首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ubiquitination, a crucial post-translational modification, controls substrate degradation and can be reversed by deubiquitinases (DUBs). An increasing number of studies are showing that DUBs regulate the malignant behavior and chemotherapy resistance of gastric cancer (GC) by stabilizing various proteins. However, the expression level and biological function of the DUB, proteasome 26S subunit, non-ATPase 7 (PSMD7), in GC remains unknown. Herein, we report for the first time that PSMD7 is frequently overexpressed in GC tissues. Elevated levels of PSMD7 were also detected in GC cell lines. Notably, the upregulation of PSMD7 closely correlated with malignant clinical parameters and reduced the survival of GC patients. Functionally, we found that PSMD7 knockdown consistently suppressed the proliferation, migration, and invasion of AGS and SGC-7901 cells. Ectopic expression of PSMD7 facilitated GC cell proliferation and mobility. Based on protein-protein interaction prediction, RAD23 homolog B (RAD23B) protein was identified as a candidate substrate of PSMD7. PSMD7 positively regulated the abundance of RAD23B and xeroderma pigmentosum, complementation group C (XPC) protein in GC cells. The interaction between PSMD7 and RAD23B was confirmed using protein immunoprecipitation. PSMD7 knockdown enhanced the ubiquitination and degradation of RAD23B protein in GC cells. PSMD7 promoted cell viability, apoptosis resistance, and DNA damage repair in GC cells upon cisplatin (DDP) treatment. Moreover, PSMD7 silencing inhibited tumor growth and enhanced the sensitivity of GC cells to DDP treatment in mice. In summary, PSMD7 was highly expressed in GC and contributed to the malignant behavior and DDP resistance of tumor cells by stabilizing RAD23B.  相似文献   

2.
Ubiquitination is an important post-translational modification that can be reversed by a family of enzymes called deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 28 (USP28), a member of the DUBs family, functions as a potential tumour promoter in various cancers. However, the biological function and clinical significance of USP28 in pancreatic cancer (PC) are still unclear. Here, we showed that PC tumours had higher USP28 expression compared with that of normal pancreatic tissues, and high USP28 level was significantly correlated with malignant phenotype and shorter survival in patients with PC. Overexpression of USP28 accelerated PC cell growth, whereas USP28 knockdown impaired PC cell growth both in vitro and in vivo. Further, we found that USP28 promoted PC cell growth by facilitating cell cycle progression and inhibiting apoptosis. Mechanistically, USP28 deubiquitinated and stabilised FOXM1, a critical mediator of Wnt/β-catenin signalling. USP28-mediated stabilisation of FOXM1 significantly promoted nucleus β-catenin trans-activation, which in turn led to the activation of the Wnt/β-catenin pathway. Finally, restoration of FOXM1 expression abolished the anti-tumour effects of USP28-silencing. Thus, USP28 contributes to PC pathogenesis through enhancing the FOXM1-mediated Wnt/β-catenin signalling, and could be a potential diagnostic and therapeutic target for PC cases.Subject terms: Pancreatic cancer, Cell growth  相似文献   

3.
4-1BB和4-1BB配体(4-1BBL),又被称为CD137和CD137配体,分别属于肿瘤坏死因子(TNF)受体和配体家族的成员。4-1BBL 与4-1BB相互作用可以激活T细胞免疫应答。因此,4-1BBL一直在抗肿瘤免疫应答中发挥经典的免疫共刺激分子作用。近期研究发现,4-1BBL在肿瘤细胞中另有其他的生物学功能,但4-1BBL在胃癌进展过程中的功能尚不明确。本文探讨了4-1BBL在人胃癌细胞中的生物学功能和分子作用机制。首先,通过检索TCGA和Kaplan Meier plotter数据库发现,4-1BBL在胃癌组织中的表达显著高于癌旁组织(P<0.001),且4-1BBL的高表达与胃癌的不良预后正相关(P<0.05)。细胞生物学的结果显示,敲除4-1BBL明显抑制胃癌细胞的增殖(P<0.05)、侵袭和迁移(P<0.05),促进胃癌细胞的凋亡(P<0.05);另外,蛋白质免疫印迹结果表明,敲除4-1BBL可使β-联蛋白、c-Myc和细胞周期蛋白D1(cyclin D1)的蛋白质表达水平下降,抑制Wnt/β-catenin信号通路。相反,过表达4-1BBL则显著促进胃癌细胞增殖(P<0.05)、侵袭和迁移(P<0.05),减少胃癌细胞的凋亡(P<0.05);且过表达4-1BBL促进β-联蛋白(β-catenin)、c-Myc和细胞周期蛋白D1的蛋白质表达,激活Wnt/β-catenin信号通路。综上所述,4-1BBL可通过激活Wnt/β-catenin信号通路促进人胃癌细胞的增殖和迁移。  相似文献   

