首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
2.
Rodents are able to lower fatty acid utilization in liver and muscle during lactation in order to spare fatty acids for the production of milk triacylglycerols, an effect which is mediated by a down-regulation of peroxisome proliferator-activated receptor α (PPARα). The present study was performed to investigate whether similar fatty acid sparing effects are developing in lactating sows. We considered PPARα and its target genes involved in fatty acid utilization in biopsy samples from muscle and adipose tissue of lactating compared to non-lactating sows. In muscle, PPARα target genes involved in fatty acid utilization were up-regulated during lactation indicating that the fatty acid utilization in muscle was increased. Activation of PPARα was probably due to increased concentrations of non-esterified fatty acids in plasma observed in the lactating sows. In contrast to muscle, PPARα and its target genes involved in β-oxidation in white adipose tissue were down-regulated in early lactation. Overall, the present study shows that sows, unlike rats, are not able to reduce the fatty acid utilization in muscle in order to spare fatty acids for milk production. However, fatty acid oxidation in adipose tissue is lowered during early lactation, an effect that might be helpful to conserve fatty acids released from adipose tissue for the delivery into other tissues, including mammary gland, via the blood.  相似文献   

3.
Previous efforts to simulate mammary metabolism have focused on energy, mostly considering amino acids (AA) in aggregate. The main objective of this work was to build a model of mammary metabolism, based on data from arterio-venous difference studies, which considered AA in sufficient detail to predict yields of milk solids. The model contains 19 state variables and considers the removal of 37 metabolites from blood, including 22 AA. It is driven by blood flow and arterial concentrations, and outputs include milk protein, milk lactose, and three classes of milk fat (by chain length). The model was parameterized using a balance version of it and the mean observations from four arterio-venous difference experiments, with a limited number of assumptions, and evaluated against these experiments. In assembling the balance model, milk protein output was not predicted satisfactorily, as some essential AA were not present in quantities great enough to support the rates of milk protein synthesis observed experimentally. Tryptophan showed the greatest deficit, followed by tyrosine plus phenylalanine, methionine, and histidine. In addition, significant quantities of pyruvate were needed to synthesize serine, glycine, and alanine. The supply of alpha-ketoglutarate plus glutamate to synthesize proline and glutamine was provided in part by catabolism of arginine; the remainder was derived from catabolism of other AA and energetic substrates.  相似文献   

4.
S S Tobe  K G Davey 《Tissue & cell》1974,6(2):255-268
Protein synthesis at various times during the pregnancy cycle of G. austeni was determined by autoradiographic measurement of the incorporation of H3-leucine and H3-tyrosine into the cells of the fat body, oenocytes, milk gland and epidermis. The rate of utilization of these molecules is such that the labelled pool in the haemolymph is depleted before 0.5 hr after injection. The incorporation of both amino acids into fat body and oenocytes is high at eclosion and just after larviposition, with the incorporation of tyrosine by the oenocytes being much higher than that in the fat body. The same pattern of incorporation is observed in the epidermal cells. Label also appears in the endocuticle during the first 10 days of adult life. Except during the first 4 days following emergence, the incorporation of the two amino acids into the milk gland is very high, with periods of less intense protein synthesis at about the time of larviposition. The milk gland represents a highly efficient secretory system, with a t50 of less than 30 min.  相似文献   

5.
The whole-animal model described in this paper is intended to be a research model with an intermediary structure between sophisticated and simple cow models. The mechanistic model structure integrates the main metabolic pathways of the lactating dairy cow. Milk yield and related feed intake for varying production potentials were considered to be the driving forces and were empirically defined. The model was designed to explain the main metabolic flows and variations in body reserves associated with the push of nutrients from dry matter intake and their pull by the mammary gland to synthesise milk components throughout lactation. The digestive part of the model uses either known feed unit systems (e.g. PDI system for protein) or published empirical equations for the prediction of digestive flows of organic matter, starch and fatty acids and ruminal volatile fatty acid production. The metabolic sub-system is made up of four tissue compartments (body protein, body lipid, protein in the uterus and triglycerides in the liver) and five circulating metabolites (glucose, amino acids, acetate + butyrate, propionate, and triglycerides and non-esterified fatty acids). A major original aspect of the model is its homeorhetic control system. It was assumed that flows relating to adipose and protein tissue anabolism and catabolism were driven by a couple of linked theoretical hormones controlling mobilisation and anabolism. The evolution in body composition and body weight were outcomes of this control. Another originality of the model is its suitability for milk yields varying from 10 to 50 kg at peak production. This was achieved by homeorhetic control of milk potential acting on several key metabolic flows. Homeostatic regulation was also introduced in order to confine the behaviour of the model within realistic physiological values. For some basic aspects (e.g. Uterine involution, standard kinetics of body protein and fat), it was necessary to build specific databases from the literature and interpret these by meta-analysis. Fairly realistic simulated kinetics were obtained for body composition, liver triglycerides, blood plasma metabolite concentrations, milk protein and fat contents, and also for major groups of milk fatty acids.  相似文献   

