首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Importance of estrogen sulfates in breast cancer   总被引:10,自引:0,他引:10  
Estrogen sulfates are quantitatively the most important form of circulating estrogens during the menstrual cycle and in the post-menopausal period. Huge quantities of estrone sulfate and estradiol sulfate are found in the breast tissues of patients with mammary carcinoma. It has been demonstrated that different estrogen-3-sulfates (estrone-3-sulfate, estradiol-3-sulfate, estriol-3-sulfate) can provoke important biological responses in different mammary cancer cell lines: there is a significant increase in progesterone receptor. On the other hand, no significant effect was observed with estrogen-17-sulfates. The reason for the biological response of estrogen-3-sulfates is that these sulfates are hydrolyzed, and no sulfatase activity for C17-sulfates is present in these cell lines. [3H]Estrone sulfate is converted in a very high percentage to estradiol (E2) in different hormone-dependent mammary cancer cell lines (MCF-7, R-27, T-47D), but very little or no conversion was found in the hormone-independent mammary cancer cell lines (MDA-MB-231, MDA-MB-436). Different anti-estrogens (tamoxifen and derivatives) and another potent anti-estrogen: ICI 164,384, decrease the concentration of estradiol very significantly after incubation of estrone sulfate with the different hormone-dependent mammary cancer cell lines. No significant effect was observed for the uptake and conversion of estrone sulfate in the hormone-independent mammary cancer cell lines. Progesterone provokes an important decrease in the uptake and in estradiol levels after incubation of [3H]estrone sulfate with the MCF-7 cells. It is concluded that in breast cancer: (1) Estrogen sulfates can play an important role in the biological response of estrogens; (2) Anti-estrogens and progesterone significantly decrease the uptake and estradiol levels in hormone-dependent mammary cancer cell lines; (3) The control of the sulfatase and 17 beta-hydroxysteroid dehydrogenase activities, which are key steps in the formation of estradiol in the breast, can open new possibilities in the treatment of hormone-dependent mammary cancer.  相似文献   

2.
Although ovaries serve as the primary source of estrogen for pre-menopausal women, after menopause estrogen biosynthesis from circulating precursors occurs in peripheral tissues by the action of several enzymes, 17beta-hydroxysteroid dehydrogenase 1 (17beta-HSD1), aromatase and estrogen sulfatase. In the breast, both normal and tumoral tissues have been shown to be capable of synthesizing estrogens, and this local estrogen production can be implicated in the development of breast tumors. In these tissues, estradiol (E(2)) can be synthesized by three pathways: (1) estrone sulfatase transforms estrogen sulfates into bioactive estrogens, (2) 17beta-HSD1 converts estrone (E(1)) into E(2), (3) aromatase which converts androgens into estrogens is also present and contributes to the in situ synthesis of active estrogens but to a far lesser extent than estrone sulfatase. Quantitative assessment of E(2) formation in human breast tumors indicates that metabolism of estrone sulfate (E(1)S) via the sulfatase pathway produces 100-500 times more E(2) than androgen aromatization. Breast tissue also possesses the estrogen sulfotransferase involved in the conversion of estrogens into their sulfates that are biologically inactive. In the present review, we summarized the action of the 19-nor-progestin nomegestrol acetate (NOMAC) on the sulfatase, 17beta-HSD1 and sulfotransferase activities in the hormone-dependent MCF-7 and T47-D human breast cancer cell lines. Using physiological doses of substrates NOMAC blocks very significantly the conversion of E(1)S to E(2). It inhibits the transformation of E(1) to E(2). NOMAC has a stimulatory effect on sulfotransferase activity in both cell lines, with a strong stimulating effect at low doses but only a weak effect at high concentrations. The effects on the three enzymes are always stronger in the progesterone-receptor rich T47-D cell line as compared with the MCF-7 cell line. Besides, no effect is found for NOMAC on the transformation of androstenedione to E(1) in the aromatase-rich choriocarcinoma cell line JEG-3. In conclusion, the inhibitory effect provoked by NOMAC on the enzymes involved in the biosynthesis of E(2) (sulfatase and 17HSD pathways) in estrogen-dependent breast cancer, as well as the stimulatory effect on the formation of the inactive E(1)S, can open attractive perspectives for future clinical trials.  相似文献   

