首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A ribosomal protein binding site in the eukaryotic 5S rRNA has been delineated by examining the effect of sequence variation and nucleotide modification on the RNA's ability to exchange into the EDTA-released, yeast ribosomal 5S RNA-protein complex. 5S RNAs of divergent sequence from a variety of eukaryotic origins could be readily exchanged into the yeast complex but RNA from bacterial origins was rejected. Nucleotide modifications in any of three analogous helical regions in eukaryotic 5S RNAs of differing origin reduced the ability of this RNA molecule to form homologous or heterologous RNA-protein complexes. Because sequence comparisons did not indicate common nucleotide sequences in the interacting helical regions, a model is suggested in which the eukaryotic 5S RNA binding protein does not simply recognize specific nucleotide sequences but interacts with three strategically oriented helical domains or functional groups within these domains. Two of the domains bear a limited sequence homology with each other and contain an unpaired nucleotide or "bulge" similar to that recently reported for one of the 5S RNA binding proteins in Escherichia coli (Peattie, D.A., Douthwaite, S., Garrett, R.A. and Noller, H.F. (1981) Proc. Natl. Acad. Sci. 78, 7331-7335). The results further indicate that the single ribosomal protein of eukaryotic 5S RNA-protein complexes interacts with the same region of the 5S rRNA molecule as do the multiple protein components in complexes of prokaryotic origin.  相似文献   

2.
3.
A fragment of ribosomal protein L18 was prepared by limited trypsin digestion of a specific complex of L18 and 5S RNA. It was characterised for sequence and the very basic N-terminal region of the protein was found to be absent. No smaller resistant fragments were produced. 5S RNA binding experiments indicated that the basic N-terminal region, from amino acid residues 1 to 17, was not important for the L18-5S RNA association. Under milder trypsin digestion conditions three resistant fragments were produced from the free protein. The largest corresponded to that isolated from the complex. The smaller ones were trimmed slightly further at both N- and C-terminal ends. These smaller fragments did not reassociate with 5S RNA. It was concluded on the basis of the trypsin protection observations and the 5S RNA binding results that the region extending from residues 18 to 117 approximates to the minimum amount of protein required for a specific and stable protein-RNA interaction. The accessibility of the very basic N-terminal region of L18, in the L18-5S RNA complex, suggests that it may be involved, in some way, in the interaction of 5S RNA with 23S RNA.  相似文献   

4.
A novel Mr 28,000 erythrocyte transmembrane protein was recently purified and found to exist in two forms, "28kDa" and "gly28kDa," the latter containing N-linked carbohydrate (Denker, B. M., Smith, B. L., Kuhajda, F. P., and Agre, P. (1988) J. Biol. Chem. 263, 15634-15642). Although 28kDa protein resembles the Rh polypeptides biochemically, structural homologies were not identified by immunoblot or two-dimensional iodopeptide maps. The NH2-terminal amino acid sequence for the first 35 residues of purified 28kDa protein is 37% identical to the 26-kDa major intrinsic protein of lens (Gorin, M. B., Yancey, S. B., Cline, J., Revel, J.-P., and Horwitz, J. Cell 39, 49-59). Antisera to a synthetic peptide corresponding to the NH2-terminus of 28kDa protein gave a single reaction of molecular mass 28kDa on immunoblots of erythrocyte membranes. Selective digestions of intact erythrocytes and inside-out membrane vesicles with carboxypeptidase Y indicated the existence of a 5-kDa COOH-terminal cytoplasmic domain. Multiple studies indicated that 28kDa and gly28kDa proteins exist together as a multisubunit oligomer: 1) similar partial solubilizations in Triton X-100; 2) co-purification during ion exchange and lectin affinity chromatography; 3) cross-linking in low concentrations of glutaraldehyde; and 4) physical analyses of purified proteins and solubilized membranes in 1% (v/v) Triton X-100 showed 28kDa and gly28kDa proteins behave as a large single unit with Stokes radius of 61 A and sedimentation coefficient of 5.7 S. These studies indicate that the 28kDa and gly28kDa proteins are distinct from the Rh polypeptides and exist as a multisubunit oligomer. The 28kDa protein has NH2-terminal amino acid sequence homology and membrane organization similar to major intrinsic protein and other members of a newly recognized family of transmembrane channel proteins.  相似文献   