6.
1. Mammary glands of lactating goats were perfused for 12.5-15hr. with heparinized whole blood and infused with a substrate mixture of glucose, acetate and amino acids (and sometimes chylomicra) containing either [1-(14)C]acetate, d(-)-beta-hydroxy[1-(14)C]butyrate or [U-(14)C]stearate. 2. There was a substantial net uptake of acetate by the glands and transfer of radioactivity into milk fat. Acetate was extensively utilized for the synthesis of milk fatty acids of chain length up to C(14) and to a smaller extent for the synthesis of palmitate. 3. There was a small and variable net uptake of stearate and beta-hydroxybutyrate and negligible oxidation of these substrates. However, tissue uptake was demonstrated by a substantial fall in specific radioactivity across the glands and an extensive transfer of radioactivity into milk fatty acids. 4. With beta-hydroxybutyrate the labelling of milk fat was very similar to that with acetate, but the distribution of radioactivity suggested a cleavage into C(2) fragments of about 40%. 5. Labelled stearate gave rise to highly labelled stearate and oleate in the milk fat. Small amounts of radioactivity were detected in stearate of plasma triglycerides and oleate of plasma free fatty acids. 6. In experiments where there was a decline in milk-fat secretion late in perfusion, the milk fatty acids showed a marked decline in the proportion of stearate and oleate and a rise in the proportion of myristate and palmitate. This did not occur in experiments where milk-fat secretion was maintained at a higher level. 7. The present results confirm that there is a large pool of long-chain fatty acids in mammary tissue that can act as an endogenous source of these substrates.  相似文献   

7.
Streptomyces lividans is considered an interesting host for the secretory production of heterologous proteins. To obtain a good secretion yield of heterologous proteins, the availability of suitable nitrogen sources in the medium is required. Often, undefined mixtures of amino acids are used to improve protein yields. However, the understanding of amino acid utilization as well as their contribution to the heterologous protein synthesis is poor.In this paper, amino acid utilization by wild type and recombinant S. lividans TK24 growing on a minimal medium supplemented with casamino acids is profiled by intensive analysis of the exometabolome (metabolic footprint) as a function of time. Dynamics of biomass, substrates, by-products and heterologous protein are characterized, analyzed and compared. As an exemplary protein mouse Tumor Necrosis Factor Alpha (mTNF-α) is considered.Results unveil preferential glutamate and aspartate assimilation, together with glucose and ammonium, but the associated high biomass growth rate is unfavorable for protein production. Excretion of organic acids as well as alanine is observed. Pyruvate and alanine overflow point at an imbalance between carbon and nitrogen catabolism and biosynthetic fluxes. Lactate secretion is probably related to clump formation. Heterologous protein production induces a slowdown in growth, denser clump formation and a shift in metabolism, as reflected in the altered substrate requirements and overflow pattern. Besides glutamate and aspartate, most amino acids are catabolized, however, their exact contribution in heterologous protein production could not be seized from macroscopic quantities.The metabolic footprints presented in this paper provide a first insight into the impact and relevance of amino acids on biomass growth and protein production. Type and availability of substrates together with biomass growth rate and morphology affect the protein secretion efficiency and should be optimally controlled, e.g., by appropriate medium formulation and substrate dosing. Overflow metabolism as well as high biomass growth rates must be avoided because they reduce protein yields. Further investigation of the intracellular metabolic fluxes should be conducted to fully unravel and identify ways to relieve the metabolic burden of plasmid maintenance and heterologous protein production and to prevent overflow.  相似文献   