3.
Progestins and breast cancer   总被引:1,自引:0,他引:1  
In the last years there has been an extraordinary development in the synthesis of new progestins. These compounds are classified, in agreement with their structure, in various groups which include progesterone, retroprogesterones, 17-hydroxyprogesterones, 19-norprogesterones, 17-hydroxyprogesterone derivatives, androstane and estrane derivatives. The action of progestins is a function of many factors: its structure, affinity to the progesterone receptor or to other steroid receptors, the target tissue considered, the biological response, the experimental conditions, dose, and metabolic transformation. The information on the action of progestins in breast cancer patients is very limited. Positive response with the progestins: medroxyprogesterone acetate and megestrol acetate was obtained in post-menopausal patients with advanced breast cancer. However, extensive information on the effect of progestins was obtained in in vitro studies using hormone-dependent and hormone-independent human mammary cancer cell lines. It was demonstrated that in the hormone-dependent breast cancer cells, various progestins (nomegestrol acetate, tibolone, medrogestone, promegestone) are potent sulfatase inhibitory agents. The progestins can also involve the inhibition of mRNA of this enzyme. In another series of studies it was also demonstrated that various progestins are very active in inhibiting the 17β-hydroxysteroid dehydrogenase for the conversion of estrone to estradiol. More recently it was observed that the progestins promegestone or medrogestone stimulate the sulfotransferase for the formation of estrogen sulfates. Consequently, the blockage in the formation of estradiol via sulfatase, or the stimulatory effect on sulfotransferase activity, by progestins can open interesting and new possibilities in clinical applications in breast cancer.  相似文献   

4.
5.
The great majority of breast cancers are in their early stage hormone-dependent and it is well accepted that estradiol (E2) plays an important role in the genesis and evolution of this tumor. Human breast cancer tissues contain all the enzymes: estrone sulfatase, 17β-hydroxysteroid dehydrogenase, aromatase involved in the last steps of E2 bioformation. Sulfotransferases which convert estrogens into the biologically inactive estrogen sulfates are also present in this tissue. Quantitative data show that the ‘sulfatase pathway’, which transforms estrogen sulfates into the bioactive unconjugated E2, is 100–500 times higher than the ‘aromatase pathway’, which converts androgens into estrogens.

The treatment of breast cancer patients with anti-aromatases is largely developed with very positive results. However, the formation of E2 via the ‘sulfatase pathway’ is very important in the breast cancer tissue. In recent years it was found that antiestrogens (e.g. tamoxifen, 4-hydroxytamoxifen), various progestins (e.g. promegestone, nomegestrol acetate, medrogestone, dydrogesterone, norelgestromin), tibolone and its metabolites, as well as other steroidal (e.g. sulfamates) and non-steroidal compounds, are potent sulfatase inhibitors. In another series of studies, it was found that E2 itself has a strong anti-sulfatase action. This paradoxical effect of E2 adds a new biological response of this hormone and could be related to estrogen replacement therapy in which it was observed to have either no effect or to decrease breast cancer mortality in postmenopausal women. Interesting information is that high expression of steroid sulfatase mRNA predicts a poor prognosis in patients with +ER. These progestins, as well as tibolone, can also block the conversion of estrone to estradiol by the inhibition of the 17β-hydroxysteroid dehydrogenase type I (17β-HSD-1). High expressison of 17β-HSD-1 can be an indicator of adverse prognosis in ER-positive patients.

It was shown that nomegestrol acetate, medrogestone, promegestone or tibolone, could stimulate the sulfotransferase activity for the local production of estrogen sulfates. This is an important point in the physiopathology of this disease, as it is well known that estrogen sulfates are biologically inactive. A possible correlation between this stimulatory effect on sulfotransferase activity and breast cancer cell proliferation is presented. In agreement with all this information, we have proposed the concept of selective estrogen enzyme modulators (SEEM).

