首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
H DeGrazia  D Brown  S Cheung  R M Wartell 《Biochemistry》1988,27(17):6359-6365
Raman spectra from three subfragments of the Escherichia coli lactose promoter region were obtained in 0.1 M NaCl. The three DNAs are 21, 40, and 62 bp in length. The 21 and 62 bp DNAs contain the binding site for the catabolite gene activator protein (CAP). The 40 bp DNA contains the binding site for the lac repressor. A quantitative analysis of Raman band characteristics indicates an overall B-type conformation for these gene regulatory sites. Bands which correspond to A-family (807 cm-1) and B-family (834 cm-1) deoxyribose phosphate vibrations have the same intensities as bands found in heterogeneous DNAs. The spectra of the 21 bp CAP site have, however, a small band at 867 cm-1 and several other small differences similar to some characteristics observed in C-DNA spectra. Several dG nucleosides in the CAP site appear to be altered from the conventional C2'-endo/anti conformation. At 45 degrees C, well below the melting region of these DNAs, small changes occur in the spectra of the 40 bp lac repressor site which are not observed in the other DNAs. A weak band occurs at 705 cm-1, and intensity changes are observed at 497, 682, and 792 cm-1. The changes suggest that the conformations of several dG nucleosides are altered and that a small region may exist with characteristics of an A-family backbone. This conformational change at 45 degrees C coincides with previous NMR observations indicating an enhanced imino proton exchange rate at a GTG sequence within the lac operator site.  相似文献   

2.
In the crystal, d(GGGATCCC)2 forms an A-DNA double helix as known from a single crystal X-ray diffraction study. Accordingly, in the Raman spectra of crystals the A-family marker bands at 664, 705, 807 and 1101 cm-1 and the spectral characteristics in the region 1200 to 1500 cm-1 clearly demonstrate the A-form as the dominant conformation. Bands at 691, 850, and 1080 cm-1, however, indicate that a minor fraction of the octamer molecules in the crystal is in an unusual, still not unequivocally identified conformation possibly belonging to the B-family. In solution, the octamer is in B-like conformation as shown by the presence of B-DNA Raman marker bands at 685, 837, 1094 and 1421 cm-1. Molecular modelling techniques lead to three structures with slightly different B-form geometries as the lowest energies models when a sigmoidal dielectric function with the bulk dielectric constant epsilon = 78 and the value q = -0.5e for the effective phosphate charges was used in the calculations. An A-form structure bearing a strong resemblance to the experimentally determined crystal structure becomes the lowest energy model structure when the electrostatic parameters are changed to epsilon = 30 and q = -0.25e, respectively.  相似文献   

3.
Raman spectroscopic study of left-handed Z-RNA   总被引:3,自引:0,他引:3  
The solvent conditions that induce the formation of a left-handed Z form of poly[r(G-C)] have been extended to include 6.5 M NaBr at 35 degrees C and 3.8 M MgCl2 at room temperature. The analysis of the A----Z transition in RNA by circular dichroism (CD), 1H and 31P NMR, and Raman spectroscopy shows that two distinct forms of left-handed RNA exist. The ZR-RNA structure forms in high concentrations of NaBr and NaClO4 and exhibits a unique CD signature. ZD-RNA is found in concentrated MgCl2 and has a CD signature similar to the Z form of poly[d(G-C)]. The loss of Raman intensity of the 813-cm-1 A-form marker band in both the A----ZR-RNA and A----ZD-RNA transitions parallels the loss of intensity at 835 cm-1 in the B----Z transition of DNA. A guanine vibration that is sensitive to the glycosyl torsion angle shifts from 671 cm-1 in A-RNA to 641 cm-1 in both ZD- and ZR-RNA, similar to the B----Z transition in DNA in which this band shifts from 682 to 625 cm-1. Significant differences in the glycosyl angle and sugar pucker between Z-DNA and Z-RNA are suggested by the 16-cm-1 difference in the position of this band. The Raman evidence for structural difference between ZD- and ZR-RNA comes from two groups of bands: First, Raman intensities between 1180 and 1600 cm-1 of ZD-RNA differ from those for ZR-RNA, corroborating the CD evidence for differences in base-stacking geometry. Second, the phosphodiester stretching bands near 815 cm-1 provide evidence of differences in backbone geometry between ZD- and ZR-RNA.  相似文献   

