共查询到20条相似文献,搜索用时 15 毫秒
1.
Huanbin Shi Shuai Meng Jiehua Qiu Congcong Wang Yazhou Shu Chaoxi Luo Yanjun Kou 《Molecular Plant Pathology》2021,22(8):969-983
Magnaporthe oryzae causes rice blast disease, which seriously threatens the safety of food production. Understanding the mechanism of appressorium formation, which is one of the key steps for successful infection by M. oryzae, is helpful to formulate effective control strategies of rice blast. In this study, we identified MoWhi2, the homolog of Saccharomyces cerevisiae Whi2 (Whisky2), as an important regulator that controls appressorium formation in M. oryzae. When MoWHI2 was disrupted, multiple appressoria were formed by one conidium and pathogenicity was significantly reduced. A putative phosphatase, MoPsr1, was identified to interact with MoWhi2 using a yeast two-hybridization screening assay. The knockout mutant ΔMopsr1 displayed similar phenotypes to the ΔMowhi2 strain. Both the ΔMowhi2 and ΔMopsr1 mutants could form appressoria on a hydrophilic surface with cAMP levels increasing in comparison with the wild type (WT). The conidia of ΔMowhi2 and ΔMopsr1 formed a single appressorium per conidium, similar to WT, when the target of rapamycin (TOR) inhibitor rapamycin was present. In addition, compared with WT, the expression levels of MoTOR and the MoTor signalling activation marker gene MoRS3 were increased, suggesting that inappropriate activation of the MoTor signalling pathway is one of the important reasons for the defects in appressorium formation in the ΔMowhi2 and ΔMopsr1 strains. Our results provide insights into MoWhi2 and MoPsr1-mediated appressorium development and pathogenicity by regulating cAMP levels and the activation of MoTor signalling in M. oryzae. 相似文献
2.
Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus 下载免费PDF全文
Xiao‐Lin Chen Mi Shen Jun Yang Yunfei Xing Deng Chen Zhigang Li Wensheng Zhao Yan Zhang 《Molecular Plant Pathology》2017,18(2):222-237
Peroxisomes are involved in various metabolic processes and are important for virulence in different pathogenic fungi. How peroxisomes rapidly emerge in the appressorium during fungal infection is poorly understood. Here, we describe a gene, PEF1, which can regulate peroxisome formation in the appressorium by controlling peroxisomal fission, and is required for plant infection in the rice blast fungus Magnaporthe oryzae. Targeted deletion of PEF1 resulted in a reduction in virulence and a delay in penetration and invasive growth in host cells. PEF1 was particularly expressed during appressorial development, and its encoding protein was co‐localized with peroxisomes during appressorial development. Compared with the massive vesicle‐shaped peroxisomes formed in the wild‐type appressorium, the Δpef1 mutant could only form stringy linked immature peroxisomes, suggesting that PEF1 was involved in peroxisomal fission during appressorium formation. We also found that the Δpef1 mutant could not utilize fatty acids efficiently, which can improve significantly the expression level of PEF1 and induce peroxisomal fission. As expected, the Δpef1 mutant showed reduced intracellular production of reactive oxygen species (ROS) during appressorium formation and induced ROS accumulation in host cells during infection. Taken together, PEF1‐mediated peroxisomal fission is important for fungal infection by controlling the number of peroxisomes in the appressorium. 相似文献
3.
4.