In conclusion, the blockage in the formation of estradiol via sulfatase, or the stimulatory effect on sulfotransferase activity in combination with anti-aromatases can open interesting and new possibilities in clinical applications in breast cancer.  相似文献   


6.
Selcer KW  Kabler H  Sarap J  Xiao Z  Li PK 《Steroids》2002,67(10):821-826
The enzyme steryl sulfatase may help support the growth of hormone-dependent tumors, including prostate cancers, by facilitating the conversion of circulating precursor steroids to active hormones. We sought to determine the presence of steryl sulfatase activity in the androgen-dependent human prostate cancer cell line LNCaP, and to determine if this activity was inhibited by known steryl sulfatase inhibitors. Intact LNCaP cultures had steryl sulfatase activity, as determined by conversion of [3H]estrone sulfate (E(1)S) to unconjugated steroids. The level of steryl sulfatase activity was relatively low (4.6 pmol/18 h/million cells) compared to MDA-MB-231 breast cancer cells (284.0 pmol/18 h/million cells). The observed activity in both cell lines was blocked by addition of 1 microM estrone sulfamate (EMATE), an active-site-directed, steroidal inhibitor of steryl sulfatase. Steryl sulfatase activity was also inhibited by Danazol, and by (p-O-sulfamoyl)-tetradecanoyl tyramine (C2-14), a non-steroidal inhibitor. Microsomes prepared from LNCaP cultures also showed steryl sulfatase activity, as determined by hydrolysis of [3H]E(1)S and [3H]dehydroepiandrosterone sulfate (DHEAS) to unconjugated forms. LNCaP and MDA-MB-231 microsomes both hydrolyzed E(1)S about two times faster than DHEAS. Hydrolysis of E(1)S in LNCaP and MDA-MB-231 microsomes was blocked by steryl sulfatase inhibitors with the following relative potencies: EMATE>C2-14>Danazol. These data demonstrate that LNCaP prostate cancer cells contain a steryl sulfatase with properties similar to that found in human breast cancer cells, and that the activity of this enzyme can be blocked by known steryl sulfatase inhibitors. Steryl sulfatase inhibitors may be useful as an adjuvant to androgen deprivation therapy for prostate cancer.  相似文献   

7.
The great majority of breast cancers are in their early stage hormone-dependent and it is well accepted that estradiol (E(2)) plays an important role in the genesis and evolution of this tumor. Human breast cancer tissues contain all the enzymes: estrone sulfatase, 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD), aromatase, involved in the last steps of E(2) bioformation in this tissue. Quantitative data show that the 'sulfatase pathway', which transforms estrogen sulfates into the bioactive unconjugated E(2), is 100-500 times higher than the 'aromatase pathway' which converts androgens into estrogens. In this paper we explore the effect of E(2) on the sulfatase activity using two hormone-dependent human breast cancer cells: MCF-7 and T-47D. The action of E(2) on the sulfatase activity was evaluated by the conversion of estrone sulfate (E(1)S) into E(2). The cells were incubated in Minimal Essential Medium (MEM) containing 5% steroid-depleted fetal calf serum and incubated with physiological concentrations of [(3)H]E(1)S (5 x 10(-9) M) alone (control) or in the presence of E(2) (5 x 10(-10) to 5 x 10(-5) M) for 24 h at 37 degrees C. It was found that E(2) is a potent inhibitory agent of the estrone sulfatase activity in both cell lines. A low concentration of E(2): 5 x 10(-9) M decreases the sulfatase activity by 67% in MCF-7 cells and 57% in T-47D cells. More than 80% of the decrease in the formation of E(2) was obtained with the dose of 5 x 10(-7) M in both cell lines. It is concluded that this paradoxical effect of E(2) adds a new biological response of this hormone and could be related to estrogen replacement therapy in which it was observed to have either no effect or to decrease breast cancer mortality in postmenopausal women. Preliminary results are indicated in the Proceedings of the 14th International Symposium of the Journal of Steroid Biochemistry & Molecular Biology (Quebec, Canada, 24-27 June 2000) [J. Steroid Biochem. Molec. Biol. 76 (2001) 95-104](1) and presented at the 83rd Annual Meeting of the Endocrine Society (Denver, USA, 20-23 June 2001 (abstract no. P2-615).  相似文献   

