首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In growing cultures of Escherichia coli, simultaneous inhibition of penicillin-binding proteins 1a and 1b (PBPs 1) by a beta-lactam efficiently induces cell lysis. However, the lytic behavior of cultures initiating growth in the presence of beta-lactams specifically inhibiting PBPs 1 suggested that the triggering of cell lysis was a cell division-related event, at least in the first cell cycle after the resumption of growth (F. Garcia del Portillo, A. G. Pisabarro, E. J. de la Rosa, and M. A. de Pedro, J. Bacteriol. 169:2410-2416, 1987). To investigate whether this apparent correlation would hold true in actively growing cells, we studied the lytic behavior of cultures of E. coli aligned for cell division which were challenged with beta-lactams at different times after alignment. Cell division was aligned either by nutritional shift up or by chromosome replication alignment. Specific inhibition of PBPs 1 with the beta-lactam cefsulodin resulted in a delayed onset of lysis which was coincident in time with the resumption of cell division. The apparent correlation between the initiation of lysis and cell division was abolished when cefsulodin was used in combination with the PBP 2-specific inhibitor mecillinam, leading to the onset of lysis at a constant time after the addition of the beta-lactams. The results presented clearly argue in favor of the hypothesis that the triggering of cell lysis after inhibition of PBPs 1 is a cell division-correlated event dependent on the activity of PBP 2.  相似文献   

2.
Addition of chloramphenicol or 0.5 M glycerol to growing Myxococcus xanthus resulted in an immediate cessation of cell division and 40% net increase in deoxyribonucleic acid (DNA). Although the chloramphenicol-treated cells divided in the presence of nalidixic acid after chloramphenicol was removed, glycerol-induced myxospores required DNA synthesis for subsequent cell division. Myxospores prepared from chloramphenicol-treated cells lost this potential to divide in the presence of nalidixic acid. The "critical period" of DNA synthesis necessary for cell division after germination overlapped in time (3 to 5 h) with initiation of net DNA synthesis. The length of the critical period of DNA synthesis was estimated at 12 min, or 5% of the M. xanthus chromosome. The requirement for cell division during germination also involved ribonucleic acid and protein synthesis after DNA synthesis. The data suggest that replication at or near the origin of the chromosome triggers the formation of a protein product that is necessary but not sufficient for subsequent cell division; DNA termination is also required. During myxospore formation, the postulated protein is destroyed, thereby reestablishing and making apparent this linkage between early DNA synthesis and cell division.  相似文献   

3.
Synchronous cultures of Escherichia coli strain B/r were used to investigate the relationship between deoxyribonucleic acid (DNA) replication and cell division. We have determined that terminal steps in division can proceed in the absence of DNA synthesis. Inhibition of DNA replication with nalidixic acid prior to the start of a new round of replication does not stop cell division, which indicates that the start of the round is not essential in triggering cell division. Inhibition of DNA replication at any time prior to the termination of a round of replication completely blocks cell division, which suggests that there may be a link between the end of the replication cycle and the commitment of the cell to divide. Studies that use a temperature-sensitive mutant which is unable to synthesize DNA at the nonpermissive temperature are in complete agreement with those that use nalidixic acid to inhibit DNA synthesis. This adds support to the idea that the treatments employed limit their action to DNA synthesis. Investigation of minicell production indicates that the production of minicells is blocked when DNA synthesis is inhibited with nalidixic acid. Although nuclear segregation is not required for cell division, DNA synthesis is still required to trigger division. The evidence presented suggests strongly that (i) DNA synthesis is essential for cell division, (ii) the end of a round of replication triggers cell division, and (iii) there is considerable time lapse (one-half generation) between the completion of a round of DNA replication and physical separation of the cells.  相似文献   

4.
5.
6.
The inhibitory effect of derivatives of 3-quinolinecarboxylic acid on replication of DNA, growth, division and colony-forming ability ofEscherichia coli 15 TAU was compared with the effect of nalidixic acid. Oxolinic acid was found to be most effective. It brings about an immediate inhibition of DNA replication even at a concentration 10-times lower than that of nalidixic acid. The importance of 6,7-methyleneoxy-, 1-ethyl and 3-carboxyl groups on the quinoline ring for maximum effectivity of the preparation was verified. The question of the primary importance of the inhibition of replication for antibacterial effects is discussed.  相似文献   

