首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Mutations in the G-CSF receptor (G-CSFR) in patients with severe congenital neutropenia (SCN) are postulated to contribute to transformation to acute myelogenous leukemia (AML). These mutations result in defective receptor internalization and sustained cellular activation, suggesting a loss of negative signaling by the G-CSFR. In this paper we investigated the roles of SHIP and cytokine-inducible Src homology 2 protein (CIS) in down-modulating G-CSFR signals and demonstrate that loss of their recruitment as a consequence of receptor mutations leads to aberrant signaling. We show that SHIP binds to phosphopeptides corresponding to Tyr744 and Tyr764 in the G-CSFR and that Tyr764 is required for in vivo phosphorylation of SHIP and the formation of SHIP/Shc complexes. Cells expressing a G-CSFR form lacking Tyr764 exhibited hypersensitivity to G-CSF and enhanced proliferation, but to a lesser degree than observed with the most common mutant G-CSFR form in patients with SCN/AML, prompting us to investigate whether suppressor of cytokine signaling proteins also down-modulate G-CSFR signals. G-CSF was found to induce the expression of CIS and of CIS bound to phosphopeptides corresponding to Tyr729 and Tyr744 of the G-CSFR. The expression of CIS was prolonged in cells with the SCN/AML mutant G-CSFR lacking Tyr729 and Tyr744, which also correlated with increased G-CSFR expression. These findings suggest that SHIP and CIS interact with distal phosphotyrosine residues in the G-CSFR to negatively regulate G-CSFR signaling by limiting proliferation and modulating surface expression of the G-CSFR, respectively. Novel therapeutic approaches targeting inhibitory pathways that limit G-CSFR signaling may have promise in the treatment of patients with SCN/AML.  相似文献   

2.
The granulocyte colony-stimulating factor receptor (G-CSFR) is a critical regulator of granulopoiesis. Mutations in the G-CSFR in patients with severe congenital neutropenia (SCN) transforming to acute myelogenous leukemia (AML) have been shown to induce hypersensitivity and enhanced growth responses to G-CSF. Recent studies have demonstrated the importance of the ubiquitin/proteasome system in the initiation of negative signaling by the G-CSFR. To further investigate the role of ubiquitination in regulating G-CSFR signaling, we generated a mutant form of the G-CSFR (K762R/G-CSFR) which abrogates the attachment of ubiquitin to the lysine residue at position 762 of the G-CSFR that is deleted in the Delta716 G-CSFR form isolated from patients with SCN/AML. In response to G-CSF, mono-/polyubiquitination of the G-CSFR was impaired in cells expressing the mutant K762R/G-CSFR compared to cells transfected with the WT G-CSFR. Cells stably transfected with the K762R/G-CSFR displayed a higher proliferation rate, increased sensitivity to G-CSF, and enhanced survival following cytokine depletion, similar to previously published data with the Delta716 G-CSFR mutant. Activation of the signaling molecules Stat5 and Akt were also increased in K762R/G-CSFR transfected cells in response to G-CSF, and their activation remained prolonged after G-CSF withdrawal. These results indicate that ubiquitination is required for regulation of G-CSFR-mediated proliferation and cell survival. Mutations that disrupt G-CSFR ubiquitination at lysine 762 induce aberrant receptor signaling and hyperproliferative responses to G-CSF, which may contribute to leukemic transformation.  相似文献   

