首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intestinal homeostasis and the coordinated actions of digestion, absorption and excretion are tightly regulated by a number of gastrointestinal hormones. Most of them exert their actions through G-protein-coupled receptors. Recently, we showed that the absence of Gαq/Gα11 signaling impaired the maturation of Paneth cells, induced their differentiation toward goblet cells, and affected the regeneration of the colonic mucosa in an experimental model of colitis. Although an immunohistochemical study showed that Gαq/Gα11 were highly expressed in enterocytes, it seemed that enterocytes were not affected in Int-Gq/G11 double knock-out intestine. Thus, we used an intestinal epithelial cell line to examine the role of signaling through Gαq/Gα11 in enterocytes and manipulated the expression level of Gαq and/or Gα11. The proliferation was inhibited in IEC-6 cells that overexpressed Gαq/Gα11 and enhanced in IEC-6 cells in which Gαq/Gα11 was downregulated. The expression of T-cell factor 1 was increased according to the overexpression of Gαq/Gα11. The expression of Notch1 intracellular cytoplasmic domain was decreased by the overexpression of Gαq/Gα11 and increased by the downregulation of Gαq/Gα11. The relative mRNA expression of Muc2, a goblet cell marker, was elevated in a Gαq/Gα11 knock-down experiment. Our findings suggest that Gαq/Gα11-mediated signaling inhibits proliferation and may support a physiological function, such as absorption or secretion, in terminally differentiated enterocytes.  相似文献   

2.
3.
Alternative splicing enables G protein-coupled receptor (GPCR) genes to greatly increase the number of structurally and functionally distinct receptor isoforms. However, the functional role and relevance of the individual GPCR splice variants in regulating physiological processes are still to be assessed. A naturally occurring alternative splice variant of Bombyx CAPA-PVK receptor, BomCAPA-PVK-R1-Δ341, has been shown to act as a dominant-negative protein to regulate cell surface expression and function of the canonical CAPA-PVK receptor. Herein, using functional assays, we identify the splice variant Δ341 as a specific receptor for neuropeptide CAPA-PK, and upon activation, Δ341 signals to ERK1/2 pathway. Further characterization demonstrates that Δ341 couples to Gαi/o, distinct from the Gαq-coupled canonical CAPA-PVK receptor, triggering ERK1/2 phosphorylation through Gβγ-PI3K-PKCζ signaling cascade. Moreover, our ELISA data show that the ligand-dependent internalization of the splice variant Δ341 is significantly impaired due to lack of GRKs-mediated phosphorylation sites. Our findings highlight the potential of this knowledge for molecular, pharmacological and physiological studies on GPCR splice variants in the future.  相似文献   

4.
目的:探讨在中国汉族人群中强迫症与TNF-a基因-238G/A和-308G/A多态性之间的关联.方法:我们的研究所招募的161例强迫症患者和325.名健康对照中,应用PCR-RFLP比较了OCD组和对照组之间的TNF-α基因在-238G/A(rs361525)和-308G/A(rs1800629)位点的基因型和等位基因频率多态性.结果:在中国大陆汉族人群TNF-α基因的OCD组与对照组之间-308 G/A等位基因频率及-238G/A的基因型频率和等位基因频率无显着差异,而-308G/A基因型频率有显著不同.在-308G/A位点,女性强迫症患者和对照组之间的基因型频率关联分析有增高的趋势.结论:我们的研究结果表明,肿瘤坏死因子-α在-308G/A点位多态性可能会影响在中国大陆汉族人群强迫症的发展.  相似文献   

5.
Various heterotrimeric G(i) proteins are considered to be involved in cell migration and effector function of immune cells. The underlying mechanisms, how they control the activation of myeloid effector cells, are not well understood. To elucidate isoform-redundant and -specific roles for Gα(i) proteins in these processes, we analyzed mice genetically deficient in Gα(i2) or Gα(i3). First, we show an altered distribution of tissue macrophages and blood monocytes in the absence of Gα(i2) but not Gα(i3). Gα(i2)-deficient but not wild-type or Gα(i3)-deficient mice exhibited reduced recruitment of macrophages in experimental models of thioglycollate-induced peritonitis and LPS-triggered lung injury. In contrast, genetic ablation of Gα(i2) had no effect on Gα(i)-dependent peritoneal cytokine production in vitro and the phagocytosis-promoting function of the Gα(i)-coupled C5a anaphylatoxin receptor by liver macrophages in vivo. Interestingly, actin rearrangement and CCL2- and C5a anaphylatoxin receptor-induced chemotaxis but not macrophage CCR2 and C5a anaphylatoxin receptor expression were reduced in the specific absence of Gα(i2). Furthermore, knockdown of Gα(i2) caused decreased cell migration and motility of RAW 264.7 cells, which was rescued by transfection of Gα(i2) but not Gα(i3). These results indicate that Gα(i2), albeit redundant to Gα(i3) in some macrophage activation processes, clearly exhibits a Gα(i) isoform-specific role in the regulation of macrophage migration.  相似文献   

