首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
J P Labrador  R Brambilla    R Klein 《The EMBO journal》1997,16(13):3889-3897
The Eph family of receptor protein-tyrosine kinases (RTKs) have recently been implicated in patterning and wiring events in the developing nervous system. Eph receptors are unique among other RTKs in that they fall into two large subclasses that show distinct ligand specificities and for the fact that they themselves might function as ''ligands'', thereby activating bidirectional signaling. To gain insight into the mechanisms of ligand-receptor interaction, we have mapped the ligand binding domain in Eph receptors. By using a series of deletion and domain substitution mutants, we now report that an N-terminal globular domain of the Nuk/Cek5 receptor is the ligand binding domain of the transmembrane ligand Lerk2. Using focus formation assays, we show that the Cek5 globular domain is sufficient to confer Lerk2-dependent transforming activity on the Cek9 orphan receptor. Extending our binding studies to other members of both subclasses of receptors, it became apparent that the same domain is used for binding of both transmembrane and glycosylphosphatidyl-anchored ligands. Our studies have determined the first structural elements involved in ligand-receptor interaction and will allow more fine-tuned genetic experiments to elucidate the mechanism of action of these important guidance molecules.  相似文献   

2.
Cek9 is a receptor tyrosine kinase of the Eph subfamily for which only a partial cDNA sequence was known (Sajjadi, F.G., and E.B. Pasquale. 1993. Oncogene. 8:1807-1813). We have obtained the entire cDNA sequence and identified a variant form of Cek9 that lacks a signal peptide. We subsequently examined the spatio-temporal expression and tyrosine phosphorylation of Cek9 in the chicken embryo by using specific antibodies. At embryonic day 2, Cek9 immunoreactivity is concentrated in the eye, the brain, the posterior region of the neural tube, and the most recently formed somites. Later in development, Cek9 expression is widespread but particularly prominent in neural tissues. In the developing visual system, Cek9 is highly concentrated in areas containing retinal ganglion cell axons, suggesting a role in regulating their outgrowth to the optic tectum. Unlike other Eph-related receptors, Cek9 is substantially phosphorylated on tyrosine in many tissues at various developmental stages. Since autophosphorylation of receptor protein-tyrosine kinases typically correlates with increased enzymatic activity, this suggests that Cek9 plays an active role in embryonic signal transduction pathways.  相似文献   

3.
Members of the nuclear receptor superfamily play key roles in a host of physiologic and pathologic processes from embryogenesis to cancer. Some members, including the retinoic acid receptor (RAR), are activated by ligand binding but are unaffected in their subcellular distribution, which is predominantly nuclear. In contrast, several members of the steroid receptor family, including the glucocorticoid receptor, are cytoplasmic and only translocate to the nucleus after ligand binding. We have constructed chimeras between RAR and glucocorticoid receptor that selectively respond to RAR agonists but display cytoplasmic localization in the absence of ligand. These chimeric receptors manifest both nuclear translocation and gene activation functions in response to physiological concentrations of RAR ligands. The ability to achieve regulated subcellular trafficking with a heterologous ligand binding domain has implications both for current models of receptor translocation and for structural-functional conservation of ligand binding domains broadly across the receptor superfamily. When coupled to the green fluorescent protein, chimeric receptors offer a powerful new tool to 1) study mechanisms of steroid receptor translocation, 2) detect dynamic and graded distributions of ligands in complex microenvironments such as embryos, and 3) screen for novel ligands of "orphan" receptors in vivo.  相似文献   