3.
4.
5.
Interstitial loss of all or part of the long arm of chromosome 5, or del(5q), is a frequent clonal chromosomal abnormality in human myelodysplastic syndrome (MDS, a preleukemic disorder) and acute myeloid leukemia (AML), and is thought to contribute to the pathogenesis of these diseases by deleting one or more tumor-suppressor genes. Although a major commonly deleted region (CDR) has been delineated on chromosome band 5q31.1 (refs. 3-7), attempts to identify tumor suppressors within this band have been unsuccessful. We focused our analysis of gene expression on RNA from primitive leukemia-initiating cells, which harbor 5q deletions, and analyzed 12 genes within the CDR that are expressed by normal hematopoietic stem cells. Here we show that the gene encoding alpha-catenin (CTNNA1) is expressed at a much lower level in leukemia-initiating stem cells from individuals with AML or MDS with a 5q deletion than in individuals with MDS or AML lacking a 5q deletion or in normal hematopoietic stem cells. Analysis of HL-60 cells, a myeloid leukemia line with deletion of the 5q31 region, showed that the CTNNA1 promoter of the retained allele is suppressed by both methylation and histone deacetylation. Restoration of CTNNA1 expression in HL-60 cells resulted in reduced proliferation and apoptotic cell death. Thus, loss of expression of the alpha-catenin tumor suppressor in hematopoietic stem cells may provide a growth advantage that contributes to human MDS or AML with del(5q).  相似文献   

6.
Granulocyte colony-stimulating factor (G-CSF) is a major regulator of granulopoiesis on engagement with the G-CSF receptor (G-CSFR). The truncated, alternatively spliced, class IV G-CSFR (G-CSFRIV) has been associated with defective differentiation and relapse risk in pediatric acute myeloid leukemia (AML) patients. However, the detailed biological properties of G-CSFRIV in human CD34+ hematopoietic stem and progenitor cells (HSPCs) and the potential leukemogenic mechanism of this receptor remain poorly understood. In the present study, we observed that G-CSFRIV–overexpressing (G-CSFRIV+) HSPCs demonstrated an enhanced proliferative and survival capacity on G-CSF stimulation. Cell cycle analyses showed a higher frequency of G-CSFRIV+ cells in the S and G2/M phase. Also, apoptosis rates were significantly lower in G-CSFRIV+ HSPCs. These findings were shown to be associated with a sustained Stat5 activation and elevated miR-155 expression. In addition, G-CSF showed to further induce G-CSFRIV and miR-155 expression of peripheral blood mononuclear cells isolated from AML patients. A Stat5 pharmacological inhibitor or ribonucleic acid (RNA) interference–mediated silencing of the expression of miR-155 abrogated the aberrant proliferative capacity of the G-CSFRIV+ HSPCs. Hence, the dysregulation of Stat5/miR-155 pathway in the G-CSFRIV+ HSPCs supports their leukemogenic potential. Specific miRNA silencing or the inhibition of Stat5-associated pathways might contribute to preventing the risk of leukemogenesis in G-CSFRIV+ HSPCs. This study may promote the development of a personalized effective antileukemia therapy, in particular for the patients exhibiting higher expression levels of G-CSFRIV, and further highlights the necessity of pre-screening the patients for G-CSFR isoforms expression patterns before G-CSF administration.  相似文献   

7.
Autophagy is a conserved cellular pathway responsible for the sequestration of spent organelles and protein aggregates from the cytoplasm and their delivery into lysosomes for degradation. Autophagy plays an important role in adaptation to starvation, in cell survival, immunity, development and cancer. Recent evidence in mice suggests that autophagic defects in hematopoietic stem cells (HSCs) may be implicated in leukemia. Indeed, mice lacking Atg7 in HSCs develop an atypical myeloproliferation resembling human myelodysplastic syndrome (MDS) progressing to acute myeloid leukemia (AML). Studies suggest that accumulation of damaged mitochondria and reactive oxygen species result in cell death of the majority of progenitor cells and, possibly, concomitant transformation of some surviving ones. Interestingly, bone marrow cells from MDS patients are characterized by mitochondrial abnormalities and increased cell death. A role for autophagy in the transformation to cancer has been proposed in other cancer types. This review focuses on autophagy in human MDS development and progression to AML within the context of the role of mitochondria, apoptosis and reactive oxygen species (ROS) in its pathogenesis.  相似文献   