6.
7.
Wang Y  Zhang HX  Sun YP  Liu ZX  Liu XS  Wang L  Lu SY  Kong H  Liu QL  Li XH  Lu ZY  Chen SJ  Chen Z  Bao SS  Dai W  Wang ZG 《Cell research》2007,17(10):858-868
RIG-I (retinoid acid-inducible gene-I), a putative RNA helicase with a cytoplasmic caspase-recrultment domain (CARD), was identified as a pattem-recognition receptor (PRR) that mediates antiviral immunity by inducing type I interferon production. To further study the biological function of RIG-I, we generated Rig-I^-/- mice through homologous recombination, taking a different strategy to the previously reported strategy. Our Rig-I^-/- mice are viable and fertile. Histological analysis shows that Rig-I^-/ mice develop a colitis-like phenotype and increased susceptibility to dextran sulfate sodium-induced colitis. Accordingly, the size and number of Peyer's patches dramatically decreased in mutant mice. The peripheral T-cell subsets in mutant mice are characterized by an increase in effector T cells and a decrease in naive T cells, indicating an important role for Rig-I in the regulation ofT-cell activation. It was further found that Rig-I deficiency leads to the downregulation of G protein αi2 subunit (Gαi2) in various tissues, including T and B lymphocytes. By contrast, upregulation of Rig-I in NB4 cells that are treated with ATRA is accompanied by elevated Gαi2 expression. Moreover, Gαi2 promoter activity is increased in co-transfected NIH3T3 cells in a Rig-I dose-dependent manner. All these findings suggest that Rig-I has crucial roles in the regulation of Gαi2 expression and T-cell activation. The development of colitis may be, at least in part, associated with downregulation of Gαi2 and disturbed T-cell homeostasis.  相似文献   

8.
Although most heterotrimeric G proteins are thought to dissociate into Gα and Gβγ subunits upon activation, the evidence in the Gi/o family has long been inconsistent and contradictory. The Gi/o protein family mediates inhibition of cAMP production and regulates the activity of ion channels. On the basis of experimental evidence, both heterotrimer dissociation and rearrangement have been postulated as crucial steps of Gi/o protein activation and signal transduction. We have now investigated the process of Gi/o activation in living cells directly by two-photon polarization microscopy and indirectly by observations of G protein-coupled receptor kinase-derived polypeptides. Our observations of existing fluorescently labeled and non-modified Gαi/o constructs indicate that the molecular mechanism of Gαi/o activation is affected by the presence and localization of the fluorescent label. All investigated non-labeled, non-modified Gi/o complexes dissociate extensively upon activation. The dissociated subunits can activate downstream effectors and are thus likely to be the major activated Gi/o form. Constructs of Gαi/o subunits fluorescently labeled at the N terminus (GAP43-CFP-Gαi/o) seem to faithfully reproduce the behavior of the non-modified Gαi/o subunits. Gαi constructs labeled within the helical domain (Gαi-L91-YFP) largely do not dissociate upon activation, yet still activate downstream effectors, suggesting that the dissociation seen in non-modified Gαi/o proteins is not required for downstream signaling. Our results appear to reconcile disparate published data and settle a long running dispute.  相似文献   