4.
Eph, Elk, and Eck are prototypes of a large family of transmembrane protein-tyrosine kinases, which are characterized by a highly conserved cysteine-rich domain and two fibronectin type III repeats in their extracellular regions. Despite the extent of the Eph family, no extracellular ligands for any family member have been identified, and hence, little is known about the biological and biochemical properties of these receptor-like tyrosine kinases. In the absence of a physiological ligand for the Elk receptor, we constructed chimeric receptor molecules, in which the extracellular region of the Elk receptor is replaced by the extracellular, ligand-binding domain of the epidermal growth factor (EGF) receptor. These chimeric receptors were expressed in NIH 3T3 cells that lack endogenous EGF receptors to analyze their signaling properties. The chimeric EGF-Elk receptors became glycosylated, were correctly localized to the plasma membrane, and bound EGF with high affinity. The chimeric receptors underwent autophosphorylation and induced the tyrosine phosphorylation of a specific set of cellular proteins in response to EGF. EGF stimulation also induced DNA synthesis in fibroblasts stably expressing the EGF-Elk receptors. In contrast, EGF stimulation of these cells did not lead to visible changes in cellular morphology, nor did it induce loss of contact inhibition in confluent monolayers or growth in semisolid media. The Elk cytoplasmic domain is therefore able to induce tyrosine phosphorylation and DNA synthesis in response to an extracellular ligand, suggesting that Elk and related polypeptides function as ligand-dependent receptor tyrosine kinases.  相似文献   

5.
We determined the involvement of Tyr-1158 within the regulatory loop of the insulin receptor (IR) in the generation of insulin-specific responses in situ. For this purpose chimeric receptors with an epidermal growth factor (EGF) receptor extracellular domain and an IR cytoplasmic domain (EIR) were constructed, which allow activation of the cytoplasmic IR domain without activation of endogenous wt-IRs. Tyr-1158 of the chimera EIR was exchanged for Phe, creating a mutant chimeric receptor (EIR-Y1158F). Chimeric receptors were expressed in 3T3-L1 pre-adipocytes, which do not show insulin-specific responses upon EGF stimulation. We found that pre-adipocytes expressing EIR-Y1158F were impaired in their ability to stimulate glycogen synthesis and DNA synthesis upon maximal stimulation with EGF. EIR-Y1158F was impaired in its ability to phosphorylate insulin receptor substrate (IRS)-1 and induce downstream signals of IRS-1 phosphorylation, such as the association of IRS-1 with phosphatidyl-inositol-3'-kinase and the activation of protein kinase B (Akt). In contrast with the phosphorylation of IRS-1, the phosphorylation of IRS-2 and extracellular regulated protein kinase-1/-2 was normal in EIR-Y1158F expressing cells. These observations suggest that the level of IRS-1 phosphorylation rather than the level of IRS-2 phosphorylation mediates insulin-induced glycogen synthesis and DNA synthesis in 3T3-L1 pre-adipocytes.  相似文献   

6.
7.
Several lines of evidence link the protein tyrosine kinase p59fyn to the T-cell receptor. The molecular basis of this interaction has not been established. Here we show that the tyrosine kinase p59fyn can associate with chimeric proteins that contain the cytoplasmic domains of CD3 epsilon, gamma, zeta (zeta), and eta. Mutational analysis of the zeta cytoplasmic domain demonstrated that the membrane-proximal 41 residues of zeta are sufficient for p59fyn binding and that at least two p59fyn binding domains are present. The association of p59fyn with the zeta chain was specific, as two closely related Src family protein tyrosine kinases, p60src and p56lck, did not associate with a chimeric protein that contained the cytoplasmic domain of zeta. Mutational analysis of p59fyn revealed that a 10-amino-acid sequence in the unique amino-terminal domain of p59fyn was responsible for the association with zeta. These findings support evidence that p59fyn is functionally and structurally linked to the T-cell receptor. More importantly, these studies support a critical role for the unique amino-terminal domains of Src family kinases in the coupling of tyrosine kinases to the signalling pathways of cell surface receptors.  相似文献   

8.
Cell migration is one of the fundamental cellular responses governing development, homeostasis and disorders of the body. Therefore, artificial control of cell migration holds great promise for the treatment of many diseases. In this study, we developed an artificial cell migration system based on chimeric receptors that can respond to an artificial ligand that is quite different from natural chemoattractants. Chimeric receptors consisting of an anti-fluorescein single-chain Fv tethered to the extracellular D2 domain of erythropoietin receptor (EpoR) and the transmembrane/cytoplasmic domains of EpoR, gp130, interleukin-2 receptor, c-Kit, c-Fms, epidermal growth factor receptor (EGFR) or insulin receptor were expressed in the murine Ba/F3 pro-B cell line. Migration assays revealed that chimeric receptors containing the cytoplasmic domain of c-Kit, c-Fms or EGFR transduced migration signals in response to fluorescein-conjugated bovine serum albumin (BSA-FL). Furthermore, based on the cell migration in response to BSA-FL, we successfully selected genetically modified cells from mixtures of gene-transduced and untransduced cells. This study represents the first demonstration of cell migration in response to an artificial ligand that is quite different from natural chemoattractants, suggesting its potential application to immunotherapies and tissue engineering.  相似文献   