8.
Exogenous bovine growth hormone at a dose of 0.1 mg kg-1 liveweight increased yields of milk and milk constituents and milk fat content when injected over 5 days into ewes in mid-lactation. These changes in milk production were associated with changes in the supply to, and utilization of, nutrients by leg muscle and mammary tissues. Arterial concentrations of glucose and non-esterified fatty acids increased significantly, concentrations of lactate and 3-hydroxybutyrate tended to increase, and concentrations of triglycerides associated with very low-density lipoproteins decreased significantly. Growth hormone increased mammary uptake of non-esterified fatty acids, decreased mammary uptake of very low-density lipoproteins and tended to reduce the release of lactate from leg muscle. Oxidation of non-esterified fatty acids in the whole body and mammary tissue was increased by growth hormone and there was a tendency for reduction of glucose oxidation in mammary tissues. During injection of growth hormone, blood flow to leg muscle and mammary tissues increased as did the calculated ratio of blood flow; milk yield. These changes in blood flow, together with changes in arterial concentrations and tissue utilizations of key metabolites, were sufficient to account for the synthesis of extra milk and milk constituents.  相似文献   

9.
Responses to exogenous growth hormone were measured in lactating dairy cows surgically prepared to allow measurement of nutrient exchanges across mammary and hind-limb muscle tissues. Cows were injected daily with either saline or growth hormone, at a dose of 0.1 mg/kg liveweight, over periods of 6 days. During administration of growth hormone milk yield, milk fat content and yields of milk fat protein and lactose increased. Arterial plasma concentrations of glucose and non-esterified fatty acids were increased, uptake of glucose by leg muscle tissue decreased, lactate release from leg muscle tended to increase, mammary uptake of non-esterified fatty acids increased, blood flow to leg muscle tended to increase and blood flow to mammary tissue increased during injection of growth hormone. The results show that growth hormone affects supply to and utilization of key nutrients by tissues, resulting in the supply to the mammary gland of additional precursors for milk synthesis.  相似文献   

10.
The effect of over forty low molecular weight substrates on the growth and synthesis of exocellular neutral proteases was studied in Pseudomonas fluorescens. Neutral exoproteases were found to be regulated enzymes. Glucose did not repress the synthesis of exocellular proteases; the regulation of their synthesis by amino acids involved the mechanism of induction. The data suggest that the primary intracellular inductors of the synthesis of exoproteases are formed for different groups of amino acids at different levels of their utilization by the cells, viz. at the level of transport and at the level of the first steps in the degradation of their carbon backbones. The paper discusses possible molecular mechanisms for integrating the signal of the primary intracellular inductors, which directly regulate the activity of the operon(s) of neutral exocellular proteases.  相似文献   

11.
The provision of carbon substrates and reducing power for fatty acid synthesis in the heterotrophic plastids of developing embryos of sunflower (Helianthus annuus L.) has been investigated. Profiles of oil and storage protein accumulation were determined and embryos at 17 and 24 days after anthesis (DAA) were selected to represent early and late periods of oil accumulation. Plastids isolated from either 17 or 24 DAA embryos did not incorporate label from [1-(14)C]glucose 6-phosphate (Glc6P) into fatty acids. Malate, when supplied alone, supported the highest rates of fatty acid synthesis by the isolated plastids at both stages. Pyruvate supported rates of fatty acid synthesis at 17 DAA that were comparable to those supported by malate, but only when incubations also included Glc6P. The stimulatory effect of Glc6P on pyruvate utilization at 17 DAA was related to the rapid utilization of Glc6P through the oxidative pentose phosphate pathway (OPPP) at this stage. Addition of pyruvate to incubations containing [1-(14)C]Glc6P increased OPPP activity (measured as (14)CO(2) release), while the addition of malate suppressed it. Observations of the interactions between the rate of metabolite utilization for fatty acid synthesis and the rate of the OPPP are consistent with regulation of the OPPP by redox control of the plastidial glucose 6-phosphate dehydrogenase activity through the demand for NADPH. During pyruvate utilization for fatty acid synthesis, flux through the OPPP increases as NADPH is consumed, whereas during malate utilization, in which NADPH is produced by NADP-malic enzyme, flux through the OPPP is decreased.  相似文献   