9.
Regulator of G protein signaling domain-containing Rho guanine-nucleotide exchange factors (RGS-RhoGEFs) directly links activated forms of the G12 family of heterotrimeric G protein α subunits to the small GTPase Rho. Stimulation of G12/13-coupled GPCRs or expression of constitutively activated forms of α12 and α13 has been shown to induce the translocation of the RGS-RhoGEF, p115-RhoGEF, from the cytoplasm to the plasma membrane (PM). However, little is known regarding the functional importance and mechanisms of this regulated PM recruitment, and thus PM recruitment of p115-RhoGEF is the focus of this report. A constitutively PM-localized mutant of p115-RhoGEF shows a much greater activity compared to wild type p115-RhoGEF in promoting Rho-dependent neurite retraction of NGF-differentiated PC12 cells, providing the first evidence that PM localization can activate p115-RhoGEF signaling. Next, we uncovered the unexpected finding that Rho is required for α13-induced PM translocation of p115-RhoGEF. However, inhibition of Rho did not prevent α12-induced PM translocation of p115-RhoGEF. Additional differences between α13 and α12 in promoting PM recruitment of p115-RhoGEF were revealed by analyzing RGS domain mutants of p115-RhoGEF. Activated α12 effectively recruits the isolated RGS domain of p115-RhoGEF to the PM, whereas α13 only weakly does. On the other hand, α13 strongly recruits to the PM a p115-RhoGEF mutant containing amino acid substitutions in an acidic region at the N-terminus of the RGS domain; however, α12 is unable to recruit this p115-RhoGEF mutant to the PM. These studies provide new insight into the function and mechanisms of α12/13-mediated PM recruitment of p115-RhoGEF.  相似文献   

10.
内皮素-1预处理时大鼠心脏Gαq/11和Giα蛋白含量的变化   总被引:1,自引:0,他引:1  
探讨内皮素 1预处理和缺血预处理两种预处理方式与G蛋白有关的信号转导途径的异同。用 0 5nmol/ml内皮素 1左心室注射或夹闭左冠状动脉 5min/再灌 5min× 2进行预处理 ,然后两组均缺血 6 0min ,再灌 30min。观察心电变化 ,免疫印迹法测定心脏Gαq/11和Giα2的含量。结果显示 ,无论是内皮素 1预处理还是缺血预处理均明显减轻缺血再灌注性室性心律失常。与对照组相比 ,缺血预处理组Gαp/11含量升 77 8% (P <0 0 5 ) ,Giα2含量无明显改变。内皮素 1预处理组Gαq/11含量升高 110 6 % (P <0 0 1) ,Giα2含量下降 31 0 % (P <0 0 5 )。本研究结果提示 ,激活Gαq/11蛋白是两种预处理对心肌产生保护作用的共同信号转导通路 ,而Giα2蛋白在两种预处理中的作用方式有所不同。  相似文献   

11.
目的:探讨在中国汉族人群中强迫症与TNF-a基因-238G/A和-308G/A多态性之间的关联。方法:我们的研究所招募的161例强迫症患者和325名健康对照中,应用PCR-RFLP比较了OCD组和对照组之间的TNF-α基因在-238G/A(rs361525)和-308G/A(rs1800629)位点的基因型和等位基因频率多态性。结果:在中国大陆汉族人群TNF-α基因的OCD组与对照组之间-308 G/A等位基因频率及-238G/A的基因型频率和等位基因频率无显着差异,而-308G/A基因型频率有显著不同。在-308G/A位点,女性强迫症患者和对照组之间的基因型频率关联分析有增高的趋势。结论:我们的研究结果表明,肿瘤坏死因子-α在-308G/A点位多态性可能会影响在中国大陆汉族人群强迫症的发展。  相似文献   

12.
Disturbed flow patterns, including reversal in flow direction, are key factors in the development of dysfunctional endothelial cells (ECs) and atherosclerotic lesions. An almost immediate response of ECs to fluid shear stress is the increase in cytosolic calcium concentration ([Ca(2+)](i)). Whether the source of [Ca(2+)](i) is extracellular, released from Ca(2+) intracellular stores, or both is still undefined, though it is likely dependent on the nature of forces involved. We have previously shown that a change in flow direction (retrograde flow) on a flow-adapted endothelial monolayer induces the remodeling of the cell-cell junction along with a dramatic [Ca(2+)](i) burst compared with cells exposed to unidirectional or orthograde flow. The heterotrimeric G protein-α q and 11 subunit (Gα(q/11)) is a likely candidate in effecting shear-induced increases in [Ca(2+)](i) since its expression is enriched at the junction and has been previously shown to be activated within seconds after onset of flow. In flow-adapted human ECs, we have investigated to what extent the Gα(q/11) pathway mediates calcium dynamics after reversal in flow direction. We observed that the elapsed time to peak [Ca(2+)](i) response to a 10 dyn/cm(2) retrograde shear stress was increased by 11 s in cells silenced with small interfering RNA directed against Gα(q/11). A similar lag in [Ca(2+)](i) transient was observed after cells were treated with the phospholipase C (PLC)-βγ inhibitor, U-73122, or the phosphatidylinositol-specific PLC inhibitor, edelfosine, compared with controls. Lower levels of inositol 1,4,5-trisphosphate accumulation seconds after the onset of flow correlated with the increased lag in [Ca(2+)](i) responses observed with the different treatments. In addition, inhibition of the inositol 1,4,5-trisphosphate receptor entirely abrogated flow-induced [Ca(2+)](i). Taken together, our results identify the Gα(q/11)-PLC pathway as the initial trigger for retrograde flow-induced endoplasmic reticulum calcium store release, thereby offering a novel approach to regulating EC dysfunctions in regions subjected to the reversal of blood flow.  相似文献   

