首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Using Fura-2AM microfluorimetry, it was shown for the first time that phospholipase A2 inhibitors 4-bromophenacyl bromide and glucocorticosteroids prednisolone and dexamethasone attenuate Ca2+ responses induced by neuroleptic trifluoperazine in macrophages. The results suggest the involvement of phospholipase A2 and arachidonic acid metabolism cascade in the effect of trifluoperazine on intracellular Ca2+ concentration in macrophages.  相似文献   

2.
Using Fura-2AM microfluorimetry, we have shown for the first time that preincubation of macrophages with the calsequestrin inhibitor neuroleptic trifluoperazine leads to a significant inhibition of the store-dependent Ca2+ entry induced by endoplasmic Ca2+-ATPase inhibitors thapsigargin or cyclopiazonic acid in rat peritoneal macrophages. The results suggest calsequestrin involvement in the regulation of the store-dependent Ca2+ entry in macrophages.  相似文献   

3.
Using Fura-2AM microfluorimetry, the effect of oxidized glutathione (GSSG) and its pharmacological analogue glutoxim on the intracellular Ca2+ concentration in rat peritoneal macrophages was investigated. It was shown that GSSG or glutoxim increase the intracellular Ca2+ concentration by inducing Ca2+ mobilization from thapsigargin-sensitive Ca2+ stores and subsequent Ca2+ entry from external medium. Dithiothreitol, which reduces S-S-bonds in proteins, completely prevents or reverses the increase of intracellular Ca2+ concentration induced by GSSG or glutoxim. This suggests that the increase of intracellular Ca2+ concentration induced by GSSG or glutoxim can be mediated by their interactions with functionally important SH-groups of proteins involved in Ca2+-signaling.Two structurally different tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate prevent or completely reverse the increase in the intracellular Ca2+ concentration induced by GSSG or glutoxim. On the contrary, tyrosine phosphatase inhibitor Na orthovanadate enhances the increase of intracellular Ca2+ concentration evoked by oxidizing agents. The data suggest that tyrosine kinases and tyrosine phosphatases are involved in the regulatory effect of GSSG and glutoxim on the intracellular Ca2+ concentration in macrophages.  相似文献   

4.
Using Fura-2AM microfluorimetry, we have shown for the first time that sigma-1 receptor agonist, tricyclic antidepressant amitriptyline, significantly inhibits glutoxim- and molixan-induced Ca2+-responses in rat peritoneal macrophages. The results suggest possible involvement of sigma-1 receptors in the signaling cascade induced by glutoxim or molixan and leading to intracellular Ca2+ concentration increase in macrophages.  相似文献   

5.
Using Fura-2AM microfluorimetry, we have shown for the first time that sigma-1 receptor antagonist, antipsychotic haloperidol, significantly inhibits glutoxim- and molixan-induced Ca2+-response in peritoneal macrophages. These results indicate possible involvement of sigma-1 receptors in the signal cascade induced by glutoxim or molixan and leading to intracellular Ca2+ concentration increase in macrophages.  相似文献   

6.
Using Fura-2AM microfluorimetry, we have shown for the first time that preincubation of macrophages with sigma-1 receptor antagonist haloperidol leads to a significant inhibition of the store-dependent Ca2+ entry induced by endoplasmic Ca2+-ATPase inhibitors thapsigargin or cyclopiazonic acid in rat peritoneal macrophages. The results suggest the involvement of the sigma-1 receptor in the regulation of storedependent Ca2+ entry in macrophages.  相似文献   

7.
Using Fura-2AM microfluorimetry, it was shown for the first time that neuroleptic chlorpromazine causes intracellular Ca2+ concentration increase in macrophages due to Ca2+ mobilization from intracellular Ca2+ stores and subsequent Ca2+ entry from the external medium. Chlorpromazine-induced Ca2+ entry is inhibited by La3+ and 2-aminoethoxydiphenyl borate and is associated with Ca2+ store depletion.  相似文献   