4.
BackgroundThe elevated Cyclin B1 expression contributes to various tumorigenesis and poor prognosis. Cyclin B1 expression could be regulated by ubiquitination and deubiquitination. However, the mechanism of how Cyclin B1 is deubiquitinated and its roles in human glioma remain unclear.MethodsCo-immunoprecipitation and other assays were performed to detect the interacting of Cyclin B1 and USP39. A series of in vitro and in vivo experiments were performed to investigate the effect of USP39 on the tumorigenicity of tumor cells.ResultsUSP39 interacts with Cyclin B1 and stabilizes its expression by deubiquitinating Cyclin B1. Notably, USP39 cleaves the K29-linked polyubiquitin chain on Cyclin B1 at Lys242. Additionally, overexpression of Cyclin B1 rescues the arrested cell cycle at G2/M transition and the suppressed proliferation of glioma cells caused by USP39 knockdown in vitro. Furthermore, USP39 promotes the growth of glioma xenograft in subcutaneous and in situ of nude mice. Finally, in human tumor specimens, the expression levels of USP39 and Cyclin B1 are positively relevant.ConclusionOur data support the evidence that USP39 acts a novel deubiquitinating enzyme of Cyclin B1 and promoted tumor cell proliferation at least in part through Cyclin B1 stabilization, represents a promising therapeutic strategy for tumor patients.  相似文献   

5.
Deubiquitinases (DUBs) have important biological functions, but their roles in breast cancer metastasis are not completely clear. In this study, through screening a series of DUBs related to breast cancer distant metastasis-free survival (DMFS) in the Kaplan-Meier Plotter database, we identified ubiquitin-specific protease 12 (USP12) as a key deubiquitinating enzyme for breast cancer metastasis. We confirmed this via an orthotopic mouse lung metastasis model. We revealed that the DMFS of breast cancer patients with high USP12 was worse than that of others. Knockdown of USP12 decreased the lung metastasis ability of 4T1 cells, while USP12 overexpression increased the lung metastasis ability of these cells in vivo. Furthermore, our results showed that the supernatant from USP12-overexpressing breast cancer cells could promote angiogenesis according to human umbilical vein endothelial cell (HUVEC) migration and tube formation assays. Subsequently, we identified midkine (MDK) as one of its substrates. USP12 could directly interact with MDK, decrease its polyubiquitination and increase its protein stability in cells. Overexpression of MDK rescued the loss of angiogenesis ability mediated by knockdown of USP12 in breast cancer cells in vitro and in vivo. There was a strong positive relationship between USP12 and MDK protein expression in clinical breast cancer samples. Consistent with the pattern for USP12, high MDK expression predicted lower DMFS and overall survival (OS) in breast cancer. Collectively, our study identified that USP12 is responsible for deubiquitinating and stabilizing MDK and leads to metastasis by promoting angiogenesis. Therefore, the USP12–MDK axis could serve as a potential target for the therapeutic treatment of breast cancer metastasis.Subject terms: Breast cancer, Breast cancer  相似文献   