7.
A comparison was made of the effects of cis-tetrachlorodiaminoplatinum (IV) (cis-TCDPt), rans-TCDPt), and hexachloroplatinum (HCP) on growth and cell division of Escherichia coli strains D21 and D22. At or below 40 microgram/mL, cis-TCDPt inhibited cell division but not growth, DNA, or protein synthesis, although areas of increased electron density could be demonstrated in treated cells. In contrast, 40 microgram/mL of trans-TCDPt or HCP inhibited growth. Trans-TCDPt-treated cells developed condensed nucleoids; HCP-treated cells showed no obvious cytological changes to correlate with growth inhibition. Combination of cis-TCDPt with nalidixic acid, both at one-half the lowest filament-forming concentrations, resulted in formation of filaments, suggesting an additive effect. Combination of cis-TCDPt followed by ampicillin on E. coli B/r resulted in single bulges near the center of the filaments. Cis-TCDPt could therefore inhibit an initial step in the septation sequence, possibly at the level of the regulation of the hydrolytic enzymes. Whether cis-TCDPt exerts its effect by interreaction with DNA or with a membrane target is still uncertain.  相似文献   

8.
Ultrastructure of E. coli K-12 cells and the synthesis of DNA in bacteria treated with low concentration of nalidixic acid and penicillin was investigated. In E. coli both drugs caused inhibition of cell division in period D of the life cycle although nalidixic acid inhibits division at an earlier stage of septum formation. The ability of cells to form filaments in the presence of nalidixic acid depends on their age, i.e. time at which cells are taken from synchronous culture.  相似文献   

9.
Synchronous cells of the thermosensitive division-defective Escherichia coli strain MACI (divA) divided at the restrictive temperature (42 degrees C) if they were allowed to grow at 42 degrees C for a certain period before protein synthesis was inhibited by adding chloramphenicol (CAP) or rifampicin. The completion of chromosome replication was not required for such divA-independent division. Synchronous cells of strain MACI divided in the presence of an inhibitor of DNA synthesis, nalidixic acid, if they were shifted to 42 degrees C and CAP or rifampicin was added after some time; cells of the parent strain MC6 (div A+) treated in the same way did not divide. These data suggest that coupling of cell division to DNA synthesis depends on the divA function. The ability to divide at 42 degrees C, whether or not chromosome termination was allowed, was directly proportional to the mean cell volume of cultures at the time of CAP addition, suggesting that cells have to be a certain size to divide under these conditions. The period of growth required for CAP-induced division had to be at the restrictive temperature; when cells were grown at 30 degrees C, in the presence of nalidixic acid to prevent normal division, they did not divide on subsequent transfer to 42 degrees C followed, after a period, by protein synthesis inhibition. A model is proposed in which the role of divA as a septation initiator gene is to differentiate surface growth sites by converting a primary unregulated structure, with the capacity to make both peripheral wall and septum, to a secondary structure committed to septum formation.  相似文献   

10.
Two pathways of division inhibition in UV-irradiated E. coli   总被引:13,自引:0,他引:13  
We have investigated the mechanism of division inhibition in E. coli following UV-irradiation or nalidixic acid treatment. After UV, two separate mechanisms, both dependent upon recA+, appear to block division. One mechanism is dependent upon sfiA and sfiB, is inhibited by low levels (4 micrograms/ml) of rifamycin and is expressed in tif mutants at 42 degrees C. The second mechanism is independent of sfiA, and sfiB, is resistant to rifamycin and does not occur in cells lacking DNA replication forks. We suggest that this second mechanism is the result of the failure to terminate DNA replication in inhibited cells. Nalidixic acid inhibition of cell division also appears to involve both mechanisms but as found previously replication forks are also necessary to induce the sfi pathway.  相似文献   

11.
Chromosome replication and cell division of Escherichia coli are coordinated with growth such that wild-type cells divide once and only once after each replication cycle. To investigate the nature of this coordination, the effects of inhibiting replication on Z-ring formation and cell division were tested in both synchronized and exponentially growing cells with only one replicating chromosome. When replication elongation was blocked by hydroxyurea or nalidixic acid, arrested cells contained one partially replicated, compact nucleoid located mid-cell. Cell division was strongly inhibited at or before the level of Z-ring formation. DNA cross-linking by mitomycin C delayed segregation, and the accumulation of about two chromosome equivalents at mid-cell also blocked Z-ring formation and cell division. Z-ring inhibition occurred independently of SOS, SlmA-mediated nucleoid occlusion, and MinCDE proteins and did not result from a decreased FtsZ protein concentration. We propose that the presence of a compact, incompletely replicated nucleoid or unsegregated chromosome masses at the normal mid-cell division site inhibits Z-ring formation and that the SOS system, SlmA, and MinC are not required for this inhibition.  相似文献   