8.
The presence of estrone sulfatase in breast tumors and the high levels of circulating estrone sulfate may contribute the major portion of estrogen synthesized locally in breast tissues through conversion of estrone sulfate to estrone by the enzyme. Using inhibitors of estrone sulfatase for the treatment of estrogen-dependent (estrogen receptor positive, ER(+)) breast cancer could be a very effective therapeutic strategy for the treatment of estrogen-dependent breast tumors in postmenopausal women. Therefore, we designed and synthesized several steroidal 2',3'-oxathiazines that inhibit estrone sulfatase and have greatly reduced estrogenic side effects. Our in vitro studies indicate that the oxathiazine compounds have inhibitory activity on estrone sulfatase in MCF-7 human breast cancer cells. These estrone sulfatase inhibitors (ESIs) also inhibit the growth of MCF-7 cells induced by estrone sulfate. In addition, our in vivo experiments demonstrate that our ESIs have moderate antitumor activity against MCF-7 breast cancer xenografts in Balb/c athymic nude mice. The synthesis and biological activity of a number of these unique steroidal ESIs are described.  相似文献   

9.
In postmenopausal breast cancer tissue, steroid sulfatase (STS) activity is high and much estrone sulfate also exists; these facts reveal that estrone sulfate may be involved in the growth of breast cancer as an estrogen source. Steroid sulfatase is an enzyme, which catalyzes hydrolysis from estrone sulfate to estrone, and the development of steroid sulfatase inhibitors is expected as novel therapeutic drugs for postmenopausal breast cancer. We have developed a novel compound 2',4'-dicyanobiphenyl-4-O-sulfamate (TZS-8478), which has potent steroid sulfatase-inhibitory activity and exhibits no estrogenicity in vitro and in vivo. To elucidate its usefulness as a therapeutic drug for postmenopausal breast cancer, we examined the breast cancer cell proliferation- and breast tumor growth-inhibitory activity of TZS-8478 in postmenopausal breast cancer model rats. TZS-8478 dose-dependently suppressed the estrone sulfate-stimulated proliferation of MCF-7 cells. Regarding nitrosomethylurea (NMU)-induced postmenopausal breast cancer models, furthermore, TZS-8478 (0.5 mg/kg per day) markedly inhibited the estrone sulfate-stimulated growth of breast tumors similarly to estrone sulfate-depletion. TZS-8478 completely inhibited steroid sulfatase activity in tumor, uterus and liver, and also markedly lowered plasma concentrations of estrone and estradiol. The above mentioned results suggested that TZS-8478 may be useful as a therapeutic drug for estrogen-dependent postmenopausal breast cancer.  相似文献   

10.
The evaluation of estrogens (estrone, estradiol, and their sulfates) in the breast tissue of post-menopausal patients with breast cancer indicates high levels, particularly of estrone sulfate (E1 S) which is 15–25 times higher than in the plasma. Breast cancer tissue contains the enzymes necessary for local synthesis of estradiol and it was demonstrated that, despite the presence of the sulfatase and its messenger in hormone-dependent and hormone-independent breast cancer cells, this enzyme operates particularly in hormone-dependent cells. Different progestins: Nomegestrol acetate, Promegestone, progesterone, as well as Danazol, can block the conversion of E1 S to E2 very strongly in hormone-dependent breast cancer cells. The last step in the formation of estradiol is the conversion of E1 to this estrogen by the action of 17β-hydroxysteroid dehydrogenase. This activity is preferentially in the reductive direction (formation of E2) in hormone-dependent cells, but oxidative (E2 → E1) in hormone-independent cells. Using intact hormone-dependent cells it was observed that Nomegestrol acetate can block the conversion of E1 to E2. It is concluded, firstly, that in addition to ER mutants other factors are involved in the transformation of hormone-dependent breast cancer to hormone-independent, this concerns the enzymatic activity in the formation of E2; it is suggested that stimulatory or repressive factor(s) involved in the enzyme activity are implicated as the cancer evolves to hormone-independence; secondly, different drugs can block the conversion of E1 S to E2. Clinical trials of these “anti-enzyme” substances in breast cancer patients could be the next step to investigate new therapeutic possibilities for this disease.  相似文献   