6.
Recent experimental evidence support the model in which the simultaneous induction of BMI-1 and USP22 is critical during cancer progression. Whether this model may affect gastric cancer (GC) progression is worthy of additional study. In this study, we examined the significance of the USP22 and BMI-1 expression in GC (n = 219), non-cancerous mucosa (n = 37), and lymph node metastasis (n = 37). The protein expression level of USP22 and BMI-1 were concomitantly up-regulated from non-cancerous mucosa to primary carcinoma and from carcinomas to lymph node metastasis (P < 0.001). A statistical correlation was observed between USP22 and BMI-1 expression in GC tissues (n = 219, r = 0.634, P < 0.001) and in lymph node metastasis (n = 37, r = 0.689, P < 0.001). The incidence of positive expression was 57.08% for USP22, 49.32% for BMI-1, and 45.21% for USP22/BMI-1 in 219 GC tissues, respectively. Co-positive of USP22/BMI-1 was significantly correlated with gross features (x(2) = 14.256, P < 0.001), differentiation (x(2) = 5.872, P = 0.015), pT classification (x(2) = 18.486, P < 0.001), pN classification (x(2) = 9.604, P = 0.002), pM classification (x(2) = 32.766, P < 0.001), and AJCC stage (x(2) = 58.278, P < 0.001). Notably, high USP22/BMI-1 expression was significantly associated with shorter disease-specific survival (P < 0.001). By Cox regression analysis, co-positive of USP22/BMI-1 was found to be an independent prognostic factor (P = 0.002). Our results indicated the simultaneous activation of USP22 and BMI-1 may associate with GC progression and therapy failure.  相似文献   

7.
Oral squamous cell carcinoma (OSCC) is a common malignant tumor in the world. Radiotherapy is one of the standard therapies for patients with OSCC, but its clinical efficiency is limited due to radioresistance. In this study, we identified a mechanism of such resistance regulated by Ubiquitin-specific protease 14 (USP14). USP14 expression was significantly increased in clinical OSCC tissue samples and cell lines, and OSCC patients with high USP14 expression predicted poor overall survival rate. Additionally, a negative correlation between USP14 and LC3B was observed in patients with OSCC. We then found that irradiation (IR)-reduced cell survival of OSCC cells lines was further decreased when USP14 was knocked down. However, USP14 over-expression significantly promoted the cell viability of OSCC cells after IR treatment. Colony formation analysis confirmed thatafter IR treatment,USP14 knockdown markedly decreased the proliferation of OSCC cells, but over-expressing USP14 significantly up-regulated the proliferative activity of OSCC cells. Furthermore, DNA damage caused by IR was enhanced by USP14 knockdown, while been suppressed in OSCC cells with USP14 over-expression. Additionally, IR-inducedapoptosis was further promoted by USP14 knockdown in OSCC cells, which was, however, significantly abolished by USP14 over-expression.Moreover, our in vivo studies showed that IR-reduced tumor growth and tumor weight were further enhanced by USP14 knockdown in OSCC tumor-bearing nude mice. Finally, we found that USP14 knockdown could promote IR-induced autophagy by increasing LC3BII and γH2AX expression levels in IR-treated OSCC cells. However, this event was markedly abolished by ATG5 knockdown, subsequently restoring the cell proliferation in IR-incubated OSCC cells.Finally, we found that USP14-mediated apoptosis was autophagy-dependent in IR-treated OSCC cells. Taken together, these findings suggested that suppressing USP14 could alleviateradioresistancein OSCC both in vitro and in vivo by inducing apoptosis and autophagy, and thus could be served as a promising therapeutic strategy for OSCC treatment.  相似文献   

8.
Glycolysis is regarded as the hallmark of cancer development and progression, which involves a multistep enzymatic reaction. This study aimed to explore the clinicopathological significance and potential role of glycolytic enzyme aldolase A (ALDOA) in the carcinogenesis and progression of gastric cancer (GC). ALDOA was screened from three paired liver metastasis tissues and primary GC tissues and further explored with clinical samples and in vitro studies. The ALDOA protein level significantly correlated with a larger tumor diameter (P = .004), advanced T stage (P < .001), N stage (P < .001) and lymphovascular invasion (P = .001). Moreover, the expression of ALDOA was an independent prognostic factor for the 5‐year overall survival and disease‐free survival of patients with GC in both univariate and multivariate survival analyses (P < .05). Silencing the expression of ALDOA in GC cell lines significantly impaired cell growth, proliferation and invasion ability (P < .05). Knockdown of the expression of ALDOA reversed the epithelial–mesenchymal transition process. Mechanically, ALDOA could affect the hypoxia‐inducible factor (HIF)‐1α activity as demonstrated by the HIF‐1α response element–luciferase activity in GC cells. Collectively, this study revealed that ALDOA was a potential biomarker of GC prognosis and was important in the carcinogenesis and progression of human GC.  相似文献   