8.
Peritoneal macrophages were isolated from wild type (WT) mice and from mice invalidated for the P2X7 receptor (KO) which had been pretreated with thioglycolate. In cells from WT mice, 1 mM ATP increased the intracellular concentration of calcium ([Ca2+]i), the uptake of ethidium bromide, the production of reactive oxygen species (ROS), the secretion of IL-1β, the release of oleic acid and of lactate dehydrogenase; it decreased the intracellular concentration of potassium ([K+]i). In KO mice, ATP transiently increased the [Ca2+]i confirming that the P2X7 receptor is a major receptor of peritoneal macrophages. WKYMVm, an agonist of receptors for formylated peptides (FPR) also increased the [Ca2+]i in murine macrophages. The slight increase of the [Ca2+]i was strongly potentiated by ivermectin confirming the expression of functional P2X4 receptors by murine peritoneal macrophages. CRAMP, the unique antimicrobial peptide derived from cathelin in mouse inhibited all the responses coupled to P2X7 receptors in macrophages from WT mice. Agonists for FPR had no effect on the increase of the [Ca2+]i in response to ATP. CRAMP had no effect on the increase of the [Ca2+]i evoked by a combination of ATP and ivermectin in macrophages from P2X7-KO mice.In summary CRAMP inhibits the responses secondary to the activation of the murine P2X7 receptors expressed by peritoneal macrophages. This inhibition is not mediated by FPR receptors and is specific since CRAMP has no effect on the response coupled to P2X4 receptors. It can thus be concluded that the interaction between P2X7 receptors and cathelin-derived antimicrobial peptides is species-specific, in some cases (man) positive in others (mouse) negative.  相似文献   

9.
Effects of N-formyl chemotactic peptides on the Ca2+ influx and efflux were investigated in guinea-pig peritoneal macrophages using an isotope tracer. fMet-Leu-Phe did not enhance the influx of 45Ca2+ into macrophages, whereas it stimulated the efflux of 45Ca2+ from macrophages at concentrations ranging from 10−10 M to 10−7 M. fMet-Met-Met and fMet-Leu also stimulated the 45Ca2+ efflux, albeit at much higher concentrations, while there was no stimulation with fMet. The mitochondrial inhibitors, oligomycin and NaN3, did not modify the 45Ca2+ efflux induced by the chemoattractants, yet they did induce the release of 45Ca2+ from the mitochondria. On the other hand, higher concentrations of the calmodulin antagonists, chlorpromazine and trifluoperazine, induced the release of 45Ca2+ from the NaN3-insensitive Ca2+ store site and mimicked the enhancement of the 45Ca2+ efflux by N-formyl chemotactic peptides. Thus, N-formyl chemotactic peptides appear to increase the levels of intracellular free Ca2+ in guinea-pig peritoneal macrophages, probably by inducing the release of Ca2+ from the NaN3-insensitive Ca2+ store site.  相似文献   

10.
Effects of N-formyl chemotactic peptides on the Ca2+ influx and efflux were investigated in guinea-pig peritoneal macrophages using an isotope tracer. fMet-Leu-Phe did not enhance the influx of 45Ca2+ into macrophages, whereas it stimulated the efflux of 45Ca2+ from macrophages at concentrations ranging from 10?10 M to 10?7 M. fMet-Met-Met and fMet-Leu also stimulated the 45Ca2+ efflux, albeit at much higher concentrations, while there was no stimulation with fMet. The mitochondrial inhibitors, oligomycin and NaN3, did not modify the 45Ca2+ efflux induced by the chemoattractants, yet they did induce the release of 45Ca2+ from the mitochondria. On the other hand, higher concentrations of the calmodulin antagonists, chlorpromazine and trifluoperazine, induced the release of 45Ca2+ from the NaN3-insensitive Ca2+ store site and mimicked the enhancement of the 45Ca2+ efflux by N-formyl chemotactic peptides. Thus, N-formyl chemotactic peptides appear to increase the levels of intracellular free Ca2+ in guinea-pig peritoneal macrophages, probably by inducing the release of Ca2+ from the NaN3-insensitive Ca2+ store site.  相似文献   