11.
In the present study, we explored the effect of the progestin medrogestone on the sulfatase and sulfotransferase activities in the hormone-dependent MCF-7 and T-47D human breast cancer cell lines. After 24 h incubation at 37 degrees C of physiological concentrations of estrone sulfate ([3H]-E1S: 5x10(-9) mol/l), it was observed that this estrogen was converted in a great proportion to E2 in both cell lines. Medrogestone significantly inhibits this transformation, at all the concentrations tested (5x10(-8) to 5x10(-5) mol/l), in both cell lines. The IC50 values were 1.93 micromol/l and 0.21 micromol/l in MCF-7 and T-47D cells, respectively. In another series of studies, after 24 h incubation at 37 degrees C of physiological concentrations of estrone ([3H]-E1: 5x10(-9) mol/l), the sulfotransferase activity was detectable in both cell lines. Estrogen sulfates (ES) are found exclusively in the culture medium, which suggests that as soon as they are formed they are excreted into the medium. Medrogestone has a biphasic effect on sulfotransferase activity in both cell lines. At low doses: 5x10(-8) and 5x10(-7) mol/l, this compound stimulates the enzyme by +73.5 and 52.7%, respectively, in MCF-7, and by 84.5 and 62.6% in T-47D cells. At high concentrations: 5x10(-6) and 5x10(-5) mol/l, medrogestone has no effect on MCF-7 cells, but inhibits the sulfotransferase activity in T-47D cells by -31.4% at 5x10(-5) mol/l. In conclusion, the inhibitory effect provoked by medrogestone on the enzyme involved in the biosynthesis of E2 (sulfatase pathway) in estrogen-dependent breast cancer, as well as the stimulatory effect on the formation of the inactive ES, support a probable anti-proliferative effect of this progestin in breast tissue. Clinical applications of these findings can open new therapeutic possibilities for this disease.  相似文献   

12.
The selective estrogen enzyme modulators in breast cancer: a review   总被引:13,自引:0,他引:13  
It is well established that increased exposure to estradiol (E(2)) is an important risk factor for the genesis and evolution of breast tumors, most of which (approximately 95-97%) in their early stage are estrogen-sensitive. However, two thirds of breast cancers occur during the postmenopausal period when the ovaries have ceased to be functional. Despite the low levels of circulating estrogens, the tissular concentrations of these hormones are significantly higher than those found in the plasma or in the area of the breast considered as normal tissue, suggesting a specific tumoral biosynthesis and accumulation of these hormones. Several factors could be implicated in this process, including higher uptake of steroids from plasma and local formation of the potent E(2) by the breast cancer tissue itself. This information extends the concept of 'intracrinology' where a hormone can have its biological response in the same organ where it is produced. There is substantial information that mammary cancer tissue contains all the enzymes responsible for the local biosynthesis of E(2) from circulating precursors. Two principal pathways are implicated in the last steps of E(2) formation in breast cancer tissues: the 'aromatase pathway' which transforms androgens into estrogens, and the 'sulfatase pathway' which converts estrone sulfate (E(1)S) into E(1) by the estrone-sulfatase. The final step of steroidogenesis is the conversion of the weak E(1) to the potent biologically active E(2) by the action of a reductive 17beta-hydroxysteroid dehydrogenase type 1 activity (17beta-HSD-1). Quantitative evaluation indicates that in human breast tumor E(1)S 'via sulfatase' is a much more likely precursor for E(2) than is androgens 'via aromatase'. Human breast cancer tissue contains all the enzymes (estrone sulfatase, 17beta-hydroxysteroid dehydrogenase, aromatase) involved in the last steps of E(2) biosynthesis. This tissue also contains sulfotransferase for the formation of the biologically inactive estrogen sulfates. In recent years, it was demonstrated that various progestins (promegestone, nomegestrol acetate, medrogestone, dydrogesterone, norelgestromin), tibolone and its metabolites, as well as other steroidal (e.g. sulfamates) and non-steroidal compounds, are potent sulfatase inhibitors. Various progestins can also block 17beta-hydroxysteroid dehydrogenase activities. In other studies, it was shown that medrogestone, nomegestrol acetate, promegestone or tibolone can stimulate the sulfotransferase activity for the local production of estrogen sulfates. All these data, in addition to numerous agents which can block the aromatase action, lead to the new concept of 'Selective Estrogen Enzyme Modulators' (SEEM) which can largely apply to breast cancer tissue. The exploration of various progestins and other active agents in trials with breast cancer patients, showing an inhibitory effect on sulfatase and 17beta-hydroxysteroid dehydrogenase, or a stimulatory effect on sulfotransferase and consequently on the levels of tissular levels of E(2), will provide a new possibility in the treatment of this disease.  相似文献   