4.
F Adar  M Erecińska 《Biochemistry》1979,18(9):1825-1829
A photoreductive titration of the resonance Raman (RR) spectra of cytochrome c oxidase in whole mitochondria was recorded by exploiting the preferential enhancement of the Raman signals of reduced cytochrome oxidase excited at 441.6 nm. When the sample was cooled to about--10 degrees C, it was possible to slow down the photoreductive effect of the laser and to record RR spectra at various states of reduction. Compared to the earliest recorded scan (most oxidized), the dithionite-reduced sample shows the appearance of new bands at 216, 363, 560, and 1665 cm-1. At intermediate stages of photoreduction, the 216- and 560-cm-1 bands appear before the 363- and 1665-cm-1 bands; photoreduction induces full intensity in the former bands, whereas the latter bands are photoreduced to 50% of the dithionite-reduced intensity. The relative intensities of a doublet at 1609--1623 cm-1 are affected by reduction: the band at 1609 cm-1 is weaker in the earlier scans; in later scans this band has grown to equal intensity with the 1623-cm-1 band. We conclude that this reductive titration of the RR spectrum of cytochrome c oxidase reflects three states in its reduction. The behavior of the doublet at 1609--1623 cm-1 suggests that the two hemes are nonequivalent but interacting. The band at 216 cm-1 may be indicative of an iron-copper interaction that is affected by the presence of external ligands.  相似文献   

5.
Raman spectroscopy of Z-form poly[d(A-T)].poly[d(A-T)   总被引:3,自引:0,他引:3  
Helical structures of double-stranded poly[d(A-T)] in solution have been studied by Raman spectroscopy. While the classical right-handed conformation B-type spectra are obtained in the case of sodium chloride solutions, a Z-form Raman spectrum is observed by addition of nickel ions at high sodium concentration, conditions in which the inversion of the circular dichroic spectrum of poly[d(A-T)] is detected, similar to that observed for high-salt poly[d(G-C)] solutions [Bourtayre, P., Liquier, J., Pizzorni, L., & Taillandier, E. (1987) J. Biomol. Struct. Dyn. 5, 97-104]. The characterization of the Z-form spectrum of poly[d(A-T)] is proposed by comparison with previously obtained characteristic Raman lines of Z-form poly[d(G-C)] and poly[d(A-C)].poly[d(G-T)] solutions and of d(CG)3 and d(CGCATGCG) crystals [Thamann, T. J., Lord, R. C., Wang, A. H.-J., & Rich, A. (1981) Nucleic Acids Res. 9, 5443-5457; Benevides, J. M., Wang, A. H.-J., van der Marel, G. A., van Boom, J. H., Rich, A., & Thomas, G. J., Jr. (1984) Nucleic Acids Res. 14, 5913-5925]. Detailed spectroscopic data are presented reflecting the reorientation of the purine-deoxyribose entities (C2'-endo/anti----C3'-endo/syn), the modification of the phosphodiester chain, and the adenosine lines in the 1300-cm-1 region. The role played by the hydrated nickel ions in the B----Z transition is discussed.  相似文献   

