首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of ADP induces platelets in plasma to undergo shape change from a disc to a spiny sphere and to develop adhesiveness, i.e. to aggregate. The aggregation of human platelets by ADP is associated with a net uptake of Na+. The present experiments demonstrate that the induction of shape change by ADP in acidified or EGTA-treated plasma conditions which inhibit aggregation, is also associated with a movement of Na+ into platelets. When ADP-induced platelet shape change and aggregation is inhibited by prostaglandin E1 Na+ uptake is also blocked. Platelets aggregated by epinephrine do not take up Na+. In a manner analogous to the effect of ADP, polylysine also induces Na+ uptake during aggregation. Vasopressin, in a manner analogous to epinephrine, induces aggregation without Na+ uptake. The increase in platelet Na+ resulting from ouabain inhibition of Na+ efflux induces an increase in the aggregation response to ADP and to epinephrine.  相似文献   

2.
Reversible platelet activation was studied after mechanical activation by low speed centrifugation (600 xg). Immediately following centrifugation platelets exhibited no shape change response to low doses of thrombin, collagen and ADP. After incubation at 37 degrees C a time-dependent recovery of the shape change response was observed. This was accompanied by a 50% decrease of 32P-incorporation into phosphatidic acid (PA) phosphatidylinositol-monophosphate (PIP), but not PIP2, relative to levels observed immediately after centrifugation. After 60 minutes platelet relaxation was complete: [32]PA and [32]PIP reached lowest levels and the shape change response to low doses of thrombin was completely restored.  相似文献   

3.
Low concentrations of wheat germ agglutinin (4 μg/ml) have been shown to act synergistically to induce platelet aggregation with epinephrine, collagen, arachidonate and ionophore A23187. Aggregation ceased on the addition of the haptenic sugar N-acetylglucosamine at any time following the onset of aggregation with these agonists and a small degree of disaggregation was observed during the reversible first wave with the biphasic aggregating agents epinephrine and ADP. Cyclooxygenase inhibitors such as indomethacin and aspirin blocked the second wave of aggregation with the biphasic aggregating agents epinephrine and ADP but a synergistic response continued to be shown with the first wave in the presence of these inhibitors. Release of [14C]serotonin and the mobilization of [3H]arachidonate by epinephrine and collagen were markedly stimulated in the presence of wheat germ agglutinin but there was no increase of either radiolabel in the case of ADP. Platelet shape change, but not aggregation, occurred with low levels of wheat germ agglutinin and the synergistic response with ADP, collagen or ionophore A23187 occurred without further shape change. Wheat germ agglutinin did not affect the basal or stimulated levels of cyclic AMP. The membrane fluidity of platelets was not affected by the lectin or by thrombin as shown by the lack of change in fluorescence polarization with diphenylhexatriene. It is suggested that the binding of wheat germ agglutinin to the platelet surface induces platelet activation by mechanisms similar to those of other agonists and that it may affect the distribution of membrane-bound Ca2+ by a reversible perturbation of the platelet membrane.  相似文献   

4.
Platelet activation is linked to an increase in the cytoplasmic Ca2+ concentration and consequently can also be induced by ionophores which mobilize Ca2+ from intracellular storage sites or transport it through the plasma membrane. The ionophores mostly used in studies on platelet activation are A 23187 and lasalocid (X-537A). The effects of eight compounds with known Ca2+-ionophoric activity in synthetic or natural membrane systems were studied in order to investigate the relationship between transport of Ca2+ and activation of platelets.Ionomycin acts as a true Ca2+ ionophore: it elicits rapid shape change, aggregation, the release reaction (secretion) and clot retraction (contraction). Beauvericin activates platelets too, but probably not by increasing the cytoplasmic Ca2+ concentration. Lysocellin does not activate platelets but induces a passive loss of serotonin. Virginiamycin S has no effect on platelets. Bromolasalocid and one epimer of dihydrolasalocid, like lasalocid, activate platelets by increasing the cytoplasmic Ca2+ concentration, and also induce a passive loss of serotonin. McN 4308 does not activate platelets but induces a slow uptake of 45Ca2+.  相似文献   