8.
AML1/RUNX1 point mutations have been identified in myelodysplastic syndrome (MDS) and MDS‐related acute myeloid leukemia (AML), or MDS/AML, and are distributed throughout the full length of AML1/RUNX1. Gene mutation is proposed to be one of the disease‐defining genetic abnormalities of MDS/AML. Most of the mutants lose trans‐activation potential, which leads to a loss of normal function indicating that AML1/RUNX1 dysfunction is one of the major pathogenic mechanisms of MDS/AML. However, N‐terminal in‐frame mutations (Ni‐type) and C‐terminal truncated mutations (Ct‐type) of AML1/RUNX1 show a dominant‐negative effect on the trans‐activation activity, suggesting that these types of mutants may have some oncogenic potential in addition to the loss of normal function. The patients with Ni‐type mutations have hypoplastic marrows with other genetic abnormalities, whereas the patients with Ct‐type mutations display hyperplastic marrows without other mutations. Although biological analysis using a mouse bone marrow transplantation model transduced with Ni‐type of D171N or Ct‐type of S291fsX300 mutants has partially confirmed the oncogenic ability of AML1 mutants, it could not explain the mutant specific clinical features of MDS/AML. Biological analysis using human CD34+ cells revealed that the two types exhibited distinct molecular mechanisms. Ni‐type shows differentiation block without cell growth, but additional BMI‐1‐expression resulted in increased blastic cells. In contrast, Ct‐type itself has proliferation ability. Thus, AML1/RUNX1 mutants play a central role in the pathogenesis of MDS/AML. Both AML1 mutants are initiating factors for MDS‐genesis by inhibiting differentiation of hematopoietic stem cells, and Ni‐type mutant requires acquisition of proliferation ability. J. Cell. Physiol. 220: 16–20, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
We describe several recent advances in our understanding and treatment of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) including the use of cytogenetics to classify these diseases and to identify therapies that are specific for the abnormalities. Cell lines have provided readily available and very relevant models to understand these diseases. The two clear successes include the use of retinoic acid for acute promyelocytic leukemia and tyrosine kinase inhibitors (e.g., imatinib) for chronic myelogenous leukemia. Very recent results suggest a particular activity of lenalidomide, an analogue of thalidomide, in MDS patients with deletions of the long arm of chromosome 5 (so-called 5q minus syndrome), and notable activity of azanucleoside DNA demethylating agents in MDS with loss of chromosome 7. However, for the vast majority of cytogenetic abnormalities found in AML/MDS, no specific therapies have been identified. The use of a variety of molecular biology techniques have identified a large number of genomic abnormalities; the challenge of the next several decades is to identify specific therapies for these molecular defects.  相似文献   

10.
Autophagy is a conserved cellular pathway responsible for the sequestration of spent organelles and protein aggregates from the cytoplasm and their delivery into lysosomes for degradation. Autophagy plays an important role in adaptation to starvation, in cell survival, immunity, development and cancer. Recent evidence in mice suggests that autophagic defects in hematopoietic stem cells (HSCs) may be implicated in leukemia. Indeed, mice lacking Atg7 in HSCs develop an atypical myeloproliferation resembling human myelodysplastic syndrome (MDS) progressing to acute myeloid leukemia (AML). Our studies suggest that accumulation of damaged mitochondria and reactive oxygen species result in cell death of the majority of progenitor cells and, possibly, concomitant transformation of some surviving ones. Interestingly, bone marrow cells from MDS patients are characterized by mitochondrial abnormalities and increased cell death. A role for autophagy in the transformation to cancer has been proposed in other cancer types. This review focuses on autophagy in human MDS development and progression to AML within the context of the role of mitochondria, apoptosis and reactive oxygen species (ROS) in its pathogenesis.Key words: autophagy, mitophagy, Atg7, hematopoiesis, HSCs, myelodysplastic syndrome, acute myeloid leukemia  相似文献   

