首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
BackgroundHigh-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy.MethodsScanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever.ResultsIn tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated.ConclusionsThis study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research.General significanceWe achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution.  相似文献   

2.
Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding.  相似文献   

3.
4.
High-speed atomic force microscopy (HS-AFM) is a powerful tool established 13 years ago. This methodology can capture individual protein molecules carrying out functional activities under near-physiological conditions, without chemical labeling, at 2–3 nm lateral and ∼0.1 nm vertical spatial resolution, and at sub-100 ms temporal resolution. Although most biological HS-AFM studies thus far target structured proteins, HS-AFM is also ideally suited to study the dynamics of intrinsically disordered proteins. Here we review some of the dynamic structures and processes of intrinsically disordered proteins that have been unveiled by HS-AFM imaging.  相似文献   

5.
High-speed atomic force microscopy (HS-AFM) allows direct visualization of dynamic structural changes and processes of functioning biological molecules in physiological solutions, at subsecond to sub-100-ms temporal and submolecular spatial resolution. Unlike fluorescence microscopy, wherein the subset of molecular events that you see is dependent on the site where the probe is placed, dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules function. Here we present protocols for HS-AFM imaging of proteins in action, including preparation of cantilever tips, step-by-step procedures for HS-AFM imaging, and recycling of cantilevers and sample stages, together with precautions and troubleshooting advice for successful imaging. The protocols are adaptable in general for imaging many proteins and protein-nucleic acid complexes, and examples are described for looking at walking myosin, ATP-hydrolyzing rotorless F(1)-ATPase and cellulose-hydrolyzing cellulase. The entire protocol takes 10-15 h, depending mainly on the substrate surface to be used.  相似文献   

6.
Advances in microscopy have contributed to many biologic discoveries. Electron microscopic techniques such as cryo-electron tomography are remarkable tools for imaging the interiors of bacterial cells in the near-native state, whereas optical microscopic techniques such as fluorescence imaging are useful for following the dynamics of specific single molecules in living cells. Neither technique, however, can be used to visualize the structural dynamics of a single molecule at high resolution in living cells. In the present study, we used high-speed atomic force microscopy (HS-AFM) to image the molecular dynamics of living bacterial cell surfaces. HS-AFM visualizes the dynamic molecular processes of isolated proteins at sub-molecular resolution without the need for complicated sample preparation. In the present study, magnetotactic bacterial cells were anchored in liquid medium on substrate modified by poly-l-lysine and glutaraldehyde. High-resolution HS-AFM images of live cell surfaces showed that the bacterial outer membrane was covered with a net-like structure comprising holes and the hole rims framing them. Furthermore, HS-AFM captured the dynamic movement of the surface ultrastructure, showing that the holes in the net-like structure slowly diffused in the cell surface. Nano-dissection revealed that porin trimers constitute the net-like structure. Here, we report for the first time the direct observation of dynamic molecular architectures on a live cell surface using HS-AFM.  相似文献   

7.
High-speed atomic force microscopy (HS-AFM) allows direct observation of biological molecules in dynamic action. However, HS-AFM has no atomic resolution. This article reviews recent progress of computational methods to infer high-resolution information, including the construction of 3D atomistic structures, from experimentally acquired resolution-limited HS-AFM images.  相似文献   

8.
High-speed atomic force microscopy (HS-AFM) is becoming a reference tool for the study of dynamic biological processes. The spatial and time resolutions of HS-AFM are on the order of nanometers and milliseconds, respectively, and allow structural and functional characterization of biological processes at the single-molecule level. In this work we present contact-mode HS-AFM movies of purple membranes containing two-dimensional arrays of bacteriorhodopsin (bR). In high-resolution movies acquired at a 100 ms frame acquisition time, the substructure on individual bR trimers was visualized. In regions in between different bR arrays, dynamic topographies were observed and interpreted as motion of the bR trimers. Similarly, motion of bR monomers in the vicinity of lattice defects in the purple membrane was observed. Our findings indicate that the bR arrays are in a mobile association-dissociation equilibrium. HS-AFM on membranes provides novel perspectives for analyzing the membrane diffusion processes of nonlabeled molecules.  相似文献   

9.
For surface analysis of biological molecules, atomic force microscopy (AFM) is an appealing technique combining data acquisition under physiological conditions, for example buffer solution, room temperature and ambient pressure, and high resolution. However, a key feature of life, dynamics, could not be assessed until recently because of the slowness of conventional AFM setups. Thus, for observing bio-molecular processes, the gain of image acquisition speed signifies a key progress. Here, we review the development and recent achievements using high-speed atomic force microscopy (HS-AFM). The HS-AFM is now the only technique to assess structure and dynamics of single molecules, revealing molecular motor action and diffusion dynamics. From this imaging data, watching molecules at work, novel and direct insights could be gained concerning the structure, dynamics and function relationship at the single bio-molecule level.  相似文献   