5.
The healthy vascular endothelium constantly releases autacoids which cause an increase of intracellular cyclic nucleotides to tame platelets from inappropriate activation. Elevating cGMP and cAMP, in line with previous reports, cooperated in the inhibition of isolated human platelet intracellular calcium-mobilization, dense granules secretion, and aggregation provoked by thrombin. Further, platelet alpha granules secretion and, most relevant, integrin αIIaβ3 activation in response to thrombin are shown to be prominently affected by the combined elevation of cGMP and cAMP. Since stress-related sympathetic nervous activity is associated with an increase in thrombotic events, we investigated the impact of epinephrine in this setting. We found that the assessed signalling events and functional consequences were to various extents restored by epinephrine, resulting in full and sustained aggregation of isolated platelets. The restoring effects of epinephrine were abolished by either interfering with intracellular calcium-elevation or with PI3-K signalling. Finally, we show that in our experimental setting epinephrine likewise reconstitutes platelet aggregation in heparinized whole blood, which may indicate that this mechanism could also apply in vivo.  相似文献   

6.
Abstract

The intracellular free calcium concentration plays a key role as second messenger in the regulation of cellular reactions. Post-receptor events can be investigated by measurement of free calcium concentration in cells. Our experience in measuring the intracellular free calcium concentration in platelets with the use of the fluorescent indicator quin-2-tetraacetoxymethyl- ester is described. Possible pitfalls in the preparation procedures of the platelets are discussed as well as critical steps and the limitations of the quin-2-method. The methodological approach is demonstrated by the presentation of an investigation with the adenylate cyclase inhibitors adenosine-5′-diphosphate and epinephrine as well as their interrelationship. The potentiation effect of epinephrine to adenosine 5′-diphosphate on platelet function such as aggregation is accompanied by a potentiation of the effect of these two platelet activators in elevating the intracellular free calcium concentration. Adenosine 5′-diphosphate elevates intra-platelet free calcium alone, whereas epinephrine acting through stimulation of the alpha2-receptor needs another permissive factor to immediately elevate the intra-platelet free calcium.  相似文献   

7.
ADP, added to suspensions of aspirinized 32P-prelabelled washed platelets, induced reversible platelet aggregation, the rapid elevation of cytosolic Ca2+ (maximum at 2 s), 20 kDa myosin light chain phosphorylation (maximum faster than 3 s), 40 kDa protein phosphorylation (maximum at 3-10 s) and phosphatidic acid formation (maximum at 30 s). Prior addition of epinephrine potentiated platelet aggregation, cytosolic Ca2(+)-elevation, 20 and 40 kDa protein phosphorylation evoked by ADP, but it did not enhance phosphatidic acid formation induced by ADP. The potentiating effect of epinephrine on aggregation, cytosolic Ca2(+)-increase and 20 and 40 kDa protein phosphorylation induced by ADP was also observed in the presence of EGTA. Ethylisopropylamiloride, an inhibitor of Na+/H(+)-exchange, did not affect the potentiation of ADP-induced platelet aggregation by epinephrine. We conclude that epinephrine primes platelets to increase Ca2(+)-influx and Ca2(+)-mobilization in response to ADP. The potentiation of cytosolic Ca2(+)-elevation by epinephrine leads to further stimulation of myosin light chain phosphorylation and protein kinase C activation and ultimately to enhanced platelet aggregation. These effects of epinephrine do not seem to take place at the level of phospholipase C.  相似文献   

8.

Background

The transbilayer movement of phosphatidylserine mediates the platelet procoagulant activity during collagen stimulation. The Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 inhibits senescence induced but not activation induced phosphatidylserine exposure. To investigate further the specific mechanisms, we now utilized mice with genetic deletion of the ROCK1 isoform.

Methods and Results

ROCK1-deficient mouse platelets expose significantly more phosphatidylserine and generate more thrombin upon activation with collagen compared to wild-type platelets. There were no significant defects in platelet shape change, aggregation, or calcium response compared to wild-type platelets. Collagen-stimulated ROCK1-deficient platelets also displayed decreased phosphorylation levels of Lim Kinase-1 and cofilin-1. However, there was no reduction in phosphorylation levels of myosin phosphatase subunit-1 (MYPT1) or myosin light chain (MLC). In an in vivo light/dye-induced endothelial injury/thrombosis model, ROCK1-deficient mice presented a shorter occlusion time in cremasteric venules when compared to wild-type littermates (3.16 ± 1.33 min versus 6.6 ± 2.6 min; p = 0.01).

