首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 931 毫秒
1.
Hybridization in 6xSSC (SSC, 0.15m-sodium chloride-0.015m-sodium citrate) at 66 degrees C was compared with hybridization in formamide-6xSSC (1:1, v/v) at 35 degrees C. As expected, the RNA hybridization potential was labile in the former system and stable in the latter. DNA retention by filters was poor in the formamide system, but could be improved. Several other properties of the hybridization reaction were explored and it was concluded that the formamide system is generally superior.  相似文献   

2.
Rat liver mitochondria were examined for their ability to reduce dehydroascorbic acid to ascorbic acid in an -lipoic acid dependent or independent manner. The a-lipoic acid dependent reduction was stimulated by factors that increased the NADH dependent reduction of -lipoic acid to dihydrolipoic acid in coupled reactions. Optimal conditions for dehydroascorbic acid reduction to ascorbic acid were achieved in the presence of pyruvate, -lipoic acid, and ATP. Electron transport inhibitors, rotenone and antimycin A, further enhanced the dehydroascorbic acid reduction. The reactions were strongly inhibited by 1 mM iodoacetamide or sodium arsenite. Mitoplasts were qualitatively similar to intact mitochondria in dehydroascorbate reduction activity. Pyruvate dehydrogenase and -ketoglutarate dehydrogenase reduced dehydroascorbic acid to ascorbic acid in an -lipoic acid, coenzyme A, and pyruvate or -ketoglutarate dependent fashion. Dehydroascorbic acid was also catalytically reduced to ascorbic acid by purified lipoamide dehydrogenase in an -lipoic acid (K 0.5=1.4±0.8 mM) and lipoamide (K 0.5=0.9±0.3 mM) dependent manner.  相似文献   

3.
1. Rapidly labelled RNA from Escherichia coli K 12 was characterized by hybridization to denatured E. coli DNA on cellulose nitrate membrane filters. The experiments were designed to show that, if sufficient denatured DNA is offered in a single challenge, practically all the rapidly labelled RNA will hybridize. With the technique employed, 75-80% hybridization efficiency could be obtained as a maximum. Even if an excess of DNA sites were offered, this value could not be improved upon in any single challenge of rapidly labelled RNA with denatured E. coli DNA. 2. It was confirmed that the hybridization technique can separate the rapidly labelled RNA into two fractions. One of these (30% of the total) was efficiently hybridized with the low DNA/RNA ratio (10:1, w/w) used in tests. The other fraction (70% of the total) was hybridized to DNA at low efficiencies with the DNA/RNA ratio 10:1, and was hybridized progressively more effectively as the amount of denatured DNA was increased. A practical maximum of 80% hybridization of all the rapidly labelled RNA was first achieved at a DNA/RNA ratio 210:1 (+/-10:1). This fraction was fully representative of the rapidly labelled RNA with regard to kind and relative amount of materials hybridized. 3. In competition experiments, where additions were made of unlabelled RNA prepared from E. coli DNA, DNA-dependent RNA polymerase (EC 2.7.7.6) and nucleoside 5'-triphosphates, the rapidly labelled RNA fraction hybridized at a low (10:1) DNA/RNA ratio was shown to be competitive with a product from genes other than those responsible for ribosomal RNA synthesis and thus was presumably messenger RNA. At higher DNA/rapidly labelled RNA ratios (200:1), competition with added unlabelled E. coli ribosomal RNA (without messenger RNA contaminants) lowered the hybridization of the rapidly labelled RNA from its 80% maximum to 23%. This proportion of rapidly labelled RNA was not competitive with E. coli ribosomal RNA even when the latter was in large excess. The ribosomal RNA would also not compete with the 23% rapidly labelled RNA bound to DNA at low DNA/RNA ratios. It was thus demonstrated that the major part of E. coli rapidly labelled RNA (70%) is ribosomal RNA, presumably a precursor to the RNA in mature ribosomes. 4. These studies have shown that, when earlier workers used low DNA/RNA ratios (about 10:1) in the assay of messenger RNA in bacterial rapidly labelled RNA, a reasonable estimate of this fraction was achieved. Criticisms that individual messenger RNA species may be synthesized from single DNA sites in E. coli at rates that lead to low efficiencies of messenger RNA binding at low DNA/RNA ratios are refuted. In accordance with earlier results, estimations of the messenger RNA content of E. coli in both rapidly labelled and randomly labelled RNA show that this fraction is 1.8-1.9% of the total RNA. This shows that, if any messenger RNA of relatively long life exists in E. coli, it does not contribute a measurable weight to that of rapidly labelled messenger RNA.  相似文献   

