首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xanthomonas campestris pv. campestris (Xcc) controls virulence and plant infection mechanisms via the activity of the sensor kinase and response regulator pair HpaS/hypersensitive response and pathogenicity G (HrpG). Detailed analysis of the regulatory role of HpaS has suggested the occurrence of further regulators besides HrpG. Here we used in vitro and in vivo approaches to identify the orphan response regulator VemR as another partner of HpaS and to characterize relevant interactions between components of this signalling system. Bacterial two-hybrid and protein pull-down assays revealed that HpaS physically interacts with VemR. Phos-tag SDS-PAGE analysis showed that mutation in hpaS reduced markedly the phosphorylation of VemR in vivo. Mutation analysis reveals that HpaS and VemR contribute to the regulation of motility and this relationship appears to be epistatic. Additionally, we show that VemR control of Xcc motility is due in part to its ability to interact and bind to the flagellum rotor protein FliM. Taken together, the findings describe the unrecognized regulatory role of sensor kinase HpaS and orphan response regulator VemR in the control of motility in Xcc and contribute to the understanding of the complex regulatory mechanisms used by Xcc during plant infection.  相似文献   

2.
3.
Cyclic di‐GMP [(bis‐(3′–5′)‐cyclic di‐guanosine monophosphate)] is an almost ubiquitous second messenger in bacteria that is implicated in the regulation of a range of functions that include developmental transitions, aggregative behaviour, adhesion, biofilm formation and virulence. Comparatively little is known about the mechanism(s) by which cyclic di‐GMP exerts these various regulatory effects. PilZ has been identified as a cyclic di‐GMP binding protein domain; proteins with this domain are involved in regulation of specific cellular processes, including the virulence of animal pathogens. Here we have examined the role of PilZ domain proteins in virulence and the regulation of virulence factor synthesis in Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot of crucifers. The Xcc genome encodes four proteins (XC0965, XC2249, XC2317 and XC3221) that have a PilZ domain. Mutation of XC0965, XC2249 and XC3221 led to a significant reduction of virulence in Chinese radish. Mutation of XC2249 and XC3221 led to a reduction in motility whereas mutation of XC2249 and XC0965 affected extracellular enzyme production. All mutant strains were unaffected in biofilm formation in vitro. The reduction of virulence following mutation of XC3221 could not be wholly attributed to an effect on motility as mutation of pilA, which abolishes motility, has a lesser effect on virulence.  相似文献   

4.
5.
6.
7.
8.
Cyclic di-GMP is a second messenger with a role in regulation of a range of cellular functions in diverse bacteria including the virulence of pathogens. Cellular levels of cyclic di-GMP are controlled through synthesis, catalysed by the GGDEF protein domain, and degradation by EAL or HD-GYP domains. Here we report a comprehensive study of cyclic di-GMP signalling in bacterial disease in which we examine the contribution of all proteins with GGDEF, EAL or HD-GYP domains to virulence and virulence factor production in the phytopathogen Xanthomonas campestris pathovar campestris (Xcc). Genes with significant roles in virulence to plants included those encoding proteins whose probable function is in cyclic-di-GMP synthesis as well as others (including the HD-GYP domain regulator RpfG) implicated in cyclic di-GMP degradation. Furthermore, RpfG controlled expression of a subset of these genes. A partially overlapping set of elements controlled the production of virulence factors in vitro. Other GGDEF-EAL domain proteins had no effect on virulence factor synthesis but did influence motility. These findings indicate the existence of a regulatory network that may allow Xcc to integrate information from diverse environmental inputs to modulate virulence factor synthesis as well as of cyclic di-GMP signalling systems dedicated to other specific tasks.  相似文献   