Conclusions

These studies define ROCK1 as a new regulator for collagen-induced phosphatidylserine exposure in platelets with functional consequences on thrombosis. This effect was downstream of calcium signaling and was mediated by Lim Kinase-1 / cofilin-1-induced cytoskeletal changes.  相似文献   

9.
Degradation of inositides induced by phospholipase C in activated platelets leads to the formation of 1,2-diacylglycerol (1,2-DG) and its phosphorylated product, phosphatidic acid (PA). We have studied the relationship between activation of phospholipase C and the appearance of specific platelet responses, such as phosphorylation of proteins, shape change, release reaction and aggregation induced by different stimuli such as thrombin, platelet-activating factor, collagen, arachidonic acid (AA) and dihomogamma linolenic acid. A low degree of platelet activation induces only shape change which is associated with partial activation of phospholipase C (formation of phosphatidic acid), and phosphorylation of both a 40K molecular weight protein (protein kinase C activation) and a 20K molecular weight protein (myosin light chain). A higher degree of platelet activation induces aggregation, release of serotonin and a higher level of phospholipase C and protein kinase C activities. Metabolism of AA occurs concomitantly to aggregation and serotonin release, but AA metabolites are not related to the shape change of human platelets. Platelet shape change and the initial activation of phospholipase C induced by thrombin or platelet-activating factor is independent of the metabolites derived from cyclo-oxygenase activity. Further activation of phospholipase C which occurs during platelet aggregation and release reaction is, however, partly dependent on cyclo-oxygenase metabolites.  相似文献   

10.
Calcium compartments in calf platelets were studied using a lanthanum washout procedure to distinguish between surface-bound calcium and intracellular calcium. The calcium content of calf platelets ranges from 20 to 60 nmol/109 platelets and is sensitive to the calcium concentration of the suspending medium. With 1 mM calcium in the medium, calcium uptake is rapid and reaches steady state within 1–2 min. Results obtained with the lanthanum procedure indicate that it is the surface compartment which is most affected by the extracellular calcium concentration. The surface compartment appears to be saturable and is highly exchangeable. Although the total calcium as well as the calcium content of the surface and internal compartments are variable, the ratio of calcium in either compartment to the total saturated calcium is quite constant. The data indicate that 68–85% of the platelet calcium is located internally. Thrombin produces an immediate release of platelet calcium and labeled serotonin and an increase in the 45Ca2+ uptake of both the surface and internal compartments. The release reaction is not dependent upon exogenous calcium or an influx of exogenous calcium since it occurs even in the presence of ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid. Lanthanum, however, inhibits the release reaction possibly by blocking surface calcium site and reducing the mobility of endogenous platelet calcium.  相似文献   

11.
Retzer M  Essler M 《Cellular signalling》2000,12(9-10):645-648
Platelet activation plays an important role in arterial thrombotic disorders. Here we show that the serum-borne phospholipid lysophosphatidic acid (LPA) activates the GTPase Rho and its target Rho-kinase to induce myosin light-chain (MLC) and moesin phosphorylation, leading to platelet shape change. MLC phosphorylation, moesin phosphorylation, and shape change were blocked by preincubating platelets with C3 transferase from Clostridium botulinum and Y-27632-specific inhibitors of Rho and Rho kinase, respectively. LPA did not increase the cytosolic Ca(2+) concentration during shape change. Our results suggest that LPA via Rho-Rho kinase induces MLC and moesin phosphorylation leading to shape change in the absence of an increase in the cytosolic Ca(2+) concentration. Rho/Rho kinase inhibition could be a therapeutic strategy to prevent pathologic platelet activation during arterial thrombotic disorders.  相似文献   

12.
Ageing of discs of potato tuber by incubation in an aerated medium, produces an increase in the rates of respiration and of phosphate uptake. The presence of cycloheximide (CHM) or abscisic acid (ABA) in the uptake medium, does not change uptake by fresh tissue over 3–4 h. On the other hand, CHM causes an inhibition of the rate of uptake by aged tissue although ABA does not. The addition of CHM or ABA to the ageing medium, prevents totally (CHM) or only partially (ABA) the increase in phosphate uptake. The analysis of 32P-incorporation into the various phosphorylated fractions after 24 h of ageing with CHM or ABA show that CHM induces a large inhibition of the rate of uptake with an almost complete inhibition of 32P-incorporation into the various phosphorylated fractions. By contrast, ABA produces equal inhibition of 32P labelling of all fractions including all acid-soluble components. CHM prevents the increase in the rate of respiration, whereas ABA causes a slight stimulation. In both cases, no important effect on ATP content was observed. These results are discussed in terms of a comparison of ABA and CHM actions. They lead to the hypothesis of a specific effect of ABA on the development of the uptake mechanism.  相似文献   