9.
Eph-related receptor tyrosine kinases have been implicated in the control of axonal navigation and fasciculation. To investigate the biochemical mechanisms underlying such functions, we have expressed the EphB2 receptor (formerly Nuk/Cek5/Sek3) in neuronal NG108-15 cells, and have observed the tyrosine phosphorylation of multiple cellular proteins upon activation of EphB2 by its ligand, ephrin-B1 (formerly Elk-L/Lerk2). The activated EphB2 receptor induced the tyrosine phosphorylation of a 62-64 kDa protein (p62[dok]), which in turn formed a complex with the Ras GTPase-activating protein (RasGAP) and SH2/SH3 domain adaptor protein Nck. RasGAP also bound through its SH2 domains to tyrosine-phosphorylated EphB2 in vitro, and complexed with activated EphB2 in vivo. We have localized an in vitro RasGAP-binding site to conserved tyrosine residues Y604 and Y610 in the juxtamembrane region of EphB2, and demonstrated that substitution of these amino acids abolishes ephrin-B1-induced signalling events in EphB2-expressing NG108-15 cells. These tyrosine residues are followed by proline at the + 3 position, consistent with the binding specificity of RasGAP SH2 domains determined using a degenerate phosphopeptide library. These results identify an EphB2-activated signalling cascade involving proteins that potentially play a role in axonal guidance and control of cytoskeletal architecture.  相似文献   

10.
The human receptors for insulin-like growth factor 1 (IGF-1) and insulin, and two chimeric receptors consisting of ligand-binding, extracellular insulin receptor and intracellular IGF-1 receptor structures, have been expressed in NIH-3T3 fibroblasts. All four receptor types were synthesized, processed and transported to the cell surface to form high-affinity binding sites. All normal and chimeric receptors had an active tyrosine kinase which was regulated by homologous or heterologous ligands respectively. In addition, cell surface receptors were internalized efficiently and subjected to accelerated degradation in the presence of ligand. While all four types of receptor stimulated glucose transport with similar efficiency, they displayed significant differences in their mitogenic signalling potentials. Receptors with an IGF-1 receptor cytoplasmic domain were 10 times more active in stimulating DNA synthesis than the insulin receptor. In NIH-3T3 cells overexpressing wild-type and chimeric receptors, maximal growth responses obtained with IGF-1 or insulin alone were equivalent to those obtained with 10% fetal calf serum. We conclude that in the cell system employed the receptors for IGF-1 and insulin mediate short-term responses similarly, but display distinct characteristics in their long-term mitogenic signalling potentials.  相似文献   

11.
BACKGROUND: Many transmembrane proteins of eukaryotic cells have only a short cytoplasmic tail of 10 - 100 amino acids, which has no obvious catalytic function. These tails are thought to be involved either in signal transduction or in the association of transmembrane proteins with the cytoskeleton. We have previously identified, in the cytoplasmic tails of components of B and T lymphocyte antigen receptors, an amino-acid motif that is required for signalling. The same motif is also found in the cytoplasmic tails of two viral proteins: the latent membrane protein, LMP2A, of Epstein Barr virus and the envelope protein, gp30, of bovine leukaemia virus. Interestingly, both viruses can activate infected B lymphocytes to proliferate, as does signalling by the B-cell receptor. RESULTS: In this study, we show that the cytoplasmic tails of the two viral proteins, and the cytoplasmic tail of the B-cell receptor immunoglobulin-alpha chain, when linked to CD8 in chimeric transmembrane proteins, can transduce signals in B cells. Cross-linking of these chimeric receptors activates B-cell protein tyrosine kinases and results in calcium mobilization. Furthermore, these cytoplasmic sequences are also protein tyrosine kinase substrates and may interact with cytosolic proteins carrying SH2 protein-protein interaction domains. CONCLUSION: Our findings suggest that viral transmembrane proteins can mimic the antigen-induced stimulation of the B-cell antigen receptor and thus can influence the activation and/or survival of infected B lymphocytes.  相似文献   