Xuan Cai Shikun Xiang Wenhui He Mengxi Tang Shimei Zhang Deng Chen Xinrong Zhang Caiyun Liu Guotian Li Junjie Xing Yunfeng Li Xiao-Lin Chen Yanfang Nie 《Molecular Plant Pathology》2022,23(6):832-844
The Ubp family of deubiquitinating enzymes has been found to play important roles in plant-pathogenic fungi, but their regulatory mechanisms are still largely unknown. In this study, we revealed the regulatory mechanism of the deubiquitinating enzyme Ubp3 during the infection process of Magnaporthe oryzae. AUBP3 deletion mutant was severely defective in appressorium turgor accumulation, leading to the impairment of appressorial penetration. During appressorium formation, the mutant was also defective in glycogen and lipid metabolism. Interestingly, we found that nitrogen starvation and rapamycin treatment induced the ribophagy process in M. oryzae, which is closely dependent on Ubp3. In the ∆ubp3 mutant, the ribosome proteins and rRNAs were not well degraded on nitrogen starvation and rapamycin treatment. We also found that Ubp3 interacted with the GTPase-activating protein Smo1 and regulated its de-ubiquitination. Ubp3-dependent de-ubiquitination of Smo1 may be required for Smo1 to coordinate Ras signalling. Taken together, our results showed at least two roles of Ubp3 in M. oryzae: it regulates the ribophagy process and it regulates de-ubiquitination of GTPase-activating protein Smo1 for appressorium-mediated infection. 相似文献
5.
Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence 总被引:2,自引:0,他引:2 下载免费PDF全文
The rice blast fungus Magnaporthe grisea infects its host by forming a specialized infection structure, the appressorium, on the plant leaf. The enormous turgor pressure generated within the appressorium drives the emerging penetration peg forcefully through the plant cuticle. Hitherto, the involvement of cutinase(s) in this process has remained unproven. We identified a specific M. grisea cutinase, CUT2, whose expression is dramatically upregulated during appressorium maturation and penetration. The cut2 mutant has reduced extracellular cutin-degrading and Ser esterase activity, when grown on cutin as the sole carbon source, compared with the wild-type strain. The cut2 mutant strain is severely less pathogenic than the wild type or complemented cut2/CUT2 strain on rice (Oryza sativa) and barley (Hordeum vulgare). It displays reduced conidiation and anomalous germling morphology, forming multiple elongated germ tubes and aberrant appressoria on inductive surfaces. We show that Cut2 mediates the formation of the penetration peg but does not play a role in spore or appressorium adhesion, or in appressorial turgor generation. Morphological and pathogenicity defects in the cut2 mutant are fully restored with exogenous application of synthetic cutin monomers, cAMP, 3-isobutyl-1-methylxanthine, and diacylglycerol (DAG). We propose that Cut2 is an upstream activator of cAMP/protein kinase A and DAG/protein kinase C signaling pathways that direct appressorium formation and infectious growth in M. grisea. Cut2 is therefore required for surface sensing leading to correct germling differentiation, penetration, and full virulence in this model fungus. 相似文献
6.
Deng Chen Muhammad Kamran Shen Chen Junjie Xing Zhiguang Qu Caiyun Liu Zhiyong Ren Xuan Cai Xiao-Lin Chen Jingbo Xu 《Molecular Plant Pathology》2023,24(4):374-390
Cell wall polysaccharides play key roles in fungal development, virulence, and resistance to the plant immune system, and are synthesized from many nucleotide sugars in the endoplasmic reticulum (ER)-Golgi secretory system. Nucleotide sugar transporters (NSTs) are responsible for transporting cytosolic-derived nucleotide sugars to the ER lumen for processing, but their roles in plant-pathogenic fungi remain to be revealed. Here, we identified two important NSTs, NST1 and NST2, in the rice blast fungus Magnaporthe oryzae. Both NSTs were localized in the ER, which was consistent with a function in transporting nucleotide sugar for processing in the ER. Sugar transport property analysis suggested that NST1 is involved in transportation of mannose and glucose, while NST2 is only responsible for mannose transportation. Accordingly, deletion of NSTs resulted in a significant decrease in corresponding soluble saccharides abundance and defect in sugar utilization. Moreover, both NSTs played important roles in cell wall integrity, were involved in asexual development, and were required for full virulence. The NST mutants exhibited decreasing external glycoproteins and exposure of inner chitin, which resulted in activation of the host defence response. Altogether, our results revealed that two sugar transporters are required for fungal cell wall polysaccharides accumulation and full virulence of M. oryzae. 相似文献
7.