12.
The initiation of the DNA replication cycle in Escherichia coli requires protein synthesis. Marunouchi &; Messer (1973) have hypothesized that an additional protein synthesis step is required for the replication of the terminal segment of the chromosome, and that replication of this segment is a prerequisite for subsequent cell division. We have not confirmed the existence of a unique terminal segment using a protocol designed to label the hypothesized segment with [3H]dThd2. Our protocol avoids the increased incorporation of [3H]dThd into DNA caused by abrupt increases in temperature, a complication implicit in the technique of Marunouchi &; Messer (1973).Treatment with nalidixic acid (an inhibitor of semiconservative DNA synthesis) in sufficient concentration to prevent replication of the postulated terminal segment prevents cell division but also causes loss of viability. This makes it difficult to correlate the effect of nalidixic acid on cell division with DNA synthesis inhibition alone.  相似文献   

13.
We investigated the time periods of DNA replication, lateral cell wall extension, and septum formation within the cell cycle of Proteus mirabilis. Cells were cultivated under three different conditions, yielding interdivision times of approximately 55, 57, and 160 min, respectively. Synchrony was achieved by sucrose density gradient centrifugation. The time periods were estimated by division inhibition studies with cephalexin, mecillinam, and nalidixic acid. In addition, DNA replication was measured by thymidine incorporation, and murein biosynthesis was measured by incorporation of N-acetylglucosamine into sodium dodecyl sulfate-insoluble murein sacculi. At interdivision times of 55 to 57 min murein biosynthesis for reproduction of a unit cell lasted longer than the interdivision time itself, whereas DNA replication finished within 40 min. Surprisingly, inhibition of DNA replication by nalidixic acid did not inhibit the subsequent cell division but rather the one after that. Because P. mirabilis fails to express several reactions of the recA-dependent SOS functions known from Escherichia coli, the drug allowed us to determine which DNA replication period actually governed which cell division. Taken together, the results indicate that at an interdivision time of 55 to 57 min, the biosynthetic cell cycle of P. mirabilis lasts approximately 120 min. To achieve the observed interdivision time, it is necessary that two subsequent biosynthetic cell cycles be tightly interlocked. The implications of these findings for the regulation of the cell cycle are discussed.  相似文献   

14.
This paper describes the kinetics of cell division in populations of cells which have been grown first under conditions which specifically inhibit deoxyribonucleic acid (DNA) synthesis (in the absence of thymine or the presence of nalidixic acid) and subsequently under conditions which allow DNA synthesis to recommence. Cell division does not take place during inhibition of DNA synthesis. There is a delay between recommencement of DNA synthesis and recommencement of cell division. The length of this delay increases as a function of the length of the preceding period of inhibition of DNA synthesis. The first division after this delay is partly synchronous, but all subsequent division is asynchronous. These observations are explained in terms of a model which supposes that the formation of initiator of chromosome replication during a period when DNA synthesis is inhibited results in a block to cell division. Division does not then occur until this "extra" round of DNA synthesis is completed.  相似文献   

15.
When cultures of Escherichia coli B/r growing at various rates were exposed to ultraviolet light, mitomycin C, or nalidixic acid, deoxyribonucleic acid (DNA) synthesis stopped but cell division continued for at least 20 min. The chromosome configurations in the cells which divided were estimated by determining the rate of DNA synthesis during the division cycle. The cultures were pulse-labeled with (14)C-thymidine, and the amount of label incorporated into cells of different ages was found by measuring the radioactivity in cells born subsequent to the labeling period. The cells which divided in the absence of DNA synthesis were those which had completed a round of chromosome replication prior to the treatments. It was concluded that completion of a round of replication is a necessary and sufficient condition of DNA synthesis for cell division.  相似文献   

16.
Cefsulodin lyses actively growing Escherichia coli by binding specifically to penicillin-binding proteins (PBPs) 1a and 1b. Recent findings (F. García del Portillo, M. A. de Pedro, D. Joseleau-Petit, and R. D'Ari, J. Bacteriol. 171:4217-4221, 1989) have linked cefsulodin-induced lysis to septation during the first division cycle after a nutritional shift-up or chromosome replication realignment. We synchronized cells by membrane filtration to determine whether cefsulodin-induced lysis depended on septation in normally growing cells. Populations of newly divided cells were allowed to grow for variable lengths of time. Cefsulodin was added to these synchronous cultures, which represented points in two to three rounds of the cell cycle. Since the cell numbers were small, a new lysis assay was developed that was based on the release of DNA measured by fluorometry. Lysis occurred at a constant time after addition of the antibiotic, regardless of the time in the cell cycle at which the addition was made. Thus, cefsulodin-induced lysis is not linked to septation or to any other cell cycle-related event.  相似文献   