9.
肾透明细胞癌(clear cell renal cell carcinoma,ccRCC)是一种转移率高、预后差的细胞代谢性疾病,对其有效诊疗及预后分子标志物的研究十分重要。葡萄糖6-磷酸脱氢酶(glucose 6-phosphatedehydrogenase, G6PD)在ccRCC中高表达,并提示患者不良预后,其促进ccRCC细胞增殖的分子机制有待进一步揭示。本研究发现,降低G6PD可抑制细胞周期G1/S期转化并显著抑制ccRCC细胞增殖。G6PD可在细胞水平调控G1/S期转化及增殖相关因子Cyclin D1,CDK4,CDK6,Cyclin E1和CDK2基因表达。TCGA数据库分析结果表明,ccRCC 中Cyclin D1,Cyclin E1 和 CDK2的mRNA 水平显著升高,而CDK4表达无明显差异,CDK6表达却显著降低。相关性分析结果显示,G6PD与Cyclin D1呈显著负相关(P<0.0001),G6PD与CDK4,CDK6之间无显著相关性(P>0.05),G6PD与Cyclin E1(P<0.0001)以及CDK2(P<0.05)显著正相关。进一步免疫组化检测结果表明,Cyclin E1和 CDK2在ccRCC肿瘤组织中表达显著升高。生存预后分析结果显示,Cyclin D1高表达提示ccRCC患者整体预后更为良好,CDK4和CDK6表达水平在ccRCC患者总生存率预测中无意义;而Cyclin E1和CDK2高表达均可提示ccRCC患者预后不良。进一步细胞水平检测发现,Cyclin E1、CDK2表达降低可显著逆转G6PD促进ccRCC细胞增殖的能力。综上,与增殖相关因子Cyclin D1,CDK4和CDK6相比,G6PD有可能通过促进Cyclin E1和CDK2表达升高而发挥促进 ccRCC肿瘤细胞增殖的作用,并且这3者的异常高表达有望成为ccRCC患者不良预后的独立生存预测因素。  相似文献   

10.
Oral Squamous Cell Carcinoma (OSCC) is the most common malignant cancer affecting oral cavity. Recent studies have demonstrated that Ubiquitin-specific protease 7 (USP7) was upregulated in several types of cancers. USP7 expression was associated with various proto-oncogenes and tumor suppressor genes. However, USP7 expression level and its functional role in OSCC is unclear. In the current study, we showed that USP7 expression in OSCC tissues was generally upregulated compared to normal adjacent tissues by using IHC. Furthermore, statistical analysis uncovered that USP7 expression was positively correlated with Ki-67, MMP2, VEGF in OSCC tissues. Importantly, high USP7 expression was significantly correlated with lymph node metastasis and histological differentiation in OSCC patients. So, our hypothesis is that USP7 plays a tumor-promoting role in OSCC. Knocking down of USP7 in tumor cells not only suppressed HSC3 cells proliferation, migration and invasion, but also promoted cell apoptosis. Moreover, USP7 siRNA blocked the activation of Akt/ERK signaling pathway. In conclusion, data presented here suggests that USP7 promotes the progression of OSCC. USP7 may be used as a new therapeutic target for OSCC diagnosis and treatment.Keywords: Oral Squamous Cell Carcinoma, USP7, siRNA, proliferation, invasion  相似文献   

11.
Long noncoding RNAs (lncRNAs) exert key regulators in cancer development and progression. The functional significance of lncRNA small nucleolar RNA host gene 20 (SNHG20) was reported in gastric cancer (GC); however, the underlying molecular mechanism in GC development is largely unknown. Here, our results showed that the lncRNA SNHG20 expression was significantly higher in GC tissues compared with adjacent normal tissues by quantitative real-time PCR (qRT-PCR) analysis. Higher lncRNA SNHG20 expression was highly associated with tumor size and lymphatic metastasis of patients. Patients with higher lncRNA SNHG20 expression predicted a short disease-free survival (DFS) and overall survival (OS). Furthermore, lncRNA SNHG20 expression negatively associated with miR-495-3p expression and regulated miR-495-3p expression. Function assays confirmed that lncRNA SNHG20 knockdown using RNA interference suppressed cell proliferation and invasion of GC by negatively regulating miR-495-3p expression. Moreover, we demonstrated that lncRNA SNHG20 inhibited zinc finger protein X-linked (ZFX) expression by negatively miR-495-3p expression in GC cells. In vivo, the current study also indicated that lncRNA SNHG20 knockdown reduced the tumor growth by downregulating ZFX expression. Thus, our results implied that inhibition of SNHG20/miR-495-3p/ZFX axis may provide valuable target for GC treatment.  相似文献   