11.
The anoxia-dependent elevation of cytosolic Ca2+ concentration, [Ca2+]cyt, was investigated in plants differing in tolerance to hypoxia. The [Ca2+]cyt was measured by fluorescence microscopy in single protoplasts loaded with the calcium-fluoroprobe Fura 2-AM. Imposition of anoxia led to a fast (within 3 min) significant elevation of [Ca2+]cyt in rice leaf protoplasts. A tenfold drop in the external Ca2+ concentration (to 0.1 mM) resulted in considerable decrease of the [Ca2+]cyt shift. Rice root protoplasts reacted upon anoxia with higher amplitude. Addition of plasma membrane (verapamil, La3+ and EGTA) and intracellular membrane Ca2+-channel antagonists (Li+, ruthenium red and cyclosporine A) reduced the anoxic Ca2+-accumulation in rice. Wheat protoplasts responded to anoxia by smaller changes of [Ca2+]cyt. In wheat leaf protoplasts, the amplitude of the Ca2+-shift little depended on the external level of Ca2+. Wheat root protoplasts were characterized by a small shift of [Ca2+]cyt under anoxia. Plasmalemma Ca2+-channel blockers had little effect on the elevation of cytosolic Ca2+ in wheat protoplasts. Intact rice seedlings absorbed Ca2+ from the external medium under anoxic treatment. On the contrary, wheat seedlings were characterized by leakage of Ca2+. Verapamil abolished the Ca2+ influx in rice roots and Ca2+ efflux from wheat roots. Anoxia-induced [Ca2+]cyt elevation was high particularly in rice, a hypoxia-tolerant species. In conclusion, both external and internal Ca2+ stores are important for anoxic [Ca2+]cyt elevation in rice, whereas the hypoxia-intolerant wheat does not require external sources for [Ca2+]cyt rise. Leaf and root protoplasts similarly responded to anoxia, independent of their organ origin.  相似文献   

12.
Ca2+ enhanced the transformation frequency of Thermoactinomyces vulgaris (stock no. 1278) of an auxotrophic strain by the chromosomal DNA isolated from a prototrophic strain (stock no. 1227). The number of transformants showed a marked increase with increasing concentration of CaCl2 upto 0.05 mM; and above this concentration, the transformation frequency decreased significantly. Antipsychotic drugs that are potent calmodulin inhibitors, like trifluoperazine and chlorpromazine, when applied in the concentration range of 0.01–0.04 mM along with optimal CaCl2 concentration to the cultures of the recipient cells, resulted in a significant inhibition in the frequency of Ca2+-stimulated transformation. The results of present investigation suggest the involvement of a Ca2+-dependent protein activator in the development of Ca2+-mediated competence, which could have played an important role in the enhancement of genetic transformation in this aerobic spore forming thermophilic actinomycete. Received: 21 May 2002 / Accepted: 21 June 2002  相似文献   

13.
Using Fura-2AM microfluorimetry, we have shown for the first time that preincubation of macrophages with methyl-β-cyclodextrin, inducing cholesterol extraction from membranes and raft disruption, leads to significant inhibition of thapsigargin-induced store-dependent Ca2+ entry in rat peritoneal macrophages. In contrast, macrophage treatment with methyl-β-cyclodextrin after Ca2+ entry mechanisms were activated by store depletion by thapsigargin application leads to potentiation of subsequent store-dependent Ca2+ entry. The results suggest that intact lipid rafts are necessary for the activation but not the maintenance of store-dependent Ca2+ entry in macrophages.  相似文献   

14.
Using Fura-2AM microfluorimetry, we have shown for the first time that 5-lipoxygenase specific inhibitor antiasthmatic agent zileuton significantly inhibits Ca2+-responses induced by glutoxim and molixan in macrophages. The results support 5-lipoxygenase involvement in the effect of glutoxim and molixan on intracellular Ca2+ concentration in macrophages and indicate the inadvisability of a combined use of drugs glutoxim and molixan and antiasthmatic agent zileuton.  相似文献   

