-population diversity and between-population differentiation in terms of allelic frequencies and allelic richness provides different and complementary information on the genetic backgrounds assessed and may help to implement priorities and strategies for conservation in livestock.  相似文献   

20.
The aims of this study were to assess the genetic diversity of 17 populations of Vietnamese local chickens (VNN) and one Red Jungle Fowl population, together with six chicken populations of Chinese origin (CNO), and to provide priorities supporting the conservation of genetic resources using 20 microsatellites. Consequently, the VNN populations exhibited a higher diversity than did CNO populations in terms of number of alleles but showed a slightly lower observed heterozygosity. The VNN populations showed in total seven private alleles, whereas no CNO private alleles were found. The expected heterozygosity of 0.576 in the VNN populations was higher than the observed heterozygosity of 0.490, leading to heterozygote deficiency within populations. This issue could be partly explained by the Wahlund effect due to fragmentation of several populations between chicken flocks. Molecular analysis of variance showed that most of genetic variation was found within VNN populations. The Bayesian clustering analysis showed that VNN and CNO chickens were separated into two distinct groups with little evidence for gene flow between them. Among the 24 populations, 13 were successfully assigned to their own cluster, whereas the structuring was not clear for the remaining 11 chicken populations. The contributions of 24 populations to the total genetic diversity were mostly consistent across two approaches, taking into account the within‐ and between‐populations genetic diversity and allelic richness. The black H'mong, Lien Minh, Luong Phuong and Red Jungle Fowl were ranked with the highest priorities for conservation according to Caballero and Toro's and Petit's approaches. In conclusion, a national strategy needs to be set up for Vietnamese chicken populations, with three main components: conservation of high‐priority breeds, within‐breed management with animal exchanges between flocks to avoid Wahlund effect and monitoring of inbreeding rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号