12.
《The Journal of cell biology》1994,126(5):1287-1298
The ability of single subunit chimeric receptors containing various integrin beta intracellular domains to mimic and/or inhibit endogenous integrin function was examined. Chimeric receptors consisting of the extracellular and transmembrane domains of the small subunit of the human interleukin-2 receptor connected to either the beta 1, beta 3, beta 3B, or beta 5 intracellular domain were transiently expressed in normal human fibroblasts. When expressed at relatively low levels, the beta 3 and beta 5 chimeras mimicked endogenous ligand-occupied integrins and, like the beta 1 chimera (LaFlamme, S. E., S. K. Akiyama, and K. M. Yamada. 1992. J. Cell Biol. 117:437), concentrated with endogenous integrins in focal adhesions and sites of fibronectin fibril formation. In contrast, the chimeric receptor containing the beta 3B intracellular domain (a beta 3 intracellular domain modified by alternative splicing) was expressed diffusely on the cell surface, indicating that alternative splicing can regulate integrin receptor distribution by an intracellular mechanism. Furthermore, when expressed at higher levels, the beta 1 and beta 3 chimeric receptors functioned as dominant negative mutants and inhibited endogenous integrin function in localization to fibronectin fibrils, fibronectin matrix assembly, cell spreading, and cell migration. The beta 5 chimera was a less effective inhibitor, and the beta 3B chimera and the reporter lacking an intracellular domain did not inhibit endogenous integrin function. Comparison of the relative levels of expression of the transfected beta 1 chimera and the endogenous beta 1 subunit indicated that in 10 to 15 h assays, the beta 1 chimera can inhibit cell spreading when expressed at levels approximately equal to the endogenous beta 1 subunit. Levels of chimeric receptor expression that inhibited cell spreading also inhibited cell migration, whereas lower levels were able to inhibit alpha 5 beta 1 localization to fibrils and matrix assembly. Our results indicate that single subunit chimeric integrins can mimic and/or inhibit endogenous integrin receptor function, presumably by interacting with cytoplasmic components critical for endogenous integrin function. Our results also demonstrate that beta intracellular domains, expressed in this context, display specificity in their abilities to mimic and inhibit endogenous integrin function. Furthermore, the approach that we have used permits the analysis of intracellular domain function in the processes of cell spreading, migration and extracellular matrix assembly independent of effects due to the rest of integrin dimers. This approach should prove valuable in the further analysis of integrin intracellular domain function in these and other integrin-mediated processes requiring the interaction of integrins with cytoplasmic components.  相似文献   

13.
To delineate the structural determinants involved in the constitutive activation of the D1 receptor subtypes, we have constructed chimeras between the D1A and D1B receptors. These chimeras harbored a cognate domain corresponding to transmembrane regions 6 and 7 as well as the third extracellular loop (EL3) and cytoplasmic tail, a domain referred herein to as the terminal receptor locus (TRL). A chimeric D1A receptor harboring the D1B-TRL (chimera 1) displays an increased affinity for dopamine that is indistinguishable from the wild-type D1B receptor. Likewise, a chimeric D1B receptor containing the D1A-TRL cassette (chimera 2) binds dopamine with a reduced affinity that is highly reminiscent of the dopamine affinity for the wild-type D1A receptor. Furthermore, we show that the agonist independent activity of chimera 1 is identical to the wild-type D1B receptor whereas the chimera 2 displays a low agonist independent activity that is indistinguishable from the wild-type D1A receptor. Dopamine potencies for the wild-type D1A and D1B receptor were recapitulated in cells expressing the chimera 2 or chimera 1, respectively. However, the differences observed in agonist-mediated maximal activation of adenylyl cyclase elicited by the D1A and D1B receptors remain unchanged in cells expressing the chimeric receptors. To gain further mechanistic insights into the structural determinants of the TRL involved in the activation properties of the D1 receptor subtypes, we have engineered two additional chimeric D1 receptors that contain the EL3 region of their respective cognate wild-type counterparts (hD1A-EL3B and hD1B-EL3A). In marked contrast to chimera 1 and 2, dopamine affinity and constitutive activation were partially modulated by the exchange of the EL3. Meanwhile, hD1A-EL3B and hD1B-EL3A mutant receptors display a full switch in the agonist-mediated maximal activation, which is reminiscent of their cognate wild-type counterparts. Overall, our studies suggest a fundamental role for the TRL in shaping the intramolecular interactions implicated in the constitutive activation and coupling properties of the dopamine D1 receptor subtypes.  相似文献   