15.
In dividing embryos, a localized elevation in intracellular Ca2+ ([Ca2+]i) at the cleavage furrow has been shown to be essential for cytokinesis. However, the underlying mechanisms for generating and maintaining these [Ca2+]i gradients throughout cytokinesis are not fully understood. In the present study, we analyzed the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) and endoplasmic reticulum (ER) distribution in determining the intracellular Ca2+ gradients in early zebrafish blastomeres. Application of the injected Ca2+ indicator, Indo-1, showed that during the first cell division a standing Ca2+ gradient was formed ∼35 min after fertilization, with the [Ca2+]i spatially decaying from 500–600 nmol/L at the cleavage furrow to 100–200 nmol/L around the nucleus. While the IP3R immunohistochemical fluorescence was relatively concentrated in the peri-furrow region, ER labeling was relatively enriched in both peri-furrow and peri-nuclear regions. Numeric simulation suggested that a divergence in the spatial distribution of IP3R and the locations of Ca2+ uptake within the ER was essential for the formation of a standing Ca2+ gradient, and the Ca2+ gradient could only be well-established under an optimal stoichiometry of Ca2+ uptake and release. Indeed, while inhibition of IP3R Ca2+ release blocked the generation of the Ca2+ gradient at a lower [Ca2+]i level, both Ca2+ release stimulation by inositol 1,4,5-trisphosphate (IP3) injection and ER Ca2+ pump inhibition by cyclopiazonic acid also eliminated the Ca2+ gradients at higher [Ca2+]i levels. Our results suggest a dynamic relationship between ER-mediated Ca2+ release and uptake that underlies the maintenance of the perifurrow Ca2+ gradient and is essential for cytokinesis of zebrafish embryos.  相似文献   

16.
Responses of a holothurian smooth muscle to a range of muscarinic (M1 to M5) acetylcholine receptor (mAChR) agonists and antagonists were surveyed using calcium (Ca2+)-selective electrodes and a mechanical recording technique. Most of the mAChR agonists and antagonists tested increased both contractility and net Ca2+ efflux, with M1-specific agents like oxotremorine M being the most potent in their action. To investigate the possible sources of Ca2+ used during mAChR activation, agents that disrupt intracellular Ca2+ ion sequestration [cyclopiazonic acid (CPA), caffeine, ryanodine], the phosphoinositide signaling pathway [lithium chloride (LiCl)], and L-type Ca2+ channels (diltiazem and verapamil) were used to challenge contractions induced by oxotremorine M. These contractions were blocked by treatment with CPA, caffeine, LiCl, and by channel blockers, diltiazem and verapamil, but were unaltered by ryanodine. Our data suggest that this smooth muscle had an M1,3,5-like receptor that was associated with the phosphoinositide signaling pathway that relied on intracellular Ca2+ stores, but secondarily used extracellular Ca2+ via the opening of L-type channels.  相似文献   

17.
Supplementation with CaCl2·2H2O (50 mg l−1) or CuSO4·5H2O (10 mg l−1) improved mannitol production by Candida magnoliae by 14.5 and 18.6% (25 and 32 g/L), respectively. When used in combination, they acted synergistically: Ca2+ decreased the intracellular concentration of mannitol 30%, whereas Cu2+ increased the intracellular activity of mannitol dehydrogenase 1.6-times more than control. Ca2+ probably works by altering the permeability of cells to mannitol, whereas, Cu2+ increases the activity of an enzyme responsible for mannitol biosynthesis.  相似文献   