13.
While short exposure to solar ultraviolet radiation (UVR) can elicit increased skin pigmentation, a protective response mediated by epidermal melanocytes, chronic exposure can lead to skin cancer and photoaging. However, the molecular mechanisms that allow human skin to detect and respond to UVR remain incompletely understood. UVR stimulates a retinal-dependent signaling cascade in human melanocytes that requires GTP hydrolysis and phospholipase C β (PLCβ) activity. This pathway involves the activation of transient receptor potential A1 (TRPA1) ion channels, an increase in intracellular Ca2+, and an increase in cellular melanin content. Here, we investigated the identity of the G protein and downstream elements of the signaling cascade and found that UVR phototransduction is Gαq/11 dependent. Activation of Gαq/11/PLCβ signaling leads to hydrolysis of phosphatidylinositol (4,5)-bisphosphate (PIP2) to generate diacylglycerol (DAG) and inositol 1, 4, 5-trisphosphate (IP3). We found that PIP2 regulated TRPA1-mediated photocurrents, and IP3 stimulated intracellular Ca2+ release. The UVR-elicited Ca2+ response appears to involve both IP3-mediated release from intracellular stores and Ca2+ influx through TRPA1 channels, showing the fast rising phase of the former and the slow decay of the latter. We propose that melanocytes use a UVR phototransduction mechanism that involves the activation of a Gαq/11-dependent phosphoinositide cascade, and resembles light phototransduction cascades of the eye.  相似文献   

14.

Background

Two pertussis toxin sensitive Gi proteins, Gi2 and Gi3, are expressed in cardiomyocytes and upregulated in heart failure. It has been proposed that the highly homologous Gi isoforms are functionally distinct. To test for isoform-specific functions of Gi proteins, we examined their role in the regulation of cardiac L-type voltage-dependent calcium channels (L-VDCC).

Methods

Ventricular tissues and isolated myocytes were obtained from mice with targeted deletion of either Gαi2 (Gαi2 −/−) or Gαi3 (Gαi3 −/−). mRNA levels of Gαi/o isoforms and L-VDCC subunits were quantified by real-time PCR. Gαi and Cavα1 protein levels as well as protein kinase B/Akt and extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation levels were assessed by immunoblot analysis. L-VDCC function was assessed by whole-cell and single-channel current recordings.

Results

In cardiac tissue from Gαi2 −/− mice, Gαi3 mRNA and protein expression was upregulated to 187±21% and 567±59%, respectively. In Gαi3 −/− mouse hearts, Gαi2 mRNA (127±5%) and protein (131±10%) levels were slightly enhanced. Interestingly, L-VDCC current density in cardiomyocytes from Gαi2 −/− mice was lowered (−7.9±0.6 pA/pF, n = 11, p<0.05) compared to wild-type cells (−10.7±0.5 pA/pF, n = 22), whereas it was increased in myocytes from Gαi3 −/− mice (−14.3±0.8 pA/pF, n = 14, p<0.05). Steady-state inactivation was shifted to negative potentials, and recovery kinetics slowed in the absence of Gαi2 (but not of Gαi3) and following treatment with pertussis toxin in Gαi3 −/−. The pore forming Cavα1 protein level was unchanged in all mouse models analyzed, similar to mRNA levels of Cavα1 and Cavβ2 subunits. Interestingly, at the cellular signalling level, phosphorylation assays revealed abolished carbachol-triggered activation of ERK1/2 in mice lacking Gαi2.