4.
  • 1.1. This work represents the first approach to characterize the transport system of haem pathway precursors, such as δ-aminolevulinic acid (ALA), in two strains of Saccharomyces cerevisiae, a wild type, D27, and a HEM R+ mutant.
  • 2.2. ALA transport occurs unidirectionally by a sole active system with an apparent KM of 0.10 mM, at the optimum pH of 5.0. ALA uptake is influenced by both the carbon and nitrogen source; this suggests a rather complex regulation mechanism.
  • 3.3. This transport is not mediated by the general amino acid permease (GAP).
  • 4.4. ALA uptake is strongly inhibited by compounds harboring a methyl-amine terminus suggesting that this group is essential for ALA transport; however, the electric environment of the carboxylic group may be also important for the interaction between ALA and its transporter active site.
  • 5.5. We have found differences in ALA transport which would indicate a different regulation mechanism for this system in both strain cells.
  相似文献   

5.
In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.  相似文献   

6.
7.
Yu Liu  Ling-yuan Su  Shang Fa Yang 《Planta》1984,161(5):439-443
1-Aminocyclopropane-1-carboxylic acid (ACC) is known to be converted to ethylene and conjugated into N-malonyl-ACC in plant tissues. When -amino[1-14C]isobutyric acid (AIB), a structural analog of ACC, was administered to mungbean (Vigna radiata L.) hypocotyl segments, it was metabolized to 14CO2 and conjugated to N-malonyl-AIB (MAIB). -Aminoisobutyric acid inhibited the conversion of ACC to ethylene and also inhibited, to a lesser extent, N-malonylation of ACC and d-amino acids. Although the malonylation of AIB was strongly inhibited by ACC as well as by d-amino acids, the metabolism of AIB to CO2 was inhibited only by ACC but not by d-amino acids. Inhibitors of ACC conversion to ethylene such as anaerobiosis, 2,4-dinitrophenol and Co2+, similarly inhibited the conversion of AIB to CO2. These results indicate that the malonyalation of AIB to MAIB is intimately related to the malonylation of ACC and d-amino acids, whereas oxidative decarboxylation of AIB is related to the oxidative degradation of ACC to ethylene.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AIB -aminoisobutyric acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid - MAIB -(malonylamino)-isobutyric acid - Mes 2-(N-morpholino)ethanesulfonic acid  相似文献   

8.
Hu J  Fei J  Reutter W  Fan H 《Glycobiology》2011,21(3):329-339
The γ-aminobutyric acid (GABA) transporters (GATs) have long been recognized for their key role in the uptake of neurotransmitters. The GAT1 belongs to the family of Na(+)- and Cl(-)-coupled transport proteins, which possess 12 putative transmembrane (TM) domains and three N-glycosylation sites on the extracellular loop between TM domains 3 and 4. Previously, we demonstrated that terminal trimming of N-glycans is important for the GABA uptake activity of GAT1. In this work, we examined the effect of deficiency, removal or oxidation of surface sialic acid residues on GABA uptake activity to investigate their role in the GABA uptake of GAT1. We found that the reduced concentration of sialic acid on N-glycans was paralleled by a decreased GABA uptake activity of GAT1 in Chinese hamster ovary (CHO) Lec3 cells (mutant defective in sialic acid biosynthesis) in comparison to CHO cells. Likewise, either enzymatic removal or chemical oxidation of terminal sialic acids using sialidase or sodium periodate, respectively, resulted in a strong reduction in GAT1 activity. Kinetic analysis revealed that deficiency, removal or oxidation of terminal sialic acids did not affect the K(m) GABA values. However, deficiency and removal of terminal sialic acids of GAT1 reduced the V(max) GABA values with a reduced apparent affinity for extracellular Na(+). Oxidation of cell surface sialic acids also strongly reduced V(max) without affecting both affinities of GAT1 for GABA and Na(+), respectively. These results demonstrated for the first time that the terminal sialic acid of N-linked oligosaccharides of GAT1 plays a crucial role in the GABA transport process.  相似文献   