18.
The objective of this study was to investigate the influences of carbonyl stress induced by malondialdehyde (MDA), a typical intermediate of lipid peroxidation, on intracellular free Ca2+ concentration ([Ca2+]i) alterations in cultured hippocampal neurons of rat. The microphotographic study clearly demonstrated that the hippocampal neurons became gradually damaged following exposure to different concentrations of MDA. Further study indicated that the plasma membrane Ca2+-ATPase (PMCA) activity was inhibited by MDA in a concentration- and time-dependent manner. The supplementation of 100 μM MDA was found to cause a notable early phase increase of [Ca2+]i in hippocampal neuron cultures followed by a more pronounced late-phase elevation of [Ca2+]i. Such effect of MDA was prevented by the addition of nimodipine, an inhibitor of L-type calcium channel or by an extracellular Ca2+ chelator EGTA. The identification of the calcium signalling pathways were studied by applying U73122, an inhibitor of PL-C, and H-89, an inhibitor of protein kinase A (PKA), showing the involvement of PL-C/IP3 pathway but not the PKA/cAMP pathway. These results suggested that MDA-related carbonyl stress caused damages of rat hippocampal neurons by triggering Ca2+ influx and influencing Ca2+ homeostasis in cultured neurons, and also MDA may act as a signalling molecule regulating Ca2+ release from intracellular stores.  相似文献   

19.
Glutoxim and molixan belong to new generation of disulfide-containing drugs with immunomodulatory, hepatoprotective and hemopoetic effect on cells. Using Fura-2AM microfluorimetry, two structurally distinct actin filament disrupters latrunculin B and cytochalasin D, and calyculin A, which causes actin filaments condensation under plasmalemma, we have shown the involvement of actin cytoskeleton in the intracellular Ca2+-concentration increase induced by glutoxim or molixan in rat peritoneal macrophages. Morphological data obtained with the use of rhodamine-phalloidine demonstrated that glutoxim and molixan cause the actin filaments reorganization in rat peritoneal macrophages.  相似文献   

20.
A mathematical modeling of tight junction (TJ) dynamics was elaborated in a previous study (Kassab, F., Marques, R.P., Lacaz-Vieira, F. 2002. Modeling tight junction dynamics and oscillations. J. Gen. Physiol. 120:237–247) to better understand the dynamics of TJ opening and closing, as well as oscillations of TJ permeability that are observed in response to changes of extracellular Ca2+ levels. In this model, TJs were assumed to be specifically controlled by the Ca2+ concentration levels at the extracellular Ca2+ binding sites of zonula adhaerens. Despite the fact that the model predicts all aspects of TJ dynamics, we cannot rule out the likelihood that changes of intracellular Ca2+ concentration (Ca2+ cell), which might result from changes \ of extracellular Ca2+ concentration (Ca2+ extl), contribute to the observed results. In order to address this aspect of TJ regulation, fast Ca2+-switch experiments were performed in which changes of Ca2+ cell were induced using the Ca2+ ionophore A23187 or thapsigargin, a specific inhibitor of the sarco-endoplasmic reticulum Ca2+-ATPase. The results indicate that the ionophore or thapsigargin per se do not affect basal tissue electrical conductance (G), showing that the sealing of TJs is not affected by a rise in Ca2+ cell. When TJs were kept in a dynamic state, as partially open structures or in oscillation, conditions in which the junctions are very sensitive to disturbances that affect their regulation, a rise of Ca2+ cell never led to a decline of G, indicating that a rise of Ca2+ cell does not trigger per se TJ closure. On the contrary, always the first response to a rise of Ca2+ cell is an increase of G that, in most cases, is a transient response. Despite these observations we cannot assure that a rise of Ca2+ cell is without effect on the TJs, since an increase of Ca2+ cell not only causes a transient increase of G but, in addition, during oscillations a rise of Ca2+ cell induced by the Ca2+ ionophore transiently halted the oscillatory pattern of TJs. The main conclusion of this study is that TJ closure that is observed when basolateral Ca2+ concentration (Ca2+ bl) is increased after TJs were opened by Ca2+ bl removal cannot be ascribed to a rise of Ca2+ cell and might be a consequence of Ca2+ binding to extracellular Ca2+ sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号