6.
The secondary structures of double-stranded poly[d(A-T)].poly[d(A-T)] in films have been studied by IR spectroscopy with three different counterions (Na+, Cs+, and Ni2+) and a wide variety of water content conditions (relative humidity between 100 and 47%). In addition to the A-, B-, C-, and D-form spectra, a new IR spectrum has been obtained in the presence of nickel ions. The IR spectra of Ni2+-poly[d(A-T)].poly[d(A-T)] films are analyzed by comparison with previously assigned IR spectra of left-handed poly[d(G-C)].poly[d(G-C)] and poly[d(A-C)].poly[d(G-T)], and it is possible to conclude that they reflect a Z-type structure for poly[d(A-T)].poly[d(A-T)]. The Z conformation has been favored by the high polynucleotide concentration, by the low water content of the films, and by specific interactions of the transition metal ions with the purine bases stabilized in a syn conformation. A structuration of the water hydration molecules around the double-stranded Ni2+-poly[d(A-T)].poly[d(A-T)] is shown by the presence of a strong sharp water band at 1615 cm-1.  相似文献   

7.
H H Klump  E Schmid    M Wosgien 《Nucleic acids research》1993,21(10):2343-2348
The conformational change for the alternating purine-pyrimidine polydeoxyribonucleotides i.e. poly d(A-T), poly d(G-C), and poly d(A-C) poly d(G-T) from a right-handed conformation at room temperature to the left-handed Z-DNA like double helix at elevated temperatures has been studied by UV spectroscopy, Raman spectroscopy, and by adiabatic differential scanning microcalorimetry (DSC) in the presence of Na+ and Mg2+ or Ni2+ respectively as counterions. The differential UV spectra reveal through a hyperchromic shift at around 280nm and a hypochromic shift at 260nm that a conformational change to the left-handed conformation occurs. The Raman spectra clearly show characteristic changes, a drastic decrease of the band at 680cm-1 and the appearance of a new band at 628cm-1, due to the change of the purine bases to the syn conformation upon inversion of the helix-handedness. The course of the transition as function of temperature can be followed quantitatively by plotting the change in the excess heat capacity vs. temperature. The transition enthalpy delta H for the B- to Z-DNA transition per mole base pairs (mbp) amounts to 2.0 +/- 0.2kcal for poly d(G-C), to 4.0 +/- 0.4kcal for poly d(A-T), and to 3.1 +/- 0.3kcal for poly d(A-C) poly d(G-T). The enthalpy change due to the Z-DNA to coil transitions (per mole base pairs) amounts to 11kcal for poly d(G-C), 10.5kcal for poly d(A-T) and 11.3kcal for poly d(A-C) poly d(G-T).  相似文献   

8.
Raman spectra of the DNA binding site for cro repressor protein were obtained in the presence and absence of bound cro protein. The 17 base pair fragment is a consensus sequence of the six cro binding sites in phage lambda, except that the second base to the right of the center of pseudosymmetry is altered. Analysis of the spectrum of the free DNA indicates that the molecule exists in a B-like conformation with deviations from the usual B form occurring mainly in the bands assigned to A-T vibrations. The spectrum of the bound DNA was obtained by subtracting the spectrum of free cro from the spectrum of the complex which was estimated to be 90% bound. The DNA undergoes significant structural changes upon binding to the protein; most notable of these changes is a destacking of the G-C bases reflected by increases in the 1240, 1262, and 1320 cm-1 bands. A decrease in the 1361 cm-1 band that occurs has also been assigned to a destacking in guanine bases. The appearance of a 705 cm-1 band and the decrease and downshift of the 670 cm-1 band are consistent with the appearance of A-like character in the A-T region of the binding site when the protein binds; however, the spectra indicate that the entire binding site remains in a distorted B-like conformation. We use the 705 cm-1 band to estimate A-like character because the 800-850 cm-1 region is obscured by interference from strong protein bands. Other shifts in both intensity and position cannot be assigned to characteristic changes in conformation and therefore must be attributed to the protein influencing the structure in a novel way.  相似文献   