CtPMK1, a mitogen‐activated‐protein kinase gene,is required for conidiation,appressorium formation,and pathogenicity of Colletotrichum truncatum on soybean 下载免费PDF全文
Colletotrichum truncatum, the causal agent of soybean anthracnose, invades host plants by forming a specialised infection structure called an appressorium. Mitogen‐activated protein kinase (MAPK) genes have been shown to play vital roles in several phytopathogenic fungi in regulating various infection processes, including spore germination, melanised appressorium formation, appressorial penetration and subsequent invasive growth in host plants. In this study, we identified and characterised the first Fus3/Kss1‐related MAPK gene, CtPMK1, in Colletotrichum truncatum, which is related to PMK1 in Magnaporthe oryzae. Disruption of CtPMK1 in C. truncatum resulted in a mutant with slightly reduced mycelial growth (‐30%) and melanisation that is deficient in sporulation (‐99%), as observed in the CMK1 mutant of Colletotrichum lagenarium (a synonym of Colletotrichum orbiculare, which is now the accepted name for this taxon). In contrast to CMK1 of C. lagenarium, conidia from the Ctpmk1 mutant germinated normally on glass slides and onion epidermal surfaces. Our findings suggest that there are differences in the types of in vitro functions controlled by PMK1, even between closely related species. Furthermore, the Ctpmk1 mutant failed to form appressoria or hyphopodia, subsequently resulting in the complete loss of pathogenicity on host plants. Overall, the results indicate that the Fus3/Kss1‐related MAPK gene has a conserved role in infection structure formation and pathogenicity in phytopathogenic fungi. 相似文献
8.
Vijai Bhadauria Sabine Banniza Albert Vandenberg Gopalan Selvaraj Yangdou Wei 《Plant signaling & behavior》2012,7(9):1206-1208
The rice blast pathogen, Magnaporthe oryzae has been widely used as a model pathogen to study plant infection-related fungal morphogenesis, such as penetration via appressorium and plant-microbe interactions at the molecular level. Previously, we identified a gene encoding peroxisomal alanine: glyoxylate aminotransferase 1 (AGT1) in M. oryzae and demonstrated that the AGT1 was indispensable for pathogenicity. The AGT1 knockout mutants were unable to penetrate the host plants, such as rice and barley, and therefore were non-pathogenic. The inability of ∆Moagt1 mutants to penetrate the susceptible plants was likely due to the disruption in coordination of the β-oxidation and the glyoxylate cycle resulted from a blockage in lipid droplet mobilization and eventually utilization during conidial germination and appressorium morphogenesis, respectively. Here, we further demonstrate the role of AGT1 in lipid mobilization by in vitro germination assays and confocal microscopy. 相似文献
9.
10.
Lianhu Zhang Yan Cai Yunxi Li Tian Zhang Baohua Wang Guodong Lu Dongmei Zhang Stefan Olsson Zonghua Wang 《Molecular Plant Pathology》2021,22(9):1159-1164
Polar growth during appressorium formation is vital for the penetration peg formation in the rice blast fungus, Magnaporthe oryzae. Previous research has shown that the Sln1-septin-exocyst complex, localized at the base of the appressorium in contact with the leaf surface, forms a ring structure that influences growth polarity and affects penetration peg formation, and is necessary for pathogenicity. Our previous research showed CK2 proteins assemble another ring structure positioned perpendicular to the Sln1-septin-exocyst complex. Our research showed that the CK2 ring needs to become correctly assembled for penetration peg function and subsequent plant infection. In the present study, we found that the ring structures of CK2 are absent in the appressorium of ΔMoSep3 septin deletion mutants lacking the septin ring of the Sln1-septin-exocyst complex. Sln1 affects the septin proteins that recruit the exocyst complex that localizes as another ring at the appressorium's bottom. Destruction of the exocyst complex by mutation also causes incorrect localization of the CK2 ring structure. In conclusion, CK2 probably takes part in reestablishing the appressorium' spolarity growth necessary for penetration peg formation. We can also conclude that the correct localization and assembly of one or more CK2 ring structures in the appressorium depend on the initial assembly of the Sln1-septin-exocyst complex two rings at the base of the appressorium. 相似文献
11.