12.
miR-3940-5p level was lower in non–small cell lung cancer (NSCLC) tumor tissues than that in the matched tumor-adjacent tissues and correlated with clinicopathological features. Cyclin D1 (CCND1), a key driver of malignant transformation in NSCLC, was overexpressed in many cancers, including NSCLC. The ubiquitin specific peptidase-28 (USP28) was also overexpressed in NSCLC and associated with poor prognosis of NSCLC patients. We searched for miR-3940-5p targets by using TargetScan and miRanda online tools and found that CCND1 and USP28 were potential targets of miR-3940-5p. Based on these findings, we speculated that miR-3940-5p might target CCND1 and USP28 to inhibit NSCLC growth. We determined the expression of miR-3940-5p, CCND1, and USP28 by quantitative real-time polymerase chain reaction and Western blot assays, respectively, and found downregulation of miR-3940-5p and upregulation of CCND1 and USP28 in NSCLC tissues and cell lines. Cell proliferation and apoptosis assays showed that miR-3940-5p suppressed proliferation and promoted apoptosis in NSCLC cells, and silencing CCND1 and USP28 both recapitulated the effects of miR-3940-5p on NSCLC cells. Furthermore, we verified that CCND1 and USP28 were direct targets of miR-3940-5p and also found that the effects of NSCLC cell proliferation and apoptosis by miR-3940-5p were attenuated by overexpression of CCND1 or USP28. The animal experiments also showed that overexpression of miR-3940-5p inhibited the growth of NSCLC tumors in vivo. These results confirmed our speculation that miR-3940-5p inhibits proliferation and induces apoptosis in NSCLC cells by targeting CCND1 and USP28. These findings facilitate a better understanding of the molecular mechanisms underlying NSCLC initiation and progression and provide promising diagnostic markers and therapeutic targets for NSCLC.  相似文献   

13.
S Piao  Y Liu  J Hu  F Guo  J Ma  Y Sun  B Zhang 《PloS one》2012,7(8):e42540

Background and Objective

The significance of ubiquitin-specific protease 22 (USP22) as a potential marker has been growing in the field of oncology. The aim of this study was to investigate the role of USP22 and the association with its potential targets in oral squamous cell carcinoma (OSCC).

Methods

Immunohistochemistry was used to determine the expression of USP22 protein in 319 OSCC patients in comparison with 42 healthy controls. The clinical correlations and prognostic significance of the aberrantly expressed protein was evaluated to identify novel biomarker of OSCC.

Results

The incidence of positive USP22 expression was 63.32% in 319 conventional OSCC tissues. The protein expression level of USP22 was concomitantly up-regulated from non-cancerous mucosa to primary carcinoma and from carcinomas to lymph node metastasis (P<0.001). Moreover, statistical analysis showed that positive USP22 expression was positively related to lymph node metastasis, Ki67, Cox-2 and recurrence. Furthermore, it was shown that patients with positive USP22 expression had significantly poorer outcome compared with patients with negative expression of USP22 for patients with positive lymph nodes. Multivariate Cox regression analysis revealed that USP22 expression level was an independent prognostic factor for both overall survival and disease-free survival (P<0.001 and P<0.001, respectively). Cancer cells with reduced USP22 expression exhibited reduced proliferation and colony formation evaluated by MTT and soft agar assays.

Conclusion

To our knowledge, this is the first study that determines the relationship between USP22 expression and prognosis in OSCC. We found that increased expression of USP22 is associated with poor prognosis in OSCC. USP22 may represent a novel and useful prognostic marker for OSCC.  相似文献   