17.
The courses of rRNA accumulation, DNA replication, and nuclear division were followed both in the chloroplast and the nucleocytosolic compartments during the cell cycle in synchronized populations of the chlorococcal alga Scenedesmus quadricauda. Control and nalidixic acid-treated cultures were compared. Nalidixic acid (150 mg/L) was added either at the beginning of the cell cycle or consecutively during the cell cycle to subcultures transferred into the dark. If the inhibitor was applied at the beginning of the cell cycle, chloroplast DNA did not replicate and nucleoids did not divide. Chloroplast division, however, was coordinated in a timely fashion with cytokinesis even under conditions of blocked chloroplast DNA replication. While the growth rate was slowed down, the courses of reproductive processes in the nucleocytosolic compartment were not affected and their timing and the number of rounds were coordinated with growth rate as in the control culture. The rate of cytosolic rRNA synthesis was lower but no apparent effect was seen on the amount of rRNA that accumulated during the cell cycle. In contrast, lower levels of chloroplast rRNA were found at the end of the cell cycle compared with the control culture. Experiments in which cells were transferred to the dark during the cell cycle showed that the inhibitor affected none of the reproductive events in the nucleocytosolic compartment. In the chloroplast compartment, DNA replication was inhibited in inhibitor-treated cultures, but was unaffected in controls. The chloroplast nucleoids themselves divided even in the presence of the inhibitor, reducing their DNA content to a level which corresponded to that in freshly formed control daughter cells.  相似文献   

18.
The effects of nalidixic acid and hydroxyurea on nuclear and chloroplast DNA formation in cultured cells of Nicotiana tabacum were investigated. At low concentrations (5 and 20 micrograms/ml) nalidixic acid, an inhibitor of DNA gyrase, exhibited a greater inhibitory effect on plastid DNA synthesis than on nuclear DNA formation. Since the plastid genome is a circular double-stranded DNA, this is consistent with the proven involvement of a DNA gyrase in the replication of closed circular duplex DNA genomes in procaryotic cells. At a high concentration of nalidixic acid (50 micrograms/ml), DNA synthesis in both the plastid and nuclear compartment was rapidly inhibited. Removal of the drug from the culture medium led to the resumption of DNA synthesis in 8 h. Hydroxyurea, an inhibitor of ribonucleoside diphosphate reductase, also depresses nuclear as well as plastid DNA formation. Removal of hydroxyurea from the blocked cells leads to a burst of nuclear DNA synthesis, suggesting that the cells had been synchronized at the G1/S boundary. The recovery of plastid DNA synthesis occurs within the same time frame as that of nuclear DNA. However, whereas plastid DNA formation is then maintained at a constant rate, nuclear DNA synthesis reaches a peak and subsequently declines. These results indicate that the synthesis of plastid DNA is independent of the cell cycle events governing nuclear DNA formation in cultured plant cells.  相似文献   

19.
Unlike bacteria such as Escherichia coli and Bacillus subtilis, several species of freshwater cyanobacteria are known to contain multiple chromosomal copies per cell, at all stages of their cell cycle. We have characterized the replication of multi-copy chromosomes in the cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Synechococcus 7942). In Synechococcus 7942, the replication of multi-copy chromosome is asynchronous, not only among cells but also among multi-copy chromosomes. This suggests that DNA replication is not tightly coupled to cell division in Synechococcus 7942. To address this hypothesis, we analysed the relationship between DNA replication and cell doubling at various growth phases of Synechococcus 7942 cell culture. Three distinct growth phases were characterised in Synechococcus 7942 batch culture: lag phase, exponential phase, and arithmetic (linear) phase. The chromosomal copy number was significantly higher during the lag phase than during the exponential and linear phases. Likewise, DNA replication activity was higher in the lag phase cells than in the exponential and linear phase cells, and the lag phase cells were more sensitive to nalidixic acid, a DNA gyrase inhibitor, than cells in other growth phases. To elucidate physiological differences in Synechococcus 7942 during the lag phase, we analysed the metabolome at each growth phase. In addition, we assessed the accumulation of central carbon metabolites, amino acids, and DNA precursors at each phase. The results of these analyses suggest that Synechococcus 7942 cells prepare for cell division during the lag phase by initiating intensive chromosomal DNA replication and accumulating metabolites necessary for the subsequent cell division and elongation steps that occur during the exponential growth and linear phases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号