MoCDC14 is important for septation during conidiation and appressorium formation in Magnaporthe oryzae 下载免费PDF全文
Chaohui Li Shulin Cao Chengkang Zhang Yonghui Zhang Qiang Zhang Jin‐Rong Xu Chenfang Wang 《Molecular Plant Pathology》2018,19(2):328-340
As a typical foliar pathogen, appressorium formation and penetration are critical steps in the infection cycle of Magnaporthe oryzae. Because appressorium formation and penetration are closely co‐regulated with the cell cycle, and Cdc14 phosphatases have an antagonistic relationship with cyclin‐dependent kinases (CDKs) on proteins related to mitotic exit and cytokinesis, in this study, we functionally characterized the MoCDC14 gene in M. oryzae. The Mocdc14 deletion mutant showed significantly reduced growth rate and conidiation. It was also defective in septum formation and nuclear distribution. Septation was irregular in Mocdc14 hyphae and hyphal compartments became multi‐nucleate. Mutant conidia often showed incomplete septa or lacked any septum. During appressorium formation, the septum delimiting appressoria from the rest of the germ tubes was often formed far away from the neck of the appressoria or not formed at all. Unlike the wild‐type, some mutant appressoria had more than one nucleus at 24 h. In addition to appressoria, melanization occurred on parts of the germ tubes and conidia, depending on the irregular position of the appressorium‐delimiting septum. The Mocdc14 mutant was also defective in glycogen degradation during appressorium formation and appressorial penetration of intact plant cells. Similar defects in septum formation, melanization and penetration were observed with appressorium‐like structures formed at hyphal tips in the Mocdc14 mutant. Often a long fragment of mutant hyphae was melanized, together with the apical appressorium‐like structures. These results indicate that MoCDC14 plays a critical role in septation, nuclear distribution and pathogenesis in M. oryzae, and correct septum formation during conidiogenesis and appressorium formation requires the MoCdc14 phosphatase. 相似文献
12.
13.
14.
The serine/threonine kinase p21-activated kinase 1 (Pak1) modulates actin and microtubule dynamics. The neuronal functions of Pak1, despite its abundant expression in the brain, have not yet been fully delineated. Previously, we reported that Pak1 mediates initiation of dendrite formation. In the present study, the role of Pak1 in dendritogenesis, spine formation and maintenance was examined in detail. Overexpression of constitutively active-Pak1 in immature cortical neurons increased not only the number of the primary branching on apical dendrites but also the number of basal dendrites. In contrast, introduction of dominant negative-Pak caused a reduction in both of these morphological features. The length and the number of secondary apical branch points of dendrites were not significantly different in cultured neurons expressing these mutant forms, suggesting that Pak1 plays a role in dendritogenesis. Pak1 also plays a role in the formation and maintenance of spines, as evidenced by the altered spine morphology, resulting from overexpression of mutant forms of Pak1 in immature and mature hippocampal neurons. Thus, our results provide further evidence of the key role of Pak1 in the regulation of dendritogenesis, dendritic arborization, the spine formation, and maintenance. 相似文献
15.
16.
17.
Somesh BP Neffgen C Iijima M Devreotes P Rivero F 《Traffic (Copenhagen, Denmark)》2006,7(9):1194-1212
Dictyostelium RacH localizes predominantly to membranes of the nuclear envelope, endoplasmic reticulum and Golgi apparatus. To investigate the role of this protein, we generated knockout and overexpressor strains. RacH-deficient cells displayed 50% reduced fluid-phase uptake and a moderate exocytosis defect, but phagocytosis was unaffected. Detailed examination of the endocytic pathway revealed defective acidification of early endosomes and reduced secretion of acid phosphatase in the presence of sucrose. The distribution of the post-lysosomal marker vacuolin was altered, with a high proportion of cells showing a diffuse vesicular pattern in contrast to the wild-type strain, where few intensely stained vacuoles predominate. Cytokinesis, cell motility, chemotaxis and development appeared largely unaffected. In a cell-free system, RacH stimulates actin polymerization, suggesting that this protein is involved in actin-based trafficking of vesicular compartments. We also investigated the determinants of subcellular localization of RacH by expression of green-fluorescent-protein-tagged chimeras in which the C-terminus of RacH and the plasma-membrane-targeted RacG were exchanged, the insert region was deleted or the net positive charge of the hypervariable region was increased. We show that several regions of the molecule, not only the hypervariable region, determine targeting of RacH. Overexpression of mistargeted RacH mutants did not recapitulate the phenotypes of a strain overexpressing nonmutated RacH, indicating that the function of this protein is in great part related to its subcellular localization. 相似文献
18.