14.
Yeast Vps10p is a receptor for transport of the soluble vacuolar hydrolase carboxypeptidase Y to the lysosome-like vacuole. Its functional equivalents in mammalian cells are the mannose 6-phosphate receptors that mediate sorting to lysosomes of mannose 6-phosphate-containing lysosomal proteins. A chimeric receptor was constructed by substituting the cytoplasmic domain of M(r) 300,000 mannose 6-phosphate receptor with the Vps10p cytoplasmic tail. Expression of the chimera in cells lacking endogenous mannose 6-phosphate receptors resulted in a subcellular receptor distribution and an efficiency in sorting of lysosomal enzymes similar to that of the wild type M(r) 300,000 mannose 6-phosphate receptor. Moreover, the cytoplasmic tail of the Vps10p was found to interact with GGA1 and GGA2, two mammalian members of a recently discovered family of clathrin-binding cytosolic proteins that participate in trans-Golgi network-endosome trafficking in both mammals and yeast. Our findings suggest a conserved machinery for Golgi-endosome/vacuole sorting and may serve as a model for future studies of yeast proteins.  相似文献   

15.
Signal transfer by Eph receptors   总被引:4,自引:0,他引:4  
The Eph receptors are a unique family of receptor tyrosine kinases that enforce cellular position in tissues through mainly repulsive signals generated upon cell-cell contact. Together, Eph receptors and their membrane-anchored ligands. the ephrins, are key molecules for establishing tissue organization through signaling pathways that control axonal projection, cell migration, and the maintenance of cellular boundaries. Through their SH2 (Src Homology 2) and PDZ (postsynaptic density protein, disks large, zona occludens) domains, several signaling molecules have been demonstrated to interact with the activated cytoplasmic domain of Eph receptors by using the yeast two-hybrid system and in vitro biochemical assays. Most proteins found to interact with Eph receptors are well-known regulators of cytoskeletal organization and cell adhesion, and also cell proliferation. Promoting growth, however, does not appear to be a primary role of Eph receptors. Explaining which signaling interactions identified for the Eph receptors have physiological significance, how Eph receptor signaling cascades are propagated, and characterizing the intrinsic signaling properties of the ephrins are all exciting questions currently being investigated.  相似文献   

16.
A family of tyrosine kinase receptors related to the product of the eph gene has been described recently. One of these receptors, elk, has been shown to be expressed only in brain and testes. Using a direct expression cloning technique, a ligand for the elk receptor has been isolated by screening a human placenta cDNA library with a fusion protein containing the extracellular domain of the receptor. This isolated cDNA encodes a transmembrane protein. While the sequence of the ligand cDNA is unique, it is related to a previously described sequence known as B61. Northern blot analysis of human tissue mRNA showed that the elk ligand's mRNA is 3.5 kb long and is found in placenta, heart, lung, liver, skeletal muscle, kidney and pancreas. Southern blot analysis showed that the gene is highly conserved in a wide variety of species. Both elk ligand and B61 mRNAs are inducible by tumour necrosis factor in human umbilical vein endothelial cells. In addition, both proteins show promiscuity in binding to the elk and the related hek receptors. Since these two ligand sequences are similar, and since elk and hek are members of a larger family of eph-related receptor molecules, we refer to these ligands as LERKs (ligands for eph-related kinases).  相似文献   