5.
Summary E. coli ribosomal 16S RNA preparted by an acetic acid-urea extraction technique individually binds, in addition to the seven established proteins, 6 new 30S ribosomal proteins (S3, S5, S9, S12, S18 and S11) (Hochkeppel et al., 1976). In this communication we demonstrate the site specificity of these proteins. Binding curves of the individual proteins with acetic acid-urea 16S RNA show that the binding of all six proteins to the RNA reaches a plateau at 0.3–0.97 copies per 16S RNA molecule. No significant binding of these proteins to classical phenol extracted 16S RNA is observed, with the exception of S13 which binds 0.2 copies of protein per molecule of 16S RNA. Specificity of binding of these proteins is also demonstrated in chase experiments. The site specificity of individual [3H]-labeled 30S proteins bound to 16S RNA is tested by the addition of non-radioactive 30S total protein to the reaction mixture.  相似文献   

6.
S J Li  A G Marshall 《Biochemistry》1986,25(12):3673-3682
Wheat germ has been chosen as a representative eukaryote for study of ribosomal 5S RNA secondary structure. Proton homonuclear Overhauser enhancements (NOE's) at 500 MHz for the hydrogen-bonded base-pair protons in the 10-15 ppm region are used to establish the identity (A X U, G X C, or G X U) and base-pair sequence (e.g., G X C-A X U-C X G) within a given helical segment. Assignment of that segment to particular base pairs in the secondary structure is based upon NOE's conducted at different temperatures (to determine which signals "melt" together), variation of salt conditions (to produce differential chemical shifts in order to better distinguish components of an unresolved spectral envelope), and isolation and purification of RNase T1 cleavage fragments (in order to reduce the spectrum to just a few base pairs). The NOE patterns for the RNase T1 fragments are the same as in the intact 5S RNA, supporting the assumption that structural features of this region in the intact 5S RNA are preserved in the fragment. Chemical shifts predicted from ring current induced effects for a proposed base-pair sequence are then compared to experimental chemical shifts. By these methods, a portion of the "tuned helix" segment (namely, the base-pair sequence C18G60-A19U59-C20G58) is demonstrated spectroscopically for the first time in any 5S RNA. The tuned helix and common arm segments are less stable than the rest of the molecule. Variation of sodium and magnesium levels reveals multiple configurations of the wheat germ 5S RNA in solution.  相似文献   

7.
The Epstein-Barr virus (EBV)-expressed RNA 1 (EBER1) associates tightly with the ribosomal protein L22. We determined the general requirements for an RNA to bind L22 in a SELEX experiment, selecting RNA ligands for L22 from a randomized pool of RNA sequences by using an L22-glutathione S-transferase fusion protein. The selected sequences all contained a stem-loop motif similar to that of the region of EBER1 previously shown to interact with L22. The nucleotides were highly conserved at three positions within the stem-loop and identical to the corresponding nucleotides in EBER1. Two independent binding sites for L22 could be identified in EBER1, and mobility shift assays indicated that two L22 molecules can interact with EBER1 simultaneously. To search for a cellular L22 ligand, we constructed a SELEX library from cDNA fragments derived from RNA that was coimmunoprecipitated with L22 from an EBV-negative whole-cell lysate. After four rounds of selection and amplification, most of the clones that were obtained overlapped a sequence corresponding to the stem-loop between nucleotides 302 and 317 in human 28S ribosomal RNA. This stem-loop fulfills the criteria for optimal binding to L22 that were defined by SELEX, suggesting that human 28S ribosomal RNA is likely to be a cellular L22 ligand. Additional L22 binding sites were found in 28S ribosomal RNA, as well as within 18S ribosomal RNA and in RNA segments not present in sequence databases. The methodology described for the conversion of a preselected cellular RNA pool into a SELEX library might be generally applicable to other proteins for the identification of cellular RNA ligands.  相似文献   