9.
Vitamin K-dependent carboxylation of glutamic acid residues to γ-carboxyglutamic acid was demonstrated in proteins of lung microsomes. The carboxylation was 12% of that in liver microsomes per milligram of mierosomal protein. Carboxylation was very low with microsomes of untreated rats but increased with time up to 42 h after warfarin administration. Carboxylation was highest with microsomes from rats fed a vitamin K-deficient diet. This suggests that a protein(s) accumulates which can be carboxylated in vitro/J. Lung microsomes also catalyzed the vitamin K-dependent carboxylation of the peptide Phe-Leu-Glu-Glu-Leu. The peptide carboxylase activity was 9% of that obtained with liver microsomes. Vitamin K-dependent protein carboxylation required NADH or dithioerythritol, suggesting that vitamin K had to be reduced to the hydroquinone. Accordingly, vitamin K1 hydroquinone had carboxylating activity without added reducing agents. Menaquinone-3 was considerably more active than phylloquinone. The temperature optimum for carboxylation was around 27 °C.  相似文献   

10.
Fatty acids are a major fuel source used to sustain contractile function in heart and oxidative skeletal muscle. To meet the energy demands of these muscles, the uptake and β-oxidation of fatty acids must be coordinately regulated in order to ensure an adequate, but not excessive, supply for mitochondrial β-oxidation. However, imbalance between fatty acid uptake and β-oxidation has the potential to contribute to muscle insulin resistance. The action of insulin is initiated by binding to its receptor and activation of the intrinsic protein tyrosine kinase activity of the receptor, resulting in the initiation of an intracellular signaling cascade that eventually leads to insulin-mediated alterations in a number of cellular processes, including an increase in glucose transport. Accumulation of fatty acids and lipid metabolites (such as long chain acyl CoA, diacylglycerol, triacylglycerol, and/or ceramide) can lead to alterations in this insulin signaling pathway. An imbalance between fatty acid uptake and oxidation is believed to be responsible for this lipid accumulation, and is thought to be a major cause of insulin resistance in obesity and diabetes, due to lipid accumulation and inhibition of one or more steps in the insulin-signaling cascade. As a result, decreasing muscle fatty acid uptake can improve insulin sensitivity. However, the potential role of increasing fatty acid β-oxidation in the heart or skeletal muscle in order to prevent cytoplasmic lipid accumulation and decrease insulin resistance is controversial. While increased fatty acid β-oxidation may lower cytoplasmic lipid accumulation, increasing fatty acid β-oxidation can decrease muscle glucose metabolism, and incomplete fatty acid oxidation has the potential to also contribute to insulin resistance. In this review, we discuss the proposed mechanisms by which alterations in fatty acid uptake and oxidation contribute to insulin resistance, and how targeting fatty acid uptake and oxidation is a potential therapeutic approach to treat insulin resistance.  相似文献   

11.
12.
The -irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the non-volatile products. Thin layer chromotography and direct probe mass spectroscopy were also employed.The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the -irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.  相似文献   

13.
The biosynthesis of δ-aminolevulinic acid was investigated in three strains of Rhodopseudomonas sphaeroides. A wild-type strain (NCIB 8253) possessed both δ-aminolevulinic acid synthetase and γ,δ-dioxovaleric acid transaminase in the cytoplasmic and membrane cell fractions. δ-Aminolevulinic acid synthetase activities were not detected in extracts of mutant strains H5 and H5D. However, γ,δ-dioxovaleric acid transaminase was found in the cytoplasmic and membrane fractions of these latter two strains. Strain H5 required exogenously added δ-aminolevulinic acid for growth and bacteriochlorophyll synthesis. Strain H5D did not require this compound for growth and bacteriochlorophyll synthesis. γ,δ-Dioxovaleric acid added in the growth medium did not support the growth of H5, although it was actively transported into the cells. Addition of γ,δ-dioxovaleric acid to the growth medium did not enhance the growth of either the wild-type or H5D strains. These results indicate that ALA synthetase is not required for growth and bacteriochlorophyll synthesis in H5D and that γ,δ-dioxovaleric acid is probably not an intermediate in the formation of δ-aminolevulinic acid in the strains of Rhodopseudomonas sphaeroides studied. In strain H5D another pathway may function in the formation of δ-aminolevulinic acid other than that catalyzed by δ-aminolevulinic acid synthetase or γ,δ-dioxovaleric acid transaminase.  相似文献   