13.
A group of initial processes in platelet activation, consisting of a platelet shape change, an intracellular calcium mobilization, a calcium efflux, and a membrane fluidity (mobility) change, has been examined in rabbit platelets by a multidimensional stopped-flow method with light scattering, light transmission, and fluorescence measurements. It was found that a 90 degrees light scattering change and internal calcium release (monitored in terms of chlortetracycline fluorescence) take place after a short lag (5 s at 25 degrees C and 2 s at 37 degrees C) following activation by thrombin. The duration of the lag was the same in both cases. During the initial lag period, a rapid increase in platelet membrane fluidity (mobility) was observed by the use of pyrene excimer fluorescence. These results suggest that the intracellular calcium mobilization and the shape change are triggered by the same rate-determining step, and increase in membrane mobility may play some role in the initial stage of platelet activation before intracellular calcium mobilization occurs.  相似文献   

14.
We examined the role of Ca2+, both extracellular and intracellular in origin, in the release reaction and protein phosphorylation in rabbit platelets stimulated with platelet activating factor (acetylglyceryl ether phosphorylcholine), thrombin, or ionophore A23187. In the presence of extracellular Ca2+, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), a putative antagonist of intracellular Ca2+ transport, blocked platelet activating factor-initiated serotonin release at a half-maximal inhibitor concentration of 40 μM, compared to 350 μM for thrombin-induced release and greater than 500 μM, for A23187-induced release. Platelet activating factor-induced phosphorylation of two platelet proteins of Mr=41 000 (P7P) and 20 000 (P9P) was inhibited by TMB-8, an effect which was additive to that caused by removing extracellular Ca2+. TMB-8 demonstrated only minor to non-existant inhibitory effects on phosphorylation in thrombin- or A23187-stimulated platelets. In contrast to P9P phosphorylation, phosphorylation of P7P caused by platelet activating factor was more dependent on a TMB-8 sensitive step than on the availability of extracellular Ca2+. Experiments with buffers containing fixed concentrations of free Ca2+ revealed that both processes (release and phosphorylation), when stimulated by platelet activating factor and thrombin, had the same threshold requirement (1–3 μM) for extracellular free Ca2+. These studies provide evidence that stimulation of rabbit platelets by platelet activating factor is more dependent on a TMB-8-sensitive intracellular Ca2+ source than is stimulation caused by thrombin. Furthermore, our data indicate that activation of different intracellular processes involved in platelet secretion (such as P7P and P9P phosphorylation) may require Ca2+ from different pools.  相似文献   

15.
To understand the mechanism of 1,4-benzoquinone-induced cytotoxicity in platelets, the roles of ATP and calcium in platelet toxicity and morphological changes were investigated. Using scanning electron microscopy, morphological changes including membrane blebbing were observed in rat platelets 5 min after exposure to 1,4-benzoquinone, which were significantly different from shape changes (pseudopod formation) observed in response to physiological agonists. Benzoquinone-induced membrane blebbing of platelets was associated with rapid depletion of intracellular ATP and was independent of the presence of extracellular calcium. Benzoquinone-induced platelet lysis observed between 20 and 30 min was dependent on extracellular calcium and associated with increased cytosolic calcium. Cytotoxicity induced by 1,4-benzoquinone was inhibited by antagonists of calmodulin, suggesting that calmodulin could play an important role in platelet toxicity. These results suggested that the progression of events for benzoquinone-induced cytotoxicity in platelets was as follows: 1,4-benzoquinone depletes intracellular ATP; membrane blebbing occurs; calcium homeostasis is disrupted, activation of calmodulin-dependent processes results; finally cytotoxicity occurs.  相似文献   

16.
To understand the mechanism of 1,4-benzoquinone-induced cytotoxicity in platelets, the roles of ATP and calcium in platelet toxicity and morphological changes were investigated. Using scanning electron microscopy, morphological changes including membrane blebbing were observed in rat platelets 5 min after exposure to 1,4-benzoquinone, which were significantly different from shape changes (pseudopod formation) observed in response to physiological agonists. Benzoquinone-induced membrane blebbing of platelets was associated with rapid depletion of intracellular ATP and was independent of the presence of extracellular calcium. Benzoquinone-induced platelet lysis observed between 20 and 30 min was dependent on extracellular calcium and associated with increased cytosolic calcium. Cytotoxicity induced by 1,4-benzoquinone was inhibited by antagonists of calmodulin, suggesting that calmodulin could play an important role in platelet toxicity. These results suggested that the progression of events for benzoquinone-induced cytotoxicity in platelets was as follows: 1,4-benzoquinone depletes intracellular ATP; membrane blebbing occurs; calcium homeostasis is disrupted, activation of calmodulin-dependent processes results; finally cytotoxicity occurs.  相似文献   