17.
18.
In this study, we examined how IL-8 induces leukocyte migration on major beta1 integrin ligands derived from the extracellular matrix protein fibronectin. We assessed individual contributions of signaling by IL-8 receptors by transfection of CXCR1 and CXCR2 into rat basophilic leukemia (RBL) cells and human monocytic THP-1 cells. CXCR1 expressing cells migrated on the fibronectin ligands for alpha4beta1 and alpha5beta1 integrins in response to IL-8, whereas CXCR2 expressing cells did not. RBL cells expressing the chimeric CXCR1 receptor containing the cytoplasmic tail of CXCR2 had greatly blunted migration, while cells expressing the CXCR2 chimera with the tail of CXCR1 had augmented migration. Last, inhibitors of p38 and JNK MAP kinases blocked IL-8-induced migration in CXCR1+ cells. We conclude that IL-8 stimulated beta1 integrin-mediated leukocyte migration on fibronectin through CXCR1 is dependent on the C-terminal cytoplasmic domain of CXCR1 and subsequent p38 and JNK MAPK signaling.  相似文献   

19.
The adenovirus fiber protein is responsible for attachment of the virion to cell surface receptors. The identity of the cellular receptor which mediates binding is unknown, although there is evidence suggesting that two distinct adenovirus receptors interact with the group C (adenovirus type 5 [Ad5]) and the group B (Ad3) adenoviruses. In order to define the determinants of adenovirus receptor specificity, we have carried out a series of competition binding experiments using recombinant native fiber polypeptides from Ad5 and Ad3 and chimeric fiber proteins in which the head domains of Ad5 and Ad3 were exchanged. Specific binding of fiber to HeLa cell receptors was assessed with radiolabeled protein synthesized in vitro, and by competition analysis with baculovirus-expressed fiber protein. Fiber produced in vitro was found as both monomer and trimer, but only the assembled trimers had receptor binding activity. Competition data support the conclusion that Ad5 and Ad3 interact with different cellular receptors. The Ad5 receptor distribution on several cell lines was assessed with a fiber binding flow cytometric assay. HeLa cells were found to express high levels of receptor, while CHO and human diploid fibroblasts did not. A chimeric fiber containing the Ad5 fiber head domain blocked the binding of Ad5 fiber but not Ad3 fiber. Similarly, a chimeric fiber containing the Ad3 fiber head blocked the binding of labeled Ad3 fiber but not Ad5 fiber. In addition, the isolated Ad3 fiber head domain competed effectively with labeled Ad3 fiber for binding to HeLa cell receptors. These results demonstrate that the determinants of receptor binding are located in the head domain of the fiber and that the isolated head domain is capable of trimerization and binding to cellular receptors. Our results also show that it is possible to change the receptor specificity of the fiber protein by manipulation of sequences contained in the head domain. Modification or replacement of the fiber head domain with novel ligands may permit adenovirus vectors with new receptor specificities which could be useful for targeted gene delivery in vivo to be engineered.  相似文献   

20.
The interaction of the OpaA protein of Neisseria gonorrhoeae MS11mk with heparan sulphate-containing proteoglycan receptors on Chang conjunctiva epithelial cells was examined using isolated receptor binding and cell adherence/internalization assays. OpaA deletion proteins, in which the four surface-exposed regions of the protein were deleted individually, and chimeric OpaA/B proteins, in which the surface-exposed regions of the OpaA and OpaB proteins were exchanged, were expressed in N. gonorrhoeae. The recombinant deletion proteins and the chimeric OpaA/B proteins were surface exposed in the outer membrane of N. gonorrhoeae. Isolated receptor-binding assays and Chang cell infection assays with OpaA deletion variants indicated that hypervariable region 1 was essential for the interaction of N. gonorrhoeae with the proteoglycan receptor. Expression of chimeric OpaA/B proteins confirmed the central role of hypervariable region 1 in receptor binding and demonstrated that this domain alone confers the invasive biological phenotype in a non-heparan sulphate proteoglycan-binding Opa protein. The other variable regions of OpaA enhanced receptor binding in the presence of region 1, but did not constitute binding domains on their own. The results indicate that proteoglycan receptor binding results from a hierarchical interaction between the variable domains of the OpaA protein of MS11mk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号