14.
Y.C. Chia  G.W. Smith  G.J. Lees 《Life sciences》1984,34(25):2443-2452
Homogenates of rat liver transaminate phenylpyruvate (PP), as well as α-ketoglutarate (α-KG), in the presence of L-tyrosine, 3,4-dihydroxyphenylalanine (L-DOPA) or L-tryptophan. Aminotransferase activity with phenylpyruvate and DOPA, but not with tyrosine, was inhibited by excess phenylpyruvate. Tyrosine and DOPA aminotransferase activities with phenylpyruvate were more heat stable than the corresponding activities with α-ketoglutarate. Aminotransferase activities with phenylpyruvate were not significantly induced following intraperitoneal injections of cortisol, glucagon or serotonin, compared with a 3 to 7-fold increase in the aminotransferase activities with α-ketoglutarate. Tyrosine:phenylpyruvate aminotransferase activity rose 40% at night, compared with a 300% increase in tyrosine:α-ketoglutarate aminotransferase activity. The results suggest that aminotransferases catalysing transfers between aromatic keto acids and aromatic amino acids are separate enzymes from those utilizing α-ketoglutarate as the acceptor keto acid.  相似文献   

15.
Some fatty acids are reported to inhibit tumor growth of pancreatic carcinoma. However, it is still unknown if alpha-linolenic acid (ALA) and linoleic acid (LA) inhibit liver metastasis of ductal pancreatic adenocarcinoma. Therefore we studied the effect of these fatty acids on liver metastasis in the animal model of N-nitrosobis(2-oxopropyl)amine (BOP)-induced pancreatic adenocarcinoma in Syrian hamsters. Since lipid peroxidation seems to be involved in carcinogenesis and metastasis, we further analyzed the intrahepatic concentration of thiobarbituric acid-reactive substances (TBARS) and activity of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD).We observed an increase in the incidence and the number of liver metastases in response to the combination of ALA and LA. This was accompanied by a decrease in hepatic GSH-Px activity and an increase in hepatic SOD activity and TBARS concentration. The increase in hepatic lipid peroxidation seems to be one possible mechanism of increasing liver metastasis in this study.  相似文献   

16.
When Corynebacterium glutamicum ATCC 14310 (leu-) was cultured with 200 mg/l leucine and 150 mM -hydroxybutyric acid the acetohydroxy acid synthase activity was increased to 0.17 U/mg as compared to 0.03 U/mg in the wildtype. This increase was a combined effect of the limiting amounts of leucine added, together with an apparent additional internal leucine/valine shortage resulting from accumulated -ketobutyric acid (5 mM) and the kinetic characteristics of the acetohydroxy acid synthase. The increase in the specific AHAS activity by the appropriate amino acid limitation resulted in an increased isoleucine yield of 71 mmol/l as compared to 27 mmol/l obtained under non-limiting conditions.Abbreviation AHAS Acetohydroxy acid synthase  相似文献   

17.
The relationship of abscisic acid (ABA) and 2-trans-abscisic acid (t-ABA) to alternate bearing has been examined in Wilking mandarin (Citrus reticulata Blanco) trees. Leaves, stems and buds of trees loaded with fruit (on trees) had 4.3, 6.0 and 2.2 fold higher ABA levels than the corresponding organs from off trees. Leaves had higher ABA levels than stems and buds in both on and off trees. t-ABA was non-detectable in Wilking leaf, stem and bud tissue. Amounts of t-ABA not exceeding 40% of the ABA content, were found in Shamouti and Valencia orange buds and in Wilking fruit peel.The elevated levels of ABA in on tree organs may reflect a stress imposed by the fruit overload.  相似文献   

18.
The possible involvement of arachidonic acid (AA) or its metabolites in β-adrenoceptor desensitization has been studied in rat lung parenchyma both from a functional and a biochemical point of view. In vitro perfusion of rat lungs with AA (3×10?5M for 20 min) reduced the relaxant effect of isoproterenol (ISO) on lung parenchymal strips, shown by a shift to the right of ISO dose-response curve, similar to that obtained using desensitizing concentration of specific β-agonist. Moreover, AA treatment reduced the capacity of ISO to stimulate adenylate-cyclase activity, whereas the number of β-receptor binding sites was not significantly modified. Inhibition of cyclo-oxygenase pathway by indomethacin (INDO) (1.5 × 10?5M) prevented both the loss of ISO-relaxing capacity and the decrease of adenylate-cyclase activity induced by AA treatment. In order to support the role of eicosanoids in β-adrenoceptor desensitization, changes of endogenous free AA levels have also been studied in lung homogenates. Perfusion of rat lung with ISO (10?6M for 20 min) decreased by about 50% the levels of free AA and the pretreatment with BW755C (9×10?5M), a lipo- and cyclo-oxygenase inhibitor, prevented this phenomenon. On the basis of these results, we suggest that the activation of AA cascade is actually involved in β-adrenoceptor desensitization in lung tissues with a possible interference at the site beyond the drug-receptor interaction.  相似文献   