12.
Levels of n-6, n-3, and medium-chain fatty acids (MCFA) in milk are highly variable. Higher carbohydrate intakes are associated with increased mammary gland MCFA synthesis, but the role of unsaturated fatty acids for milk MCFA secretion is unclear. This study addressed whether n-6 and n-3 fatty acids, which are known to inhibit hepatic fatty acid synthesis, influence MCFA in rat and human milk and the implications of varying MCFA, n-6, and n-3 fatty acids in rat milk for metabolic regulation in the neonatal liver. Rats were fed a low-fat diet or one of six higher-fat diets, varying in 16:0, 18:1n-9, 18:2n-6, 18:3n-3, and long-chain (LC) n-3 fatty acids. Higher maternal dietary 18:2n-6 or 18:3n-3 did not influence milk MCFA, but lower maternal plasma triglycerides, due to either a low-fat or a high-fat high-LC n-3 diet led to higher milk MCFA. MCFA levels were inversely associated with 18:1n-9, 18:2n-6, and 18:3n-3 in human milk, likely reflecting the association between dietary total fat and unsaturated fatty acids. High LC n-3 fatty acid in rat milk was associated with lower hepatic Pklr, Acly, Fasn, and Scd1 and higher Hmgcs2 in the milk-fed rat neonate, with no effect of milk 18:1n-9, 18:2n-6, or MCFA. These studies show that the dietary fatty acid composition does not impact MCFA secretion in milk, but the fatty acid composition of milk, particularly the LC n-3 fatty acid, is relevant to hepatic metabolic regulation in the milk-fed neonate.  相似文献   

13.
Milk synthesis of bovine mammary gland is a complex biological process that is regulated by hormones and nutrients, but the mechanism of these regulations still needs further research. DEAD-box helicase 6 (DDX6) is an important member of the RNA helicase family, involved in the regulation of mRNA storage and translation in different systems, but its physiological role and mechanism are largely unclear. In this study, we describe DDX6 as a potentially novel negative regulator for milk synthesis and proliferation of bovine mammary epithelial cells (BMECs). Treatment of BMECs with amino acids (methionine or leucine) or hormones (estrogen or prolactin) decreased the expression of DDX6. DDX6 expression was lower in mammary tissues of lactation period than in mammary tissues of puberty and dry period. Notably, overexpressing DDX6 in BMECs significantly decreased milk synthesis, cell proliferation, and protein levels of p-mTOR, SREBP-1c, and cyclin D1, while inhibiting DDX6 had the opposite effect. Taken together, these results reveal that DDX6 is a new negative regulator to control milk synthesis and proliferation of BMECs.  相似文献   

14.
Milk secretion involves significant flux of water, driven largely by synthesis of lactose within the Golgi apparatus. It has not been determined whether this flux is simply a passive consequence of the osmotic potential between cytosol and Golgi, or whether it involves regulated flow. Aquaporins (AQPs) are membrane water channels that regulate water flux. AQP1, AQP3 and AQP5 have previously been detected in mammary tissue, but evidence of developmental regulation (altered expression according to the developmental and physiological state of the mammary gland) is lacking and their cellular/subcellular location is not well understood. In this paper we present evidence of developmental regulation of all three of these AQPs. Further, there was evidence of reciprocity since expression of the rather abundant AQP3 and less abundant AQP1 increased significantly from pregnancy into lactation, whereas expression of the least abundant AQP5 decreased. It would be tempting to suggest that AQP3 and AQP1 are involved in the secretion of water into milk. Paradoxically, however, it was AQP5 that demonstrated most evidence of expression located at the apical (secretory) membrane. The possibility is discussed that AQP5 is synthesized during pregnancy as a stable protein that functions to regulate water secretion during lactation. AQP3 was identified primarily at the basal and lateral membranes of the secretory cells, suggesting a possible involvement in regulated uptake of water and glycerol. AQP1 was identified primarily at the capillary and secretory cell cytoplasmic level and may again be more concerned with uptake and hence milk synthesis, rather than secretion. The fact that expression was developmentally regulated supports, but does not prove, a regulatory involvement of AQPs in water flux through the milk secretory cell.  相似文献   