14.
肿瘤的侵袭和转移是加剧肿瘤恶化的主要原因,也是导致患者预后不良的根本原因。近年来大量研究发现,大部分肿瘤的转移都依赖于上皮间质转化(epithelial-mesenchymal transition, EMT)的发生,此外EMT也与肿瘤干性和肿瘤耐药等诸多肿瘤恶性行为密切相关,因此有效的抑制EMT的发生将可能极大的有利于肿瘤的治疗。去泛素化酶(deubiquitinating enzymes, DUBs)的主要功能之一就是通过移除底物蛋白质上泛素链,避免其通过泛素蛋白酶体途径降解,来维持细胞内蛋白质水平的动态平衡。去泛素化酶作为调节蛋白质泛素化修饰的一类重要酶类,其异常表达或酶活性的改变通常都会导致疾病的发生。众多研究发现,部分去泛素化酶在肿瘤侵袭和转移过程中表达失衡,在肿瘤转移的过程中扮演着重要的角色。EMT是指由上皮型细胞转变为间质型细胞的动态细胞生物学过程,在该过程中涉及到例如Snial1、Slug、ZEB1等EMT相关转录因子和细胞表面的例如E-钙黏着蛋白、N-钙黏着蛋白等分子标志物表达水平的变化。这些蛋白质通常具有不稳定性,易被降解等特征。EMT过程的发生,涉及到许多蛋白质稳定性的调节,而去泛素化酶作为一类维持蛋白质稳定的重要酶类,在调节这些蛋白质的稳定性方面发挥着重要的作用。EMT的发生也与TGF-β通路、Wnt通路等细胞内众多信号通路的异常活化密不可分,去泛素化酶通过介导这些信号通路的活化,从而间接的调节EMT发生发展。去泛素化酶通过调节EMT相关分子或EMT相关信号通路等多种方式直接或间接影响EMT进展,因此,通过靶向于去泛素化酶抑制肿瘤的侵袭和转移,将为肿瘤治疗提供新的治疗手段和方案,从而有效的推动肿瘤的治疗。本文主要就去泛素化酶在调节EMT相关分子以及信号通路等方面,阐述去泛素化酶在EMT过程中所发挥的重要作用及其作为肿瘤治疗靶点的可能性。  相似文献   

15.
Protein recruitment to DNA double-strand breaks (DSBs) relies on ubiquitylation of the surrounding chromatin by the RING finger ubiquitin ligases RNF8 and RNF168. Flux through this pathway is opposed by several deubiquitylating enzymes (DUBs), including OTUB1 and USP3. By analyzing the effect of individually overexpressing the majority of human DUBs on RNF8/RNF168-mediated 53BP1 retention at DSB sites, we found that USP44 and USP29 powerfully inhibited this response at the level of RNF168 accrual. Both USP44 and USP29 promoted efficient deubiquitylation of histone H2A, but unlike USP44, USP29 displayed nonspecific reactivity toward ubiquitylated substrates. Moreover, USP44 but not other H2A DUBs was recruited to RNF168-generated ubiquitylation products at DSB sites. Individual depletion of these DUBs only mildly enhanced accumulation of ubiquitin conjugates and 53BP1 at DSBs, suggesting considerable functional redundancy among cellular DUBs that restrict ubiquitin-dependent protein assembly at DSBs. Our findings implicate USP44 in negative regulation of the RNF8/RNF168 pathway and illustrate the usefulness of DUB overexpression screens for identification of antagonizers of ubiquitin-dependent cellular responses.  相似文献   

16.
Ubiquitinating enzymes catalyze protein ubiquitination, a reversible process countered by deubiquitinating enzyme (DUB) action. Ubiquitin-specific protease 4 (USP4) is a member of the ubiquitin-specific protease (USP) family of DUBs that has a role in spliceosome regulation. In the present study, we demonstrated that USP4 may be involved in neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). We obtained a significant up-regulation of USP4 in neurons adjacent to the hematoma following ICH by the results of Western blot, immunohistochemistry, and immunofluorescence. Increasing USP4 level was found to be accompanied by the up-regulation of active caspase-3, γH2AX, Bax, and decreased expression of Bcl-2. In addition, USP4 co-localized well with γH2AX in the nucleus in the ICH model and hemin-induced apoptosis model. Moreover, in vitro study, knocking down USP4 by USP4-specific siRNA in PC12 cells reduced active caspase-3 expression. All these results above suggested that USP4 may be involved in neuronal apoptosis after ICH.  相似文献   