Conclusion

Our data provide novel evidence for an isoform-specific modulation of L-VDCC by Gαi proteins. In particular, loss of Gαi2 is reflected by alterations in channel kinetics and likely involves an impairment of the ERK1/2 signalling pathway.  相似文献   

15.
16.
Phosphatidic acid (PA) is interactive with Gαq-linked agonists to stimulate GPCR signaling via phospholipase C-β1 (PLC-β1). Phorbol 12-myristate 13-acetate (PMA) increases cellular levels of PA and phospholipase D activity (PLD). This study evaluated whether PMA can stimulate PLC-β1 activity via PA, independent of GPCR input in transfected COS 7 cells. PMA alone had little effect on PLC activity in cells co-transfected with PLC-β1 and Gαq. Activated Gαq, induced by co-transfecting muscarinic cholinergic receptor (m1R), was necessary for stimulation of PLC-β1 activity by PMA. Stimulation by PMA was dependent on the PA-regulatory motif of PLC-β1 implicating PA in this mechanism. PLD1 knockdown by antisense decreased responsiveness of PLC-β1 to both PMA and carbachol. PA alone thus has little effect on PLC-β1 activity, but PA and PLD1 synergize with activated Gαq to stimulate PLC-β1 signaling. Coordinate interaction with activated Gαq may serve as an important mechanism to fine tune response to ligands while preventing spurious initiation of PLC-β signaling by PA in cells.  相似文献   

17.
18.
19.
Recent studies have recognized G protein-coupled receptors as important regulators of oligodendrocyte development. GPR17, in particular, is an orphan G protein-coupled receptor that has been identified as oligodendroglial maturation inhibitor because its stimulation arrests primary mouse oligodendrocytes at a less differentiated stage. However, the intracellular signaling effectors transducing its activation remain poorly understood. Here, we use Oli-neu cells, an immortalized cell line derived from primary murine oligodendrocytes, and primary rat oligodendrocyte cultures as model systems to identify molecular targets that link cell surface GPR17 to oligodendrocyte maturation blockade. We demonstrate that stimulation of GPR17 by the small molecule agonist MDL29,951 (2-carboxy-4,6-dichloro-1H-indole-3-propionic acid) decreases myelin basic protein expression levels mainly by triggering the Gαi/o signaling pathway, which in turn leads to reduced activity of the downstream cascade adenylyl cyclase-cAMP-PKA-cAMP response element-binding protein (CREB). In addition, we show that GPR17 activation also diminishes myelin basic protein abundance by lessening stimulation of the exchange protein directly activated by cAMP (EPAC), thus uncovering a previously unrecognized role for EPAC to regulate oligodendrocyte differentiation. Together, our data establish PKA and EPAC as key downstream effectors of GPR17 that inhibit oligodendrocyte maturation. We envisage that treatments augmenting PKA and/or EPAC activity represent a beneficial approach for therapeutic enhancement of remyelination in those demyelinating diseases where GPR17 is highly expressed, such as multiple sclerosis.  相似文献   

20.
采用大鼠主动脉球囊内皮剥脱术制备主动脉狭窄模型,观察Gαq/11和PDGF信号转导通路在大鼠主动脉球囊损伤后狭窄时血管平滑肌细胞(VSMC)增殖和迁移中的作用.实验分假手术组、损伤1 d组和损伤14 d组,观察形态学变化,检测血管紧张素转换酶(ACE)活性和主动脉磷脂酶C(PLC)活性,用免疫印迹法测定主动脉血小板源生长因子(PDGF)受体β和Gαq/11蛋白含量.结果显示:损伤1 d,主动脉内皮完全剥脱,VSMC无明显增殖和迁移,内膜无增厚.与假手术组比较,ACE活性增加382.7%(P<0.01),PDGF受体β表达和PLC活性无明显变化,Gαq/11蛋白含量下降20.0%(P<0.05).损伤14 d组,主动脉局部有新生内皮出现,中层VSMC大量增殖并向内膜下迁移,内膜显著增厚.ACE活性、PDGF受体β表达和PLC活性分别较假手术组升高420.2%(P<0.01)、85.0%(P<0.05)和186.2%(P<0.05),Gαq/11蛋白表达下降33.1%(P<0.01).结果提示,PDGF介导的信号转导通路可能是再狭窄时VSMC增殖的重要信号转导机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号