11.
12.
We applied single nucleotide polymorphism arrays (SNP-A) to study karyotypic abnormalities in patients with atypical myeloproliferative syndromes (MPD), including myeloproliferative/myelodysplastic syndrome overlap both positive and negative for the JAK2 V617F mutation and secondary acute myeloid leukemia (AML). In typical MPD cases (N = 8), which served as a control group, those with a homozygous V617F mutation showed clear uniparental disomy (UPD) of 9p using SNP-A. Consistent with possible genomic instability, in 19/30 MDS/MPD-U patients, we found additional lesions not identified by metaphase cytogenetics. In addition to UPD9p, we also have detected UPD affecting other chromosomes, including 1 (2/30), 11 (4/30), 12 (1/30) and 22 (1/30). Transformation to AML was observed in 8/30 patients. In 5 V617F+ patients who progressed to AML, we show that SNP-A can allow for the detection of two modes of transformation: leukemic blasts evolving from either a wild-type jak2 precursor carrying other acquired chromosomal defects, or from a V617F+ mutant progenitor characterized by UPD9p. SNP-A-based detection of cryptic lesions in MDS/MPD-U may help explain the clinical heterogeneity of this disorder.  相似文献   

13.
《The Journal of cell biology》1993,120(6):1481-1489
To investigate the role of the G-CSF receptor (G-CSFR) in mediating the action of G-CSF, WEHI-3B D+ murine myelomonocytic leukemia cells were transfected with a plasmid containing the murine G-CSFR gene. Overexpression of G-CSFR in transfected clones was demonstrated by northern blotting, binding of [125I]rhG-CSF and cross-linking experiments. A high level of expression of the G-CSFR did not promote or suppress cellular proliferation or initiate differentiation; however, exposure of transfected cells to G-CSF in suspension culture caused a large percentage of the population to enter a differentiation pathway, as determined by two markers of the mature state, the ability of cells to reduce nitroblue tetrazolium (NBT) and to express the differentiation antigen Mac-1 (CD11b) on the cell surface. Thus, upon treatment with 10 ng/ml of G-CSF, 60% or more of transfected cells exhibited NBT positivity; whereas, in contrast, nontransfected cells exhibited only 6% NBT positivity in response to G-CSF. An eightfold increase in Mac-1 expression over that of the parental line was also observed in transfected cells exposed to G-CSF. The growth rate of the transfected clones was decreased by exposure to G-CSF, presumably due to terminal differentiation. The findings suggest that the predominant function of G-CSF and its receptor in WEHI-3B D+ cells is to mediate differentiation and that the level of the G-CSFR portion of the signal transduction mechanism in this malignant cell line is important for a response to the maturation inducing function of the cytokine.  相似文献   

14.
The regimen of cytarabine, aclarubicin and G-CSF (CAG) has been widely used in China and Japan for treatment of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). We searched literature on CAG between 1995 and 2010 and performed a meta-analysis to determine its overall efficacy using a random-effects or fixed-effects model. Thirty five trials with a total of 1029 AML (n = 814) and MDS (n = 215) patients were included for analysis. The CR rate of AML (57.9%) was significantly higher than that of MDS (45.7%) (p < 0.01). No difference in CR was noted between the new (56.7%) and relapsed/refractory AML (60.1%) (p > 0.05). The CR rate was also significantly higher in patients with favorable (64.5%) and intermediate (69.6%) karyotypes than those with unfavorable one (29.5%) (p < 0.05). Remarkably, the CR rate of CAG was significantly higher than those of non-CAG regimens (odds ratio 2.43). CAG regimen was well tolerated, with cardiotoxicity in 2.3% and early death in 5.2% of the cases. In conclusion, CAG regimen was an effective and safe regimen for the treatment of AML, and may be more effective than non-CAG regimens. Randomized controlled trials are strongly recommended to evaluate its efficacy and safety in comparison with the current standard treatment.  相似文献   