9.
Present results provide direct evidence of the nature of a conformational change in DNA when nucleosomes are formed from core histones and poly [d(A-T)]. First, we have found some features which have characteristic aspects of the A like conformation of DNA. Thus, an increased contribution due to a sugar conformation close to C3'-endo puckering is detected in the Raman spectra. In addition, the circular dichroism (C.D.) spectra of reconstituted chromatin with poly [d(A-T)] exhibits an increases intensity at about 262 nm. A second feature acquired by poly [d(A-T)] in nucleosome formation from core histones is related to the presence of a negative band at about 280 nm in the C.D.spectra. The nature of this change is correlated with a DNA conformation characterized by a decreased number of base pairs per turn (28,29). This indicates that these two features of reconstituted nucleosomes reflect the presence of two types of DNA conformations, which overall form is of the B type (22,36).  相似文献   

10.
CD spectra were obtained for eight synthetic double-stranded DNA polymers down to at least 175 nm in the vacuum uv. Three sets of sequence isomers were studied: (a) poly[d(A-C).d(G-T)] and poly[d(A-G).d(C-T)], (b) poly[d(A-C-C).d(G-G-T)] and poly[d(A-C-G).d(C-G-T)], and (c) poly[d(A).d(T)], poly[d(A-T).d(A-T)], poly[d(A-A-T).d(A-T-T)], and poly[d(A-A-T-T).d(A-A-T-T)]. There were significant differences in the CD spectra at short wavelengths among each set of sequence isomers. The (G.C)-containing sequences had the largest vacuum uv bands, which were positive and in the wavelength range of 180-191 nm. There were no large negative bands at longer wavelengths, consistent with the polymers all being in right-handed conformations. Among the set of sequences containing only A.T base pairs, poly[d(A).d(T)] had the largest vacuum uv CD band, which was at 190 nm. This CD band was not present in the spectra of the other (A.T)-rich polymers and was absent from two first-neighbor estimations of the poly[d(A).d(T)] spectrum obtained from the other three sequences. We concluded that the sequence dependence of the vacuum uv spectra of the (A.T)-rich polymers was due in part to the fact that poly[d(A).d(T)] exists in a noncanonical B conformation.  相似文献   

11.
Raman spectra were obtained from single crystals of [d(CGCATGCG)]2 and [d(m5CGTAm5CG)]2, both of which incorporate A-T pairs into Z-DNA structures and contain C2'-endo/syn conformers of deoxyguanosine at the oligonucleotide ends. Correlation with x-ray results permits the following Raman assignments for nucleoside conformers: C3'-endo/syn G, 623 +/- 1; C2'-endo/syn G, 671 +/- 2; C2'-endo/anti C, 782 +/- 1; C2'endo/anti T, 650 +/- 5 and ca. 750; C3'-endo/syn A, 729 +/- 1 cm-1. These results show that (i) the 670 cm-1 line of syn G is highly sensitive to the change from C3'-endo to C2'-endo pucker, (ii) the 729 cm-1 line of A is affected neither by furanose pucker nor glycosidic bond orientation and (iii) the 1200-1500 cm-1 region of the Raman spectrum of the A-T double helix is greatly altered by the B-to-Z transition. Conformation sensitive Raman frequencies in the 850-1700 cm-1 region are identified for both octamer and hexamer, and the Z-to-B transition of each is monitored by spectral changes which occur upon dissolving the crystal in H2O solution.  相似文献   