15.
The importance of ketone bodies (acetoacetate and 3-hydroxybutyrate) as substrates for peripheral tissues, especially nervous tissue, of man is now firmly established. This has renewed interest in the factors that control the production of ketone bodies by the liver in various physiological situations, such as alterations of dietary status, stage of development or alteration in demand for circulating substrates (e.g. in exercise or lactation). In the discussion of the regulation of ketogenesis in the present paper, distinction is made between extrahepatic and intrahepatic control. The former is mainly concerned with the factors (e.g. hormonal status of animals) that alter the flux of non-esterified fatty acids to the liver, whereas intrahepatic regulation involves the fate (esterification versus beta-oxidation) of fatty acids within the liver. Emphasis is placed on the fact that alterations in blood glucose concentrations are indirectly responsible, via effects on insulin secretion, for the extrahepatic control of ketogenesis. By analogy, it is postulated that the carbohydrate status of the liver may play a role in the intrahepatic regulation of ketogenesis. Some support for this postulate is provided by comparison of measurements of blood ketone-body concentrations in various inborn errors of hepatic carbohydrate metabolism (e.g. deficiencies of glucose 6-phosphatase, fructose 1,6-bisphosphatase and glycogen synthase) in man and by experiments with isolated rat hepatocytes. Present information on the short- and long-term factors that may be responsible for the altered rates of ketogenesis during the foetal-neonatal and suckling-weanling transitions, in lactation, on feeding a high-fat diet and post-exercise is discussed. It is concluded that the major factors involved in the regulation of ketogenesis in these situations are (a) flux of non-esterified fatty acids to the liver and (b) the partitioning of long-chain acyl-CoA between the esterification and beta-oxidation pathways.  相似文献   

16.
Acetoacetyl-CoA synthetase (AACS) is the key enzyme in the anabolic utilization of ketone bodies (KBs) for denovo lipid synthesis, a process that bypasses citrate and ATP citrate lyase. This review shows that AACS is a highly regulated, cytosolic, and lipogenic enzyme and that many tissues can readily use KBs for denovo lipid synthesis. AACS has a low micromolar Km for acetoacetate, and supply of acetoacetate should not limit its activity in the fed state. In many tissues, AACS appears to be regulated in conjunction with the need for cholesterol, but in adipose tissue, it seems tied to fatty acid synthesis. KBs are readily utilized as substrates for lipid synthesis in lipogenic tissues, including liver, adipose tissue, lactating mammary gland, skin, intestinal mucosa, adrenals, and developing brain. In numerous studied cases, KBs served several-fold better than glucose as substrates for lipid synthesis, and when present, KBs suppressed the utilization of glucose for lipid synthesis. Here, it is hypothesized that a physiological role for the utilization of KBs for lipid synthesis is a metabolic process of lipid interconversion. Fatty acids are converted to KBs in liver, and then, the KBs are utilized to synthesize cholesterol and other long-chain fatty acids in liver and nonhepatic tissues. The conversion of fatty acids to cholesterol via the KBs may be a particularly important example of lipid interconversion. Utilizing KBs for lipid synthesis is glucose sparing and probably is important with low carbohydrate diets. Metabolic situations and tissues where this pathway may be important are discussed.  相似文献   

17.
18.
19.
De novo fatty acid synthesis in developing rat lung   总被引:1,自引:0,他引:1  
The rate of de novo fatty acid synthesis in developing rat lung was measured by the rate of incorporation of 3H from 3H2O into fatty acids in lung slices and by the activity of acetyl-CoA carboxylase in fetal, neonatal and adult lung. Both tritium incorporation and acetyl-CoA carboxylase activity increased sharply during late gestation, peaked on the last fetal day, and declined by 50% 1 day after birth. In the adult, values were only one-half the peak fetal rates. In vitro regulation of acetyl-CoA carboxylase activity in fetal lung was similar to that described in adult non-pulmonary tissues: activation by citrate and inhibition by palmitoyl-CoA. Similarly, incubation conditions that favored enzyme phosphorylation inhibited acetyl-CoA carboxylase activity in lung while dephosphorylating conditions stimulated activity. Incorporation of [U-14 C]glucose into lung lipids during development was influenced heavily by incorporation into fatty acids, which generally paralleled the rate of tritium incorporation into fatty acids. The relative utilization of acetyl units from exogenous glucose for overall fatty acid synthesis was greater in adult lung than in fetal or neonatal lung, suggesting that other substrates may be important for fatty acid synthesis in developing lung. In fetal lung explants, de novo fatty acid synthesis was inhibited by exogenous palmitate. Taken together, these data suggest that de novo synthesis may be an important source of saturated fatty acids in fetal lung but of lesser importance in the neonatal period. Furthermore, the regulation of acetyl-CoA carboxylase activity and fatty acid synthesis in lung may be similar to non-pulmonary tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号