8.
9.
10.
J M Kean  D E Draper 《Biochemistry》1985,24(19):5052-5061
A technique for isolating defined fragments of a large RNA has been developed and applied to a ribosomal RNA. A section of the Escherichia coli rrnB cistron corresponding to the S8/S15 protein binding domain of 16S ribosomal RNA was cloned into a single-stranded DNA phage; after hybridization of the phage DNA with 16S RNA and digestion with T1 ribonuclease, the protected RNA was separated from the DNA under denaturing conditions to yield a 345-base RNA fragment with unique ends (bases 525-869 in the 16S sequence). The secondary structure of this fragment was determined by mapping the cleavage sites of enzymes specific for single-stranded or double-helical RNA. The fragment structure is almost identical with that proposed for the corresponding region of intact 16S RNA on the basis of phylogenetic comparisons [Woese, C. R., Gutell, R., Gupta, R., & Noller, H. (1983) Microbiol. Rev. 47, 621-669]. We conclude that this section of RNA constitutes an independently folding domain that may be studied in isolation from the rest of the 16S RNA. The structure mapping experiments have indicated several interesting features in the RNA structure. (i) The largest bulge loop in the molecule (20 bases) contains specific tertiary structure. (ii) A region of long-range secondary structure, pairing bases about 200 residues apart in the sequence, can hydrogen bond in two different mutually exclusive schemes. Both appear to exist simultaneously in the RNA fragment under our conditions. (iii) The long-range secondary structure and one adjacent helix melt between 37 and 60 degrees C in the absence of Mg2+, while the rest of the structure is quite stable.  相似文献   

11.
A complex of nucleic acid binding proteins (100, 35, and 25 kDa) was purified to apparent homogeneity from nuclear extracts of the murine plasmacytoma J558L. Amino-terminal sequence analysis of the 25-kDa subunit enabled the isolation of a cDNA that encodes a 528-amino acid protein that is highly homologous to the human 62-kDa human polypyrimidine tract binding protein (PTB) (Garcia-Blanco, M. A., Jamison, S. F., and Sharp, P. A. (1989) Genes & Dev. 3, 1874-1886; Gil, A., Sharp, P. A., Jamison, S. F., and Garcia-Blanco, M. A. (1991) Genes & Dev. 5, 1224-1236; Patton, J. G., Mayer, S. A., Tempst, P., and Nadal-Ginard, B. (1991) Genes & Dev. 5, 1237-1251). Sequence comparison programs suggested the presence of domains related to the RNA recognition motif found in other RNA-binding proteins, and deletion analysis revealed that the carboxyl-terminal 195 amino acids of the recombinant PTB was sufficient for specific binding to pre-mRNAs. Cross-linking experiments identified a 25-kDa protein in crude nuclear extracts of J558L cells that possessed the RNA binding properties of PTB, while a approximately 60-kDa protein is detected in other murine cell lines tested. Thus, the 25-kDa protein found in J558L is likely a proteolytic product of the murine polypyrimidine tract binding protein. A probe derived from the PTB cDNA detected a ubiquitous 3.3-kb mRNA in murine cell lines and a 3.6-kb mRNA in human lines. Southern blot analysis revealed three strongly hybridizing DNA fragments and several more weakly hybridizing bands in mouse, human, and yeast DNA. The role of PTB in pre-mRNA splicing is discussed.  相似文献   

12.
Pancreatic RNase partial digests of 32P-labelled 5 S RNA-protein complexes have been fractionated by electrophoresis on polyacrylamide gels. Specific fragments of the 5 S RNA molecule have been recovered from electrophoresis bands containing polynucleotide-protein complexes. These digestion-resistant complexes are only found if RNase treatment is carried out in the presence of at least one of the two 50 S subunit proteins L18 and L25, which are able to bind to 5 S RNA individually and specifically. The sequences of the isolated fragments have been determined. From the results, it can be concluded that sequence 69 to 120 and, possibly, sequence 1 to 11, are involved in the 5 S RNA-protein interactions which are responsible for the insertion of 5 S RNA in the 50 S subunit structure. Sequence 12 to 68, on the other hand, has no strong interactions with proteins L18 and L25. Each protein certainly binds to several nucleotide residues, which are not contiguous in the primary structure. In particular, good experimental evidence has been obtained in favour of the binding of protein L25 to two distant regions of the 5 S RNA molecule, which must have a bihelical secondary structure. The importance of the 5 S RNA conformation for its proper insertion in the 50 S subunit is thus confirmed.  相似文献   

13.
We have employed new methodology to obtain 23S RNA fragments which includes a) the digestion of the RNA within 50S subunits and b) the limited hydrolysis of the 13S and 18S fragments. By comparing all 23S RNA fragments, obtained heretofore, we have characterised and aligned 24 sections of this RNA spanning nearly the entire molecule. These results allow the localisation of any new 23S RNA fragment by comparison of the fingerprint of its T1 ribonuclease digest to the characteristic ones of the different sections. In this way we obtained a more definite localisation of the binding sites of the 50S proteins L1, L5, L9, L18, L20, L23 and L25. We also specified a ribonuclease sensitive region of 23S RNA in native 50S subunits, extending from the 1100th nucleotide from the 5' end to the 1000th nucleotide from the 3' end; this region contains a cluster of 5 modified nucleotides and may be at the subunit interface.  相似文献   