The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. 总被引:13,自引:2,他引:13 下载免费PDF全文
Magnaporthe grisea, the causal agent of rice blast disease, differentiates a specialized infection cell, an appressorium, that is required for infection of its host. Previously, cAMP was implicated in the endogenous signaling pathway leading to appressorium formation. To obtain direct evidence for the role of cAMP in appressorium formation, the gene encoding the catalytic subunit of the cAMP-dependent protein kinase (cpkA) was cloned, sequenced, and disrupted. Polymerase chain reaction primers designed after highly conserved regions in the same gene from other organisms were used to amplify genomic DNA fragments. The cloned amplification products were used to identify genomic clones. DNA blot analysis indicated that cpkA is present as a single copy in the genome. cpkA consists of 1894 bp, including three short introns sufficient to encode a protein of 539 amino acids with a predicted molecular mass of 60.7 kD. The deduced peptide shares > 45% identity with other catalytic subunits and contains all functional motifs and residues with the addition of a glutamine-rich region at the N terminus. Two transformants, L5 and T-182, in which cpkA had been replaced with a hygromycin resistance gene cassette, were unable to produce appressoria, could not be induced to form appressoria by cAMP, and were nonpathogenic on susceptible rice, even when leaves were abraded. These results were confirmed by analysis of 57 progeny from a cross between transformant L5 and the wild-type laboratory strain 70-6. Other aspects of growth and development, including vegetative growth as well as asexual and sexual competence, were unaffected when measured in vitro. These results provide direct evidence that the cAMP-dependent protein kinase is necessary for infection-related morphogenesis and pathogenesis in a phytopathogenic fungus. 相似文献
19.
Wei Tang Haolang Jiang Osakina Aron Min Wang Xueyu Wang Jiangfeng Chen Birong Lin Xuehang Chen Qiaojia Zheng Xiuqin Gao Dou He Airong Wang Zonghua Wang 《Environmental microbiology》2020,22(12):4953-4973
Most secretory proteins are folded and modified in the endoplasmic reticulum (ER); however, protein folding is error-prone, resulting in toxic protein aggregation and cause ER stress. Irreversibly misfolded proteins are subjected to ER-associated degradation (ERAD), modified by ubiquitination, and degraded by the 26S proteasome. The yeast ERAD ubiquitin ligase Hrd1p and multispanning membrane protein Der1p are involved in ubiquitination and transportation of the folding-defective proteins. Here, we performed functional characterization of MoHrd1 and MoDer1 and revealed that both of them are localized to the ER and are pivotal for ERAD substrate degradation and the ER stress response. MoHrd1 and MoDer1 are involved in hyphal growth, asexual reproduction, infection-related morphogenesis, protein secretion and pathogenicity of M. oryzae. Importantly, MoHrd1 and MoDer1 mediated conidial autophagic cell death and subsequent septin ring assembly at the appressorium pore, leading to abnormal appressorium development and loss of pathogenicity. In addition, deletion of MoHrd1 and MoDer1 activated the basal unfolded protein response (UPR) and autophagy, suggesting that crosstalk between ERAD and two other closely related mechanisms in ER quality control system (UPR and autophagy) governs the ER stress response. Our study indicates the importance of ERAD function in fungal development and pathogenesis of M. oryzae. 相似文献