12.
R P Rava  T G Spiro 《Biochemistry》1985,24(8):1861-1865
Ultraviolet resonance Raman (RR) spectra, with 200- and 218-nm excitation from a H2-shifted quadrupled Nd:YAG laser, are reported for insulin and alpha-lactalbumin in dilute aqueous solution, at pH values known to produce differences in the exposure of the aromatic residues to solvent. At 200 nm, the spectra are dominated by tyrosine bands, whose intensity is lowered somewhat in protein conformations in which tyrosine is exposed to solvent. The expected shift in the relative intensities of the components of the approximately 850-cm-1 tyrosine doublet is difficult to discern because the higher energy component shows much greater resonance enhancement and the lower energy component appears as a weak shoulder. The peptide vibrations, amides I, II, and III, are also enhanced at 200 nm. The infrared active amide II mode is particularly prominent, although it is not observed in Raman spectra with visible excitation. In addition, the amide I band is quite broad in the 200-nm RR spectra, and the peak frequency is lower than that seen in visible excitation Raman spectra and is close to the infrared frequency. It appears that 200-nm excitation produces resonance enhancement of the infrared-active components of both amide I and amide II. Excitation at 218 nm enhances tryptophan modes strongly. The 876-cm-1 band, assigned to a deformation mode of the five-membered ring, shows a measurable upshift upon exposure of tryptophan to solvent, attributable to N-H hydrogen bonding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Raman spectra of the parallel-stranded duplex formed from the deoxyoligonucleotides 5'-d-[(A)10TAATTTTAAATATTT]-3' (D1) and 5'-d[(T)10ATTAAAATTTATAAA]-3' (D2) in H2O and D2O have been acquired. The spectra of the parallel-stranded DNA are then compared to the spectra of the antiparallel double helix formed from the deoxyoligonucleotides D1 and 5'-d(AAATATTTAAAATTA-(T)10]-3' (D3). The Raman spectra of the antiparallel-stranded (aps) duplex are reminiscent of the spectra of poly[d(A)].poly[d(T)] and a B-form structure similar to that adopted by the homopolymer duplex is assigned to the antiparallel double helix. The spectra of the parallel-stranded (ps) and antiparallel-stranded duplexes differ significantly due to changes in helical organization, i.e., base pairing, base stacking, and backbone conformation. Large changes observed in the carbonyl stretching region (1600-1700 cm-1) implicate the involvement of the C(2) carbonyl of thymine in base pairing. The interaction of adenine with the C(2) carbonyl of thymine is consistent wtih formation of reverse Watson-Crick base pairing in parallel-stranded DNA. Phosphate-furanose vibrations similar to those observed for B-form DNA of heterogenous sequence and high A,T content are observed at 843 and 1092 cm-1 in the spectra of the parallel-stranded duplex. The 843-cm-1 band is due to the presence of a sizable population of furanose rings in the C2'-endo conformation. Significant changes observed in the regions from 1150 to 1250 cm-1 and from 1340 to 1400 cm-1 in the spectra of the parallel-stranded duplex are attributed to variations in backbone torsional and glycosidic angles and base stacking.  相似文献   

14.
Lee S  Lee YA  Lee HM  Lee JY  Kim DH  Kim SK 《Biophysical journal》2002,83(1):371-381
By utilizing circular and linear dichroism, the binding mode of meso-tetrakis(n-N-methylpyridiniumyl)porphyrin (n = 2, 3, 4) to various DNAs was studied in this work. 2-N-(methylpyridiniumyl)porphyrin(o-TMPyP), in which rotation of the periphery pyridinium ring is prevented, exhibits similar spectral properties when bound to DNA, poly[d(G-C)(2)] and poly[d(A-T)(2)], suggesting a similar binding mode. Close analysis of the spectral properties led us to conclude that o-TMPyP sits in the major groove. However, both 3-N- and 4-N-(methylpyridiniumyl)porphyrin (m- and p-TMPyP), of which the periphery pyridinium ring is free to rotate, intercalate between the basepairs of DNA and poly[d(G-C)(2)]. In the presence of poly[d(A-T)(2)], m-TMPyP exhibits a typical bisignate excitonic CD spectrum in the Soret band, while p-TMPyP shows two positive CD bands. The excitonic CD spectrum of the m-TMPyP-poly[d(A-T)(2)] complex and the positive CD band of the o-TMPyP-poly[d(A-T)(2)] complex were not affected by the presence of the minor groove binding drug, 4',6-diamidino-2-phenylindole (DAPI), indicating that this porphyrin is bound in the major groove. In contrast, two positive CD bands of the p-TMPyP-poly[d(A-T)(2)] complex altered in the presence of DAPI. From the changes in CD spectrum and other spectral properties, a few possible binding modes for p-TMPyP to poly[d(A-T)(2)] are suggested.  相似文献   