13.
Estrogen levels in breast tumors of postmenopausal women are as much as 10 times higher than estrogen levels in plasma, presumably due to in situ formation of estrogen. The major source of estrogen in breast cancer cells may be conversion of estrone sulfate to estrone by the enzyme estrone sulfatase. Thus, inhibitors of estrone sulfatase are potential agents for treatment of estrogen-dependent breast cancer. Several steroidal compounds have been developed that are potent estrone sulfatase inhibitors, most notably estrone-3-O-sulfamate. However, these compounds and their metabolites may have undesired effects, including estrogenicity. To avoid the problems associated with a potentially active steroid nucleus, we designed and synthesized a series of nonsteroidal estrone sulfatase inhibitors, the (p-O-sulfamoyl)-N-alkanoyl phenylalkyl amines. The compounds synthesized vary in the length of their alkanoyl chain and in the number of carbons separating the phenyl ring and the carbonyl carbon. The ability of these compounds to inhibit estrone sulfatase activity was tested using human placental microsomes and intact cultured human breast cancer cells. Estrogenicity was also evaluated, using growth of estrogen-dependent human breast cancer cells. All of the test compounds inhibited estrone sulfatase activity of human placental microsomes to some extent, with the most effective compound having an IC50 value of 72 nM. In general, compounds with longer alkanoyl chains (12-14 carbons) were more effective than those with shorter chains. The test compounds also inhibited estrone sulfatase activity in intact cultures of MDA-MB-231 human breast cancer cells. Again, the longer chain compounds were more effective. In both the placental and breast cancer cell sulfatase assays, the optimal distance between the phenyl ring and the carbonyl carbon was 1-2 carbons. The MCF-7 cell proliferation assay revealed that estrone and estrone-3-O-sulfamate were both estrogenic, but the (p-O-sulfamoyl)-N-alkanoyl phenylalkyl amines were not. Our data indicate the utility of (p-O-sulfamoyl)-N-alkanoyl phenyl alkylamines for inhibition of estrone sulfatase activity. Furthermore, our data support the concept that nonsteroidal estrone sulfatase inhibitors may be useful as therapeutic agents for estrogen-dependent breast cancers.  相似文献   

14.
The selective estrogen enzyme modulator (SEEM) in breast cancer   总被引:6,自引:0,他引:6  
Human breast cancer tissue contains all the enzymes (estrone sulfatase, 17β-hydroxysteroid dehydrogenase, aromatase) involved in the last steps of estradiol biosynthesis. This tissue also contains sulfotransferase for the formation of the biologically inactive estrogen sulfates. In the last years, it was demonstrated that various progestins (promegestone, nomegestrol acetate, medrogestone), as well as tibolone and its metabolites are potent inhibitors of sulfatase and 17β-hydroxysteroid dehydrogenase activities. It was also shown that medrogestone, nomegestrol acetate, promegestone or tibolone can stimulate the sulfotransferase activity for the local production of estrogen sulfates. All these data, in addition to numerous agents, which can block the aromatase action, lead to the new concept of selective estrogen enzyme modulators (SEEM), which can largely apply to breast cancer tissue. The exploration of various progestins and other active agents in trials with breast cancer patients, showing an inhibitory effect on sulfatase and 17β-hydroxysteroid dehydrogenase, or a stimulatory effect on sulfotransferase, will provide a new possibility in the treatment of this disease.  相似文献   