14.
Protein H, a molecule expressed at the surface of some strains of Streptococcus pyogenes, has affinity for the constant (lgGFc) region of immunoglobulin (lg) G. In absorption experiments with human plasma, protein H–sepharose could absorb not only lgG but also albumin from plasma. The affinity constant for the reaction between albumin and protein H was 7.8 × 109M−1, which is higher than the affinity between lgG and protein H (Ka= 1.6 × 109 M−1). Fragments of protein H were generated with deletion plasmids and polymerase chain reaction (PCR) technology. Using these fragments in various protein–protein interaction assays, the binding of albumin was mapped to three repeats (C1–C3) in the C-terminal half of protein H. On the albumin molecule, the binding site for protein H was found to overlap the site for protein G, another albumin- and lgGFc-binding bacterial surface protein. Aiso lgGFc-binding could be mapped with the protein H fragments and the region was found N-terminally of the C repeats. A synthetic peptide (25 amino acid residues long) based on a sequence in this region was shown to inhibit the binding of protein H to immobilized lgG or lgGFc. This sequence was not found in previously described lgGFc-binding proteins. However, two other cell surface proteins of S. pyogenes exhibited highly homologous regions. The results identify lgGFc- and albumin binding regions of protein H and further define and emphasize the convergent evolution among bacterial surface proteins interacting with human plasma proteins.  相似文献   

15.
The nucleotide sequence at the junction between the nonstructural and the structural genes of the Semliki Forest virus 42S RNA genome has been determined from cloned cDNA. With the aid of S1-mapping, we have located the 5' end of the viral 26S RNA on this sequence. The 26S RNA is homologous to the 3' end of the 42S RNA and is used as a messenger for the structural proteins of the virus. The nucleotide sequence in the noncoding 5' region of the 26S RNA (51 bases) was thus established, completing the primary structure of the 26S RNA molecule (for earlier sequence work, see Garoff et al., Proc. Natl. Acad. Sci. U.S.A. 77:6376-6380, 1980, and Garoff et al., Nature (London) 288:236-241, 1980). An examination of the nucleotide sequences upstream from the initiator codon for the structural proteins on the 42S RNA genome shows that all reading frames are effectively blocked by stop codons, which means that the nonstructural genes in the 5' end of the 42S RNA molecule do not overlap with the structural ones at the 3' end of the molecule.  相似文献   

16.
An autoantibody reactive with a conserved sequence of 28 S rRNA (anti-28 S) was identified in serum from a patient with systemic lupus erythematosus. Anti-28 S protected a unique 59-nucleotide fragment synthesized in vitro against RNase T1 digestion. RNA sequence analysis revealed that it corresponded to residues 1944-2002 in human 28 S rRNA and 1767-1825 in mouse 28 S rRNA. These sequences are identical and highly conserved throughout all known eukaryotic 28 S rRNAs. In addition, this fragment is homologous to residues 1052-1110 of Escherichia coli 23 S rRNA that lies within the GTP hydrolysis center of the 50 S ribosomal subunit. Anti-28 S and its Fab fragments strongly inhibited poly(U)-directed polyphenylalanine synthesis, but had no effect on ribosomal peptidyltransferase activity. This effect resulted from inhibition of the binding of elongation factors EF-1 alpha and EF-2 to ribosomes and of the associated GTP hydrolysis. The inhibitory effect was almost completely suppressed by preincubation of anti-28 S with 28 S rRNA or in vitro synthesized RNA fragments containing the immunoreactive region. These results show that the immunoreactive conserved region of 28 S rRNA participates in the interaction of ribosomes with the two elongation factors in protein synthesis.  相似文献   