15.
The bacteriophage T4 helix destabilizing protein (hdp) gp32 and its complexes with poly(rA) and poly(dA) were studied with ultra-violet resonant Raman spectroscopy. The UV-resonant Raman (UV-RR) spectrum of the complex of gp5, the coat protein of bacteriophage M13, with poly(dA) was also measured and is compared with the spectrum of the gp 32/poly(dA) complex. The excitation wavelength was 245.1 nm. This is on the far UV-side of the first absorption bands of adenine and near a "window" in the protein absorption spectrum. The overlap of fluorescence due to chromophores present in the protein and resonance Raman scattering was prevented by this choice of wavelength. The spectra of the protein/polynucleotide complexes are compared with the native nucleotide spectra measured at varying temperatures. The hyperchromicity which is expected when a nucleotide changes from a stacked to an unstacked conformation was not observed for poly(rA), neither upon temperature increase nor on protein binding. In both cases poly(dA) revealed a clear hyperchromicity. This different behavior of poly(rA) and poly(dA) is probably a consequence of their different conformations. The contributions of the proteins to the spectra is weak except for two bands, at 1550 and 1610 cm-1 due to tryptophan (in case of gp32) and one band near 1610 cm-1 due to tyrosine and phenylalanine.  相似文献   

16.
Raman spectra of model compounds and of 2',5'-oligoadenylates in D2O were utilized to assign the Raman bands of 2',5'-oligoadenylates. The Raman spectra of A2'pA2'pA, pA2'pA2'pA, and pppA2'pA2'pA contained features that were similar to those of adenosine, adenosine 5'-monophosphate (AMP), and adenosine 5'-triphosphate, respectively. When AMP and pA2'pA2'pA were titrated from pH 2 to 9, the normalized Raman intensity of their ionized (980 cm-1) and protonated (1080 cm-1) phosphate bands revealed similar pKa's for the 5'-monophosphates. The Raman spectrum of pA2'pA2'pA was altered slightly by elevations in temperature, but not in a manner supporting the postulate that 2-5A possesses intermolecular base stacking. Major differences in the Raman spectrum of 2',5'- and 3',5'-oligoadenylates were observed in the 600-1200-cm-1 portion of the spectrum that arises predominately from ribose and phosphate vibrational modes. Phosphodiester backbone modes in A3'pA3'pA and pA3'pA3'pA produced a broad band at 802 cm-1 with a shoulder at 820 cm-1, whereas all 2',5'-oligoadenylates contained a major phosphodiester band at 823 cm-1 with a shoulder at 802 cm-1. The backbone mode of pppA2'pA2'pA contained the sharpest band at 823 cm-1, suggesting that the phosphodiester backbone may be more restrained in the biologically active, 5'-triphosphorylated molecule. The Raman band assignments for 2',5'-oligoadenylates provide a foundation for using Raman spectroscopy to explore the mechanism of binding of 2',5'-oligoadenylates to proteins.  相似文献   

17.
A resonance Raman band involving significantly the iron(III)-histidine stretching (upsilonFe-His) character is identified for metmyoglobin (metMb) through isotope sensitivity of its low-frequency resonance Raman bands, but the identification was not successful for methemoglobin (metHb) and its isolated alpha and beta subunits. A band at 218 cm-1 of natural abundance metMb exhibited a low-frequency shift for 15N-His-labeled metMb (-1.4 cm-1 shift), while the strong porphyrin bands at 248 and 271 cm-1 did not shift significantly. The frequency of the 218-cm-1 band of metMb decreased by 1.6 cm-1 in D2O, probably due to Ndelta-deuteration of the proximal His, in a similar manner to that of the upsilonFe-His band of deoxyMb in D2O. This 218-cm-1 band shifted slightly to a lower frequency in H2(18)O, whereas it did little upon 54Fe isotopic substitution (<0.3 cm-1), presumably because of the six-coordinate structure. The lack of the 54Fe-isotope shift shows that the 218-cm-1 band is specific to metMb and not due to the deoxy species. The intensity of this band decreased for hydroxymetMb and was indiscernible for cyanometMb. For metHb and its alpha and beta subunits, however, the frequencies of the band around 220 cm-1 were not D2O sensitive. These results suggest an assignment of the band around 220 cm-1 to a pyrrole tilting mode, which significantly contains the Fe-His stretching character for metMb but scarcely for metHb and its subunits. The differences in the isotope sensitivity of this band in different proteins are considered to reflect the heme distortion from the planarity and the Fe-His geometry specific to individual proteins.  相似文献   