17.
Upon treatment with agents such as thrombin, collagen or concanavalin A, blood platelets change shape, secrete serotonin and phosphorylate two proteins having molecular weights of approximately 20,000 and 40,000. We have analyzed the relationship of this protein phosphorylation to shape change and release aided by the fact that while shape change occurs independently of extracellular calcium, release of serotonin displays a rather strict calcium requirement. Under limited calcium conditions, where virtually no serotonin release occurs, (Con A)-stimulated phosphorylation is uninhibited. Divalent cations (Mg++, Co++ and Zn++) also inhibit release but not phosphorylation. The microtubule effectors colchicine and D2O show concomitant effects on release and phosphorylation, indicating a microtubule involvement prior to phosphorylation. Papaverine inhibits release and phosphorylation while not strongly influencing shape change, suggesting that shape change does not require phosphorylation. We therefore conclude that phosphorylation of these proteins takes place after shape change but prior to release, and although it may be required for secretion to occur, the two processes are easily separated. Thus phosphorylation of these proteins is not likely to be an integral component of the release mechanism.  相似文献   

18.
Epinephrine stimulated adenylate cyclase in turkey erythrocyte ghosts is inhibited by calcium. The inhibition of adenylate cyclase is not apparent when intact erythrocytes are incubated with calcium and epinephrine. However, in the presence of the specific cation ionophore A23187 and 5 mm Ca2+, a 90% inhibition of epinephrine stimulated 3′,5′-adenosine monophosphate formation is found. The effect of catecholamines on calcium transport in the intact turkey erythrocyte was studied. Epinephrine causes a small but significant increase in Ca2+ efflux. This effect is inhibited by propranolol. No effect of epinephrine on Ca2+ uptake was observed. However, a 22% increase in Ca2+ uptake in the presence of propranolol could be detected. The propranolol effect was found to possess high statistical significance (p < .001). The absence of an epinephrine effect on influx probably reflects the presence of endogenous catecholamines in the control samples.It is proposed that the activation of adenylate cyclase by catecholamines occurs in two phases. The first phase is the increase of net Ca2+ efflux from a crucial Ca2+ pool, thus removing Ca2+ from its inhibitory sites on the adenylate cyclase complex. The second phase is the activation of the deinhibited adenylate cyclase by the hormone.  相似文献   

19.
The present study compares the molecular mechanism by which thrombin, platelet-activating factor, and epinephrine induce platelet activation. Thrombin and platelet-activating factor induce an initial activation of phospholipase C, as measured by formation of 1,2-diacylglycerol and phosphatidic acid, during platelet shape change which is independent of and dissociated from metabolism of arachidonic acid. Phospholipase C activation and shape change are independent of extracellular Ca2+ and Mg2+. Formation of cyclooxygenase products occurs subsequent to the initial activation of phospholipase C and those metabolites are associated with platelet aggregation and further activation of phospholipase C. On the other hand, epinephrine is an unique platelet stimulus since it requires extracellular divalent cations and does not induce platelet shape change or activation of phospholipase C. Our results indicate that activation of phospholipase C may be a mechanism by which physiological agonists can activate platelets independently of extracellular divalent cations.  相似文献   

20.
Platelet activation is characterized by shape change, induction of fibrinogen receptor expression and release of granular contents, leading to aggregation and plug formation. While this response is essential for hemostasis, it is also important in the pathogenesis of a broad spectrum of diseases, including myocardial infarction, stroke and unstable angina. Adenosine 5'-diphosphate (ADP) induces platelet aggregation, but the mechanism for this has not been established, and the relative contribution of ADP in hemostasis and the development of arterial thrombosis is poorly understood. We show here that the purinoceptor P2Y1 is required for platelet shape change in response to ADP and is also a principal receptor mediating ADP-induced platelet aggregation. Activation of P2Y1 resulted in increased intracellular calcium but no alteration in cyclic adenosine monophosphate (cAMP) levels. P2Y1-deficient platelets partially aggregated at higher ADP concentrations, and the lack of P2Y1 did not alter the ability of ADP to inhibit cAMP, indicating that platelets express at least one additional ADP receptor. In vivo, the lack of P2Y1 expression increased bleeding time and protected from collagen- and ADP-induced thromboembolism. These findings support the hypothesis that the ATP receptor P2Y1 is a principal receptor mediating both physiologic and pathological ADP-induced processes in platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号