15.
Monosomy 7 and interstitial deletions in the long arm of chromosome 7 (−7/7q−) is a common nonrandom chromosomal abnormality found frequently in myeloid disorders including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and juvenile myelomonocytic leukemia (JMML). Using a short probe-based microarray comparative genomic hybridization (mCGH) technology, we identified a common microdeletion cluster in 7q21.3 subband, which is adjacent to ‘hot deletion region’ thus far identified by conventional methods. This common microdeletion cluster contains three poorly characterized genes; Samd9, Samd9L, and a putative gene LOC253012, which we named Miki. Gene copy number assessment of three genes by real-time PCR revealed heterozygous deletion of these three genes in adult patients with AML and MDS at high frequency, in addition to JMML patients. Miki locates to mitotic spindles and centrosomes and downregulation of Miki by RNA interference induced abnormalities in mitosis and nuclear morphology, similar to myelodysplasia. In addition, a recent report indicated Samd9 as a tumor suppressor. These findings indicate the usefulness of the short probe-based CGH to detect microdeletions. The three genes located to 7q21.3 would be candidates for myeloid tumor-suppressor genes on 7q.  相似文献   

16.
Lin J  Yao DM  Qian J  Chen Q  Qian W  Li Y  Yang J  Wang CZ  Chai HY  Qian Z  Xiao GF  Xu WR 《PloS one》2011,6(10):e26906
Somatic mutations of DNMT3A gene have recently been reported in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). We examined the entire coding sequences of DNMT3A gene by high-resolution melting analysis and sequencing in Chinese patients with myeloid malignancies. R882 mutations were found in 12/182 AML and in 4/51 MDS, but not in either 79 chronic myeloid leukemia (CML), or 57 myeloproliferative neoplasms (MPNs), or 4 chronic monomyelocytic leukemia. No other DNMT3A mutations were detected in all patients. R882 mutations were associated with old age and more frequently present in monoblastic leukemia (M4 and M5, 7/52) compared to other subtypes (5/130). Furthermore, 14/16 (86.6%) R882 mutations were observed in patients with normal karyotypes. The overall survival of mutated MDS patients was shorter than those without mutation (median 9 and 25 months, respectively). We conclude that DNMT3A R882 mutations are recurrent molecular aberrations in AML and MDS, and may be an adverse prognostic event in MDS.  相似文献   

17.
18.
19.
RUNX1/AML1 point mutations have been identified in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients. A heterozygous germline mutation of the RUNX1 gene causes a familial platelet disorder with a predisposition to AML. RUNX1 mutations have also been detected with high frequency in minimally differentiated AML M0 subtypes and myelodysplastic/myeloproliferative neoplasms. Here we propose a new disease category of myelodysplastic neoplasms (MDN) consisting of MDS refractory anemia with excess blasts and AML with myelodysplasia-related changes, including therapy-related cases. RUNX1 mutations have been detected in about 20% of patients with "MDN". Among the MDN cases, histories of radiation exposure, therapy-related myeloid neoplasms after successful treatment for acute promyelocytic leukemia, and leukemic transformation of myeloproliferative neoplasms have been reported to have a strong association with RUNX1 mutations. The mutations occur in a normal, a receptive, or a disease-committed hematopoietic stem cell. It is suspected that the "MDN" phenotypes are defined by the RUNX1 mutations in addition to some other abnormalities.  相似文献   

20.
Although the kinase receptor TrkA may play an important role in acute myeloid leukemia (AML), its involvement in other types of leukemia has not been reported. Furthermore, how it contributes to leukemogenesis is unknown. Here, we describe a molecular network that is important for TrkA function in leukemogenesis. We found that TrkA is frequently overexpressed in other types of leukemia such as acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), and myelodysplastic syndrome (MDS) including AML. In addition, TrkA was overexpressed in patients with MDS or secondary AML evolving from MDS. TrkA induced significant hematological malignancies by inducing PLK-1 and Twist-1, and enhanced survival and proliferation of leukemia, which was correlated with activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway. Moreover, endogenous TrkA associated with c-Src complexes was detected in leukemia. Suppression of c-Src activation by TrkA resulted in markedly decreased expression of PLK-1 and Twist-1 via suppressed activation of Akt/mTOR cascades. These data suggest that TrkA plays a key role in leukemogenesis and reveal an unexpected physiological role for TrkA in the pathogenesis of leukemia. These data have important implications for understanding various hematological malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号