19.
This study describes the effect of substituting dietary linoleic acid (18:2 n-6) with α-linolenic acid (18:3 n-3) on sucrose-induced insulin resistance (IR). Wistar NIN male weanling rats were fed casein based diet containing 22 energy percent (en%) fat with ~6, 9 and 7 en% saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) respectively for 3 months. IR was induced by replacing starch (ST) with sucrose (SU). Blends of groundnut, palmolein, and linseed oil in different proportions furnished the following levels of 18:3 n-3 (g/100 g diet) and 18:2 n-6/18:3 n-3 ratios respectively: ST-220 (0.014, 220), SU-220 (0.014, 220), SU-50 (0.06, 50), SU-10 (0.27, 10) and SU-2 (1.1, 2). The results showed IR in the sucrose fed group (SU-220) as evidenced by increase in fasting plasma insulin and area under the curve (AUC) of insulin in response to oral glucose load. In SU-220, the increase in adipocyte plasma membrane cholesterol/phospholipid ratio was associated with a decrease in fluidity, insulin stimulated glucose transport, antilipolytic effect of insulin and increase in basal and norepinephrine stimulated lipolysis in adipocytes. In SU-50, sucrose induced alterations in adipocyte lipolysis and antilipolysis were normalized. However, in SU-2, partial corrections in plasma insulin, AUC of insulin and adipocyte insulin stimulated glucose transport were observed. Further, plasma triglycerides and cholesterol decreased in SU-2. In diaphragm phospholipids, the observed dose dependent increase in long chain (LC) n-3 PUFA was associated with a decrease in LC-n-6 PUFA but insulin stimulated glucose transport increased only in SU-2. Thus, this study shows that the substitution of one-third of dietary 18:2 n-6 with 18:3 n-3 (SU-2) results in lowered blood lipid levels and increases peripheral insulin sensitivity, possibly due to the resulting high LCn-3 PUFA levels in target tissues of insulin action. These findings suggest a role for 18:3 n-3 in the prevention of insulin resistant states. The current recommendation to increase 18:3 n-3 intake for reducing cardiovascular risk may also be beneficial for preventing IR in humans.  相似文献   

20.
Various strategies have been developed to increase the cellular level of (n-3) polyunsaturated fatty acids in animals and humans. In the present study, we investigated the effect of dietary myristic acid, which represents 9% to 12% of fatty acids in milk fat, on the storage of α-linolenic acid and its conversion to highly unsaturated (n-3) fatty acid derivatives. Five isocaloric diets were designed, containing equal amounts of α-linolenic acid (1.3% of dietary fatty acids, i.e. 0.3% of dietary energy) and linoleic acid (7.0% of fatty acids, i.e. 1.5% of energy). Myristic acid was supplied from traces to high levels (0%, 5%, 10%, 20% and 30% of fatty acids, i.e. 0% to 6.6% of energy). To keep the intake of total fat and other saturated fatty acids constant, substitution was made with decreasing levels of oleic acid (76.1% to 35.5% of fatty acids, i.e. 16.7% to 7.8% of energy) that is considered to be neutral in lipid metabolism. After 8 weeks, results on physiological parameters showed that total cholesterol and low-density lipoprotein-cholesterol did not differ in the diets containing 0%, 5% and 10% myristic acid, but were significantly higher in the diet containing 30% myristic acid. In all the tissues, a significant increasing effect of the substitution of oleic acid for myristic acid was shown on the level of both α-linolenic and linoleic acids. Compared with the rats fed the diet containing no myristic acid, docosahexaenoic acid significantly increased in the brain and red blood cells of the rats fed the diet with 30% myristic acid and in the plasma of the rats fed the diet with 20% myristic acid. Arachidonic acid also increased in the brain of the rats fed the diet with 30% myristic acid. By measuring Δ6-desaturase activity, we found a significant increase in the liver of the rats fed the diet containing 10% of myristic acid but no effect at higher levels of myristic acid. These results suggest that an increase in dietary myristic acid may contribute in increasing significantly the tissue storage of α-linolenic acid and the overall bioavailability of (n-3) polyunsaturated fatty acids in the brain, red blood cells and plasma, and that mechanisms other than the single Δ6-desaturase activity are involved in this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号