15.
Estrone sulfate (E1-S) has been shown to be quantitatively the most important estrogen in peripheral blood. But, the physiological and/or pathological role of E1-S is not yet clarified. At present, we tried to clarify it using tissue cultures. In tissue cultures of human endometrium, secretory endometrium showed higher activity of estrone sulfatase (E1----E1-S) than proliferative endometrium. Progesterone added in the medium induced an increase of estrone sulfotransferase in the proliferative endometrium. The results suggest a reducing effect of estrogen by progesterone in secretory endometrium in physiological conditions. Estrogen dependent malignant tumors (breast cancer, endometrial cancer) have high estrone sulfatase. It converts E1-S to E1 (----E2) which are abundant in these tumors. Ishikawa cell line increased estrone sulfotransferase activity with progesterone, somewhat like the physiological conditions. From out study in vivo, there is a possibility of some ameliorative effects of E1-S on the central nervous system of patients with senile dementia (Alzheimer's type). Effects of E1-S on central nerves were investigated using tissue cultures.  相似文献   

16.
Human breast cancer tissue contains enzymes (estrone sulfatase, 17beta-hydroxysteroid dehydrogenase, aromatase) involved in the last steps of estradiol (E(2)) formation. In this tissue, E(2) can be synthesized by two main pathways: (1) sulfatase-transforms estrogen sulfates into bioactive E(2), and the (2) aromatase-converts androgens into estrogens. Quantitative assessment of E(2) formation in human breast tumors indicates that metabolism of estrone sulfate (E(1)S) via the sulfatase pathway produces 100-500 times more E(2) than androgen aromatization.In the present study, we demonstrated in T-47D and MCF-7 human breast cancer cells that norelgestromin (NGMN) (a metabolite of norgestimate) is a potent inhibitory agent of the estrone sulfatase activity. After 24h incubation of physiological concentrations of E(1)S (5 x 10(-9)mol/l) the inhibitory effect of NGMN at concentrations of 5 x 10(-9), 5 x 10(-7) and 5 x 10(-5)mol/l was 43+/-7, 74+/-4 and 97+/-2%, respectively, in T-47D cells; 25+/-4, 57+/-5 and 96+/-2% respectively, in MCF-7 cells. Comparative studies using medroxyprogesterone acetate (MPA) showed that this progestin also has an inhibitory effect on sulfatase activity, but significantly less intense than that of NGMN. The inhibition for MPA at concentrations of 5 x 10(-9), 5 x 10(-7) and 5 x 10(-5)mol/l was 31+/-5, 47+/-3 and 61+/-3%, respectively, for T-47D cells; 6+/-3, 20+/-3 and 63+/-4%, respectively, for MCF-7 cells.In conclusion, the present data show that NGMN is a very potent inhibitory agent for sulfatase activity in the hormone-dependent breast cancer cells, resulting in decreased tissue concentration of E(2). The clinical significance of this finding remains to be elucidated.  相似文献   

17.
Despite the dramatic fall in plasma estrogen levels at menopause, only minor differences in breast tissue estrogen levels have been reported comparing pre- and postmenopausal women. Thus, postmenopausal breast tissue has the ability to maintain concentrations of estrone (E1) and estradiol (E2) that are 2–10- and 10–20-fold higher than the corresponding plasma estrogen levels. This finding may be explained by uptake of estrogens from the circulation and/or local estrogen production. Local aromatase activity in breast tissue seems to be of crucial importance for the local estrogen production in some patients while uptake from the circulation may be more important in other patients. Beside aromatase, breast tissue expresses estrogen sulfotransferase and sulfatase as well as dehydrogenase activity, allowing estrogen storage and release in the cells as well as conversions between estrone and estradiol. The activity of the enzyme network in breast cancer tissue is modified by a variety of factors like growth factors and cytokines. Aromatase inhibitors have been used for more than two decades in the treatment of postmenopausal metastatic breast cancer and are currently investigated in the adjuvant treatment and even prevention of breast cancer. Novel aromatase inhibitors and inactivators have been shown to suppress plasma estrogen levels effectively in postmenopausal breast cancer patients. However, knowledge about the influence of these drugs on estrogen levels in breast cancer tissue is limited. Using a novel HPLC-RIA method developed for the determination of breast tissue estrogen concentrations, we measured tissue E1, E2 and estrone sulfate (E1S) levels in postmenopausal breast cancer patients before and during treatment with anastrozole. Our findings revealed high breast tumor tissue estrogen concentrations that were effectively decreased by anastrozole. While E1S was the dominating estrogen fraction in the plasma, estradiol was the estrogen fraction with the highest concentration in tumor tissue. Moreover, plasma estrogen levels did not correlate with tissue estrogen concentrations. The overall experience with aromatase inhibitors and inactivators concerning their influences on breast tissue estrogen concentrations is summarized.  相似文献   