18.
On the basis of a harmonic dynamics calculation, it is shown that in the 800–500-cm?1 spectral region of DNA vibrational spectra, the characteristic Raman peaks and ir bands do not arise from the same nucleosidic motions. The Raman spectra involve mainly the ring-breathing modes of nucleic bases while the ir spectra reveal essentially their out-of-plane vibrations. Moreover, the calculated results show the splitting of the guanine- and adenine-residue breathing modes upon their coupling with the sugar-pucker motions. This fact is in agreement with the poly[d(G-C)] and poly[d(A-T)] Raman spectra.  相似文献   

19.
J H Schneider  J Odo    K Nakamoto 《Nucleic acids research》1988,16(21):10323-10338
The resonance Raman spectra of water-soluble porphyrins, M(TMpy-P4) (M = Cu(II), Ni(II) and Co(III] and their mixtures with poly(dG-dC)2, poly(dA-dT)2 and calf thymus and salmon DNAs were measured using a divided rotating cell to determine the magnitudes of frequency shift and intensity variation resulting from M(TMpy-P4)-nucleic acid interactions. Bands II(C beta-H bending, approximately 1100 cm-1) and VIII(C beta-C beta stretch, approximately 1570 cm-1) show a large and small upward shift, respectively, when Cu(TMpy-P4) and Ni(TMpy-P4) are intercalated at the G-C sites. In contrast, these bands show a small upward and downward shift, respectively, when Co(TMpy-P4) is groove-bound at the A-T sites of nucleic acids. Both Bands V (approximately 1260 cm-1) and IX (approximately 1646 cm-1) which originate in the N-methylpyridyl group always show small downward shifts due to coulombic interaction between the N-CH3+ group of TMpy-P4 and the PO2 group of the nucleic acid.  相似文献   

20.
The mechanism of electron transfer from NADPH to cytochrome P-450 through FAD and FMN of the reductase is largely unknown. In this paper, we report the resonance Raman spectral properties of the oxidized and the semiquinonoid states of the flavins in the holoenzyme and the FMN-depleted forms, respectively, of detergent-solubilized rabbit liver microsomal NADPH-cytochrome P-450 reductase. The resonance Raman spectra of the oxidized forms [FAD; FMN] and [FAD;-] were essentially identical, indicating similar binding interactions of these flavins with the protein. To the contrary, the spectra of the semiquinonoid FADH. and FMNH. forms revealed significant spectral differences. Both O2-unstable species, characterized as [FADH.; FMNH2] and [FADH.;-] excited at 568.2 nm, have dominant spectral peaks at approximately 1611, 1539-1543, 1377, 1305, 1263, and 1226 cm-1. However, in the O2-stable [FAD; FMNH.] species, resonance Raman bands were located at 1611, 1532, 1388, 1304, 1268, and 1227 cm-1 when excited at the same wavelength. The approximately 10-cm-1 shifts of the 1532- and 1388-cm-1 bands suggest that the environments surrounding rings II and III of the isoalloxazines change upon reduction to semiquinonoid forms. It is proposed that N1 of FADH. (as a hydrogen-bond acceptor) and N5 of FMNH. (as donor) provide the distinguishing flavin-protein interactions in the semiquinonoid states. Furthermore, the resonance Raman spectra of the semiquinonoid species appear to be missing a number of bands assigned to ring I vibrations in the spectra of the oxidized flavins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号