17.
A series of overlapping deletions has been constructed in the ompA gene which encodes the 325-residue Escherichia coli outer membrane protein OmpA. Immunoelectron microscopy showed that the OmpA fragments were either located in the periplasmic space or were associated with the outer membrane. Apparently an area between residues 154 and 180 is required for this association; all proteins missing this area were found to be periplasmic. The nature of this association remained unknown; no membrane-protected tryptic fragments could be identified for any of these polypeptides. Hybrid genes were constructed encoding parts of the periplasmic maltose binding protein and an area of the ompA gene coding for residues 154-274. The corresponding proteins were not localized to the outer membrane but remained attached to the outer face of the plasma membrane, possibly because the normal mechanism of release from this membrane was impaired. In the OmpA protein the conspicuous sequence Ala180-Pro-Ala-Pro-Ala-Pro-Ala-Pro187 exists. Frameshift mutants were constructed to eliminate this sequence. There was no effect on the incorporation of the mutant proteins into the outer membrane. Thus, this "hinge" region is not involved in sorting. A proposal suggesting the existence of a sorting signal common to several outer membrane proteins (Benson, S. A., Bremer, E., and Silhavy, T. J. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 3830-3834) was subsequently rejected (Bosch, D., Leunissen, J., Verbakel, J., de Jong, M., van Erp, H., and Tommassen, J. (1986) J. Mol. Biol. 189, 449-455; Freudl, R., Schwarz, H., Klose, M., Movva, N. R., and Henning, U. (1985) EMBO J. 4, 3593-3598). Although it is not known whether or not the outer membrane association observed represents a step in the normal sorting mechanism, it is concluded that it remains an open question whether or not a sorting signal, as proposed originally, exists in outer membrane proteins.  相似文献   

18.
Evidence is presented for tertiary structural interaction(s) (interactions(s) between two regions of an RNA molecule that are widely separated in the RNA sequence) within the 5'-one third of the 16S ribosomal RNA of Escherichia coli that constitutes the binding site of protein S4. The two main interacting RNA regions were separated by about 120 nucleotides (sections Q to M) of the 16S RNA sequence. A second, smaller gap, of 13 nucleotides, occurred within section C". The two main interacting regions contain about 150 nucleotides (sections H" to Q) and 160 nucleotides (sections M to C"). They are folded back on one another and, especially in the presence of protein S4, are strongly protected against ribonuclease digestion. The intermediate region (sections Q to M), however, is relatively accessible to ribonucleases in the S4-RNP. By partial removal of subfragments from the RNA complex it was possible to localise the two main interacting sites within sections H" - H and sections I" - C". Three main criteria for the specificity of the RNA-RNA interactions were invoked and satisfied. The possibility of other tertiary structural RNA-RNA interactions occurring in other regions of the 16S RNA is discussed. Finally, all the structural information on the S4-RNP is summarised and a tentative model is proposed.  相似文献   

19.
The topography of 5.8 rRNA in rat liver ribosomes has been examined by comparing diethyl pyrocarbonate-reactive sites in free 5.8 S RNA, the 5.8 S-28 rRNA complex, 60 S subunits, and whole ribosomes. The ribosomal components were treated with diethyl pyrocarbonate under salt and temperature conditions which allow cell-free protein synthesis; the 5.8 S rRNA was extracted, labeled in vitro, chemically cleaved with aniline, and the fragments were analyzed by rapid gel-sequencing techniques. Differences in the cleavage patterns of free and 28 S or ribosome-associated 5.8 S rRNA suggest that conformational changes occur when this molecule is assembled into ribosomes. In whole ribosomes, the reactive sites were largely restricted to the "AU-rich" stem and an increased reactivity at some of the nucleotides suggested that a major change occurs in this region when the RNA interacts with ribosomal proteins. The reactivity was generally much less restricted in 60 S subunits but increased reactivity in some residues was also observed. The results further indicate that in rat ribosomes, the two -G-A-A-C- sequences, putative binding sites for tRNA, are accessible in 60 S subunits but not in whole ribosomes and suggest that part of the molecule may be located in the ribosomal interface. When compared to 5 S rRNA, the free 5.8 S RNA molecule appears to be generally more reactive with diethyl pyrocarbonate and the cleavage patterns suggest that the 5 S RNA molecule is completely restricted or buried in whole ribosomes.  相似文献   

20.
18S ribosomal RNA from X. laevis was subjected to partial digestion with ribonucleases A or T1 under a variety of conditions, and base-paired fragments were isolated. Sequence analysis of the fragments enabled five base-paired secondary structural elements of the 18S RNA to be established. Four of these elements (covering bases 221-256, 713-757, 1494-1555 and 1669-1779) confirm our previous secondary structure predictions, whereas the fifth (comprising bases 1103-1125) represents a phylogenetically conserved "switch" structure, which can also form in prokaryotic 16S RNA. The results are incorporated into a refined model of the 18S RNA secondary structure, which also includes the locations of the many methyl groups in X. laevis 18S RNA. In general the methyl groups occur in non-helical regions, at hairpin loop ends, or at helix boundaries and imperfections. One large cluster of 2'-O-methyl groups occurs in a region of complicated secondary structure in the 5'-one third of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号