18.
Sulfatase enzymes have important roles in metabolism of steroid hormones and of glycosaminoglycans (GAGs). The activity of five sulfatase enzymes, including steroid sulfatase (STS; arylsulfatase C), arylsulfatase A (ASA; cerebroside sulfatase), arylsulfatase B (ASB; N-acetylgalactosamine-4-sulfatase), galactose-6-sulfatase (GALNS), and iduronate-2-sulfatase (IDS), was compared in six different mammary cell lines, including the malignant mammary cell lines MCF7, T47D, and HCC1937, the MCF10A cell line which is associated with fibrocystic disease, and in primary epithelial and myoepithelial cell lines established from reduction mammoplasty. The effects of estrogen hormones, including estrone, estradiol, estrone 3-sulfate, and estradiol sulfate on activity of these sulfatases were determined. The malignant cell lines MCF7 and T47D had markedly less activity of STS, ASB, ASA, and GAL6S, but not IDS. The primary myoepithelial cells had highest activity of STS and ASB, and the normal epithelial cells had highest activity of GALNS and ASA. Greater declines in sulfatase activity occurred in response to estrone and estradiol than sulfated estrogens. The study findings demonstrated marked variation in sulfatase activity and in effects of exogenous estrogens on sulfatase activity among the different mammary cell types.  相似文献   

19.
Estradiol (E2) is one of the most important hormones supporting the growth and evolution of breast cancer. Consequently, to block this hormone before it enters the cancer cell, or in the cell itself, has been one of the main targets in recent years. In the present study we explored the effect of Medrogestone (Prothil) on 17beta-hydroxysteroid dehydrogenase (17beta-HSD) activities of the hormone-dependent MCF-7 and T-47D human breast cancer cell lines. Using physiological doses of estrone ([3H]-E1: 5 x 10(-9) mol/l) this estrogen is converted in a great proportion to E2 in both cell lines. After 24 h of the cell culture, Medrogestone significantly inhibits this transformation in a dose-dependent manner by 39% and 80% at 5 x 10(-8) M and 5 x 10(-5) M, respectively in T-47D cells; the effect is less intense in MCF-7 cells: 25% and 55% respectively. The IC50 values are 0.45 micromol/l in T-47D and 17.36 micromol/l in MCF-7 cells. It is concluded that the inhibition provoked by Medrogestone on the reductive 17beta-HSD activity involved in the local biosynthesis of the biologically active estrogen estradiol, may constitute a new therapeutic approach for the treatment of breast cancer.  相似文献   

20.
The activities of estrogen sulfotransferase, estrogen sulfatase and estradiol 17β-dehydrogenase change considerably in the guinea pig uterine compartment during gestation. This study was undertaken to enquire if the chorion membrane could influence the pattern of estrogen resulting when substrates were applied to the fetal surface of the chorion while it was attached, late in gestation, to the uterine wall. This tissue system resulted in a differential handling of estrone and estradiol. Estrone was largely excluded from the tissue, remaining mainly in free steroidal form. Estradiol was considerably converted to its 3-sulfate which was mainly retained by the chorion. Parallel experiments with chorion and uterus separately failed to discriminate between the two substrates. Hydrolysis of estrone sulfate and estradiol 3-sulfate was similar in all three tissue systems. It appears that the interaction of chorion with uterus late in gestation causes a difference in tissue action towards the two steroid substrates of closely related structure. The results suggest a limitation in tissue uptake of estrone compared with estradiol, or a much greater sulfotransferase activity towards estradiol. Whole cytosols of late gestational chorion catalyzed sulfation of estradiol at about double the velocity of estrone. This may only partly account for the difference in the intact chorion-uterine tissue system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号