17.
Recent studies provided strong support for the view that ubiquitin-specific protease 22 (USP22) plays a central role in cell-cycle progression and also in pathological processes such as oncogenesis. We have recently shown that USP22 levels are elevated in colorectal carcinoma with associated increase in the expression of several cell-cycle-related genes. However, the precise mechanism for these functions of USP22 at molecular level has not been fully elucidated. Currently, we investigated the role of USP22 in human colorectal cancer (CRC). We observed that USP22 expression was statistically significantly correlated positively with that of BMI-1, c-Myc and both, pAkt (Ser473), and pAkt (Thr308), in primary tumor tissues from 43 CRC patients. Down-regulation of USP22 expression in HCT116 colorectal cancer cells by siRNA resulted in the accumulation of cells in the G1 phase of the cell cycle. RNAi-knockdown of USP22 in HCT16 cells also led to the repression of BMI-1 and was accompanied by the up-regulation of p16INK4a and p14ARF, with a consequent decrease in E2F1 and p53 levels. In addition, down-regulation of c-Myc-targeted cyclin D2 was also noticed in cells treated with USP22-siRNA. Furthermore, our results showed that USP22 deletion also caused down-regulation of Akt/GSK3β activity, which can also contribute to the reduction of cyclin D2. Collectively, our current results suggest that USP22 may act as an oncogene in CRC as it positively regulates cell cycle via both BMI-1-mediated INK4a/ARF pathway and Akt signaling pathway.  相似文献   

18.
ABSTRACT

PRKN/parkin activation through phosphorylation of its ubiquitin and ubiquitin-like domain by PINK1 is critical in mitophagy induction for eliminating the damaged mitochondria. Deubiquitinating enzymes (DUBs) functionally reversing PRKN ubiquitination are critical in controlling the magnitude of PRKN-mediated mitophagy process. However, potential DUBs that directly target PRKN and antagonize its pro-mitophagy effect remains to be identified and characterized. Here, we demonstrated that USP33/VDU1 is localized at the outer membrane of mitochondria and serves as a PRKN DUB through their interaction. Cellular and in vitro assays illustrated that USP33 deubiquitinates PRKN in a DUB activity-dependent manner. USP33 prefers to remove K6, K11, K48 and K63-linked ubiquitin conjugates from PRKN, and deubiquitinates PRKN mainly at Lys435. Mutation of this site leads to a significantly decreased level of K63-, but not K48-linked PRKN ubiquitination. USP33 deficiency enhanced both K48- and K63-linked PRKN ubiquitination, but only K63-linked PRKN ubiquitination was significantly increased under mitochondrial depolarization. Further, USP33 knockdown increased both PRKN protein stabilization and its translocation to depolarized mitochondria leading to the enhancement of mitophagy. Moreover, USP33 silencing protects SH-SY5Y human neuroblastoma cells from the neurotoxin MPTP-induced apoptotic cell death. Our findings convincingly demonstrate that USP33 is a novel PRKN deubiquitinase antagonizing its regulatory roles in mitophagy and SH-SY5Y neuron-like cell survival. Thus, USP33 inhibition may represents an attractive new therapeutic strategy for PD patients.

Abbreviations: CCCP: carbonyl cyanide 3-chlorophenylhydrazone; DUB: deubiquitinating enzymes; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; OMM: outer mitochondrial membrane; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; TM: transmembrane; Ub: ubiquitin; UBA1: ubiquitin like modifier activating enzyme 1; UBE2L3/UbcH7: ubiquitin conjugating enzyme E2 L3; USP33: ubiquitin specific peptidase 33; WT: wild type.  相似文献   

19.
20.
The protein of programmed cell death 5 (PDCD5) is believed to participate in regulation of apoptosis. Although PDCD5 is reducibly expressed in various human tumors, it is not clear which expression level of PDCD5 is in gastric cancer (GC). In this study, we have systematically employed the approaches of RT-PCR, Real- time PCR, Immunohistochemistry (IHC), Immunofluorescence staining (IFS) and Western blot to determine the PDCD5 expression in GC cells and primary tumors, at mRNA and protein level, respectively. Our data revealed that the positive rate of PDCD5 expression in the gastric tumor tissues was significantly less than that of the normal tissues (14 out of 102 vs 36 out of 51), whereas, the decreased expression of PDCD5 protein was well correlated with the up-regulated expression of Bcl-2 in these tissues, and the up-regulated expression and nuclear translocation of PDCD5 protein were verified in the apoptotic GC cells induced by Diallyl trisulfide (DATS). Furthermore, the survival curve has suggested that the more PDCD5 expressions were found in the patients, the longer the survival periods were. Therefore, our observations lay down a reasonable postulation that PDCD5 may play a key role to regulate the apoptotic processes in the GC cells and gastric tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号