9.
10.
Chemical signal-mediated biological communication is common within bacteria and between bacteria and their hosts. Many plant-associated bacteria respond to unknown plant compounds to regulate bacterial gene expression. However, the nature of the plant compounds that mediate such interkingdom communication and the underlying mechanisms remain poorly characterized. Xanthomonas campestris pv. campestris (Xcc) causes black rot disease on brassica vegetables. Xcc contains an orphan LuxR regulator (XccR) which senses a plant signal that was validated to be glucose by HPLC-MS. The glucose concentration increases in apoplast fluid after Xcc infection, which is caused by the enhanced activity of plant sugar transporters translocating sugar and cell-wall invertases releasing glucose from sucrose. XccR recruits glucose, but not fructose, sucrose, glucose 6-phosphate, and UDP-glucose, to activate pip expression. Deletion of the bacterial glucose transporter gene sglT impaired pathogen virulence and pip expression. Structural prediction showed that the N-terminal domain of XccR forms an alternative pocket neighbouring the AHL-binding pocket for glucose docking. Substitution of three residues affecting structural stability abolished the ability of XccR to bind to the luxXc box in the pip promoter. Several other XccR homologues from plant-associated bacteria can also form stable complexes with glucose, indicating that glucose may function as a common signal molecule for pathogen–plant interactions. The conservation of a glucose/XccR/pip-like system in plant-associated bacteria suggests that some phytopathogens have evolved the ability to utilize host compounds as virulence signals, indicating that LuxRs mediate an interkingdom signalling circuit.  相似文献   

11.
12.
13.
14.
Xanthomonas campestris pv. campestris (Xcc) is a phytopathogenic bacteria, and it is the causative agent of black rot in crucifers. Recent studies have shown that Bacillus species have strong biological control on Xanthomonas. One of the mechanisms of this control is secondary metabolites production. A collection of 257 bacteria isolated from a suppressive soil was evaluated for in vitro antagonistic activity against X. campestris, and 92 isolates (44.6%) were able to inhibit its growth. Among the 92 isolates evaluated in the double‐layer technique, 51 (55.43%) inhibited Xcc growth on the inhibition tests with cell‐free filtrates (CFF) in liquid medium. Thirteen of these isolates presented 50% or more growth inhibition, and five isolates presented 100% growth inhibition of Xcc. The CFF of the isolate TCDT‐08, which belongs to the Paenibacillus genus, was used for in vivo tests with kale crops. The artificial inoculation of kale with Xcc‐629IBSBF pretreated with CFF from the isolate TCDT‐08 demonstrated that the bacterium loses the ability of colonizing kale and of causing black rot. A Paenibacillus sp. isolate has strong inhibitory activity against X. campestris pv. campestris, and further studies can result in the use of this isolate to protect kale from Xcc infection.  相似文献   

15.
16.
Chemosensory systems are complex, highly modified two-component systems (TCS) used by bacteria to control various biological functions ranging from motility to sporulation. Chemosensory systems and TCS both modulate phosphorelays comprised of histidine kinases and response regulators, some of which are single-domain response regulators (SD-RRs) such as CheY. In this study, we have identified and characterized the Che7 chemosensory system of Myxococcus xanthus, a common soil bacterium which displays multicellular development in response to stress. Both genetic and biochemical analyses indicate that the Che7 system regulates development via a direct interaction between the SD-RR CheY7 and a HEAT repeat domain-containing protein, Cpc7. Phosphorylation of the SD-RR affects the interaction with its target, and residues within the α4-β5-α5 fold of the REC domain govern this interaction. The identification of the Cpc7 interaction with CheY7 extends the diversity of known targets for SD-RRs in biological systems.  相似文献   

17.
18.
19.
Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot in crucifers, produces a membrane-bound yellow pigment called xanthomonadin to protect against photobiological and peroxidative damage, and uses a quorum-sensing mechanism mediated by the diffusible signal factor (DSF) family signals to regulate virulence factors production. The Xcc gene XCC4003, annotated as Xcc fabG3, is located in the pig cluster, which may be responsible for xanthomonadin synthesis. We report that fabG3 expression restored the growth of the Escherichia coli fabG temperature-sensitive mutant CL104 under non-permissive conditions. In vitro assays demonstrated that FabG3 catalyses the reduction of 3-oxoacyl-acyl carrier protein (ACP) intermediates in fatty acid synthetic reactions, although FabG3 had a lower activity than FabG1. Moreover, the fabG3 deletion did not affect growth or fatty acid composition. These results indicate that Xcc fabG3 encodes a 3-oxoacyl-ACP reductase, but is not essential for growth or fatty acid synthesis. However, the Xcc fabG3 knock-out mutant abolished xanthomonadin production, which could be only restored by wild-type fabG3, but not by other 3-oxoacyl-ACP reductase-encoding genes, indicating that Xcc FabG3 is specifically involved in xanthomonadin biosynthesis. Additionally, our study also shows that the Xcc fabG3-disrupted mutant affects Xcc virulence in host plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号