10.
Atomic force microscopy (AFM) image acquisition is performed by raster-scanning a faint tip with respect to the sample by the use of a piezoelectric stage that is guided by a feedback system. This process implies that the resulting images feature particularities that distinguish them from images acquired by other techniques, such as the drift of the piezoelectric elements, the unequal image contrast along the fast- and the slow-scan axes, the physical contact between the tip of nondefinable geometry and the sample, and the feedback parameters. Recently, high-speed AFM (HS-AFM) has been introduced, which allows image acquisition about three orders of magnitude faster (500-100 ms frame rate) than conventional AFM (500 s to 100 s frame rate). HS-AFM produces image sequences, large data sets, which report biological sample dynamics. To analyze these movies, we have developed a software package that (i) adjusts individual scan lines and images to a common contrast and z-scale, (ii) filters specifically those scan lines where increased or insufficient force was applied, (iii) corrects for piezo-scanner drift, (iv) defines particle localization and angular orientation, and (v) performs particle tracking to analyze the lateral and rotation displacement of single molecules.  相似文献   

11.
Microscale techniques have been applied to biological assays for nearly two decades, but haven't been widely integrated as common tools in biological laboratories. The significant differences between several physical phenomena at the microscale versus the macroscale have been exploited to provide a variety of new types of assays (such as gradient production or spatial cell patterning). However, the use of these devices by biologists seems to be limited by issues regarding biological validation, ease of use, and the limited available readouts for assays done using microtechnology. Critical validation work has been done recently that highlights the current challenges for microfluidic methods and suggest ways in which future devices might be improved to better integrate with biological assays. With more validation and improved designs, microscale techniques hold immense promise as a platform to study aspects of cell biology that are not possible using current macroscale techniques.  相似文献   

12.
Formation of fibrillar structures of proteins that deposit into aggregates has been suggested to play a key role in various neurodegenerative diseases. However mechanisms and dynamics of fibrillization remains to be elucidated. We have previously established that lithostathine, a protein overexpressed in the pre-clinical stages of Alzheimer''s disease and present in the pathognomonic lesions associated with this disease, form fibrillar aggregates after its N-terminal truncation. In this paper we visualized, using high-speed atomic force microscopy (HS-AFM), growth and assembly of lithostathine protofibrils under physiological conditions with a time resolution of one image/s. Real-time imaging highlighted a very high velocity of elongation. Formation of fibrils via protofibril lateral association and stacking was also monitored revealing a zipper-like mechanism of association. We also demonstrate that, like other amyloid ß peptides, two lithostathine protofibrils can associate to form helical fibrils. Another striking finding is the propensity of the end of a growing protofibril or fibril to associate with the edge of a second fibril, forming false branching point. Taken together this study provides new clues about fibrillization mechanism of amyloid proteins.  相似文献   

13.
Miyagi A  Ando T  Lyubchenko YL 《Biochemistry》2011,50(37):7901-7908
A fundamental challenge of gene regulation is the accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are quite dynamic rather than static systems, as they were once considered. Direct data are needed to characterize the dynamics of nucleosomes. Specifically, if nucleosomes are dynamic, the following questions need to be answered. What is the range of nucleosome dynamics? Is a non-ATP-dependent unwrapping of nucleosomes possible? What are the factors facilitating the large-scale opening and unwrapping of nucleosomes? In previous studies using time-lapse atomic force microscopy (AFM) imaging, we were able, for the first time, to observe spontaneous, ATP-independent unwrapping of nucleosomes. However, low temporal resolution did not allow visualization of various pathways of nucleosome dynamics. In the studies described here, we applied high-speed time-lapse AFM (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale to study the nucleosome dynamics. The mononucleosomes were assembled on a 353 bp DNA substrate containing nucleosome-specific 601 sequence. With HS-AFM, we were able to observe the dynamics of nucleosome on a subsecond time scale and visualize various pathways of nucleosome dynamics, such as sliding and unwrapping to various extents, including complete dissociation. These studies highlight an important role of electrostatic interactions in chromatin dynamics. Overall, our findings shed new light on nucleosome dynamics and provide a novel hypothesis for the mechanisms controlling the spontaneous dynamics of chromatin.  相似文献   

14.
Structural biology is developing into a universal tool for visualizing biological processes in space and time at atomic resolution. The field has been built by established methodology like X-ray crystallography, electron microscopy and solution NMR and is now incorporating new techniques, such as small-angle X-ray scattering, electron tomography, magic-angle-spinning solid-state NMR and femtosecond X-ray protein nanocrystallography. These new techniques all seek to investigate non-crystalline, native-like biological material. Solid-state NMR is a relatively young technique that has just proven its capabilities for de novo structure determination of model proteins. Further developments promise great potential for investigations on functional biological systems such as membrane-integrated receptors and channels, and macromolecular complexes attached to cytoskeletal proteins. Here, we review the development and applications of solid-state NMR from the first proof-of-principle investigations to mature structure determination projects, including membrane proteins. We describe the development of the methodology by looking at examples in detail and provide an outlook towards future 'big' projects.  相似文献   

15.
The collection of chemical techniques that can be used to attach synthetic groups to proteins has expanded substantially in recent years. Each of these approaches allows new protein targets to be addressed, leading to advances in biological understanding, new protein-drug conjugates, targeted medical imaging agents and hybrid materials with complex functions. The protein modification reactions in current use vary widely in their inherent site selectivity, overall yields and functional group compatibility. Some are more amenable to large-scale bioconjugate production, and a number of techniques can be used to label a single protein in a complex biological mixture. This review examines the way in which experimental circumstances influence one's selection of an appropriate protein modification strategy. It also provides a simple decision tree that can narrow down the possibilities in many instances. The review concludes with example studies that examine how this decision process has been applied in different contexts.  相似文献   

16.
Heterogeneity of cellular systems has been widely recognized but only recently have tools become available that allow probing of genes and proteins in single cells to understand it. While the advancement in single cell genomic analysis has been greatly aided by the power of amplification techniques (e.g. PCR), analysis of proteins in single cells has proven to be more challenging. However, recent advances in multi-parameter flow cytometry, microscopy, microfluidics and other techniques have made it possible to measure wide variety of proteins in single cells. In this review, we highlight key recent developments in analysis of proteins in a single cell (excluding imaging-based methods), and discuss their significance in biological research.  相似文献   

17.
Yeom KH  Heo I  Lee J  Hohng S  Kim VN  Joo C 《EMBO reports》2011,12(7):690-696
Single-molecule techniques have been used for only a subset of biological problems because of difficulties in studying proteins that require cofactors or post-translational modifications. Here, we present a new method integrating single-molecule fluorescence microscopy and immunopurification to study protein complexes. We used this method to investigate Lin28-mediated microRNA uridylation by TUT4 (terminal uridylyl transferase 4, polyU polymerase), which regulates let-7 microRNA biogenesis. Our real-time analysis of the uridylation by the TUT4 immunoprecipitates suggests that Lin28 functions as a processivity factor of TUT4. Our new technique, SIMPlex (single-molecule approach to immunoprecipitated protein complexes), provides a universal tool to analyse complex proteins at the single-molecule level.  相似文献   

18.
Glycosaminoglycans are long linear and complex polysaccharides that are fundamental components of the mammalian extracellular matrix. Therefore, it is crucial to appropriately characterize molecular structure, dynamics, and interactions of protein-glycosaminoglycans complexes for improving understanding of molecular mechanisms underlying GAG biological function. Nevertheless, this proved challenging experimentally, and theoretical techniques are beneficial to construct new hypotheses and aid the interpretation of experimental data. The scope of this mini-review is to summarize four specific aspects of the current theoretical approaches for investigating noncovalent protein-glycosaminoglycan complexes such as molecular docking, free binding energy calculations, modeling ion impact, and addressing the phenomena of multipose binding of glycosaminoglycans to proteins.  相似文献   

19.
A fundamental challenge associated with chromosomal gene regulation is accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are dynamic structures rather than static systems, as was once believed. Direct data are required in order to understand the dynamics of nucleosomes more clearly and to answer fundamental questions, including: What is the range of nucleosome dynamics? Does a non-ATP-dependent unwrapping process of nucleosomes exist? What are the factors facilitating the large-scale opening and unwrapping of nucleosomes? This review summarizes the results of nucleosome dynamics obtained with time-lapse AFM, including a high-speed version (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale. With HS-AFM, the dynamics of nucleosomes at a sub-second time scale was observed, allowing one to visualize various pathways of nucleosome dynamics, such as sliding and unwrapping, including complete dissociation. Overall, these findings reveal new insights into the dynamics of nucleosomes and the novel mechanisms controlling spontaneous chromatin dynamics.  相似文献   

20.
Structures and functions of the sugar chains of glycoproteins.   总被引:24,自引:0,他引:24  
Most proteins within living organisms contain sugar chains. Recent advancements in cell biology have revealed that many of these sugar chains play important roles as signals for cell-surface recognition phenomena in multi-cellular organisms. In order to elucidate the biological information included in the sugar chains and link them with biology, a novel scientific field called 'glycobiology' has been established. This review will give an outline of the analytical techniques for the structural study of the sugar chains of glycoproteins, the structural characteristics of the sugar chains and the biosynthetic mechanism to produce such characteristics. Based on this knowledge, functional aspects of the sugar chains of glycohormones and of those in the immune system will be described to help others understand this new scientific field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号