首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanics of toe and heel landing in stepping down in ongoing gait   总被引:1,自引:0,他引:1  
When stepping down from a height difference in ongoing gait, subjects are known to use a heel landing at small height differences and switch to toe landing for larger height differences. We hypothesized that in toe landing, the leading leg can perform more negative work, to control the momentum gained during the descent, than in heel landing. Ten young male participants walked over a 10-m walkway at 5km/h to step down a height difference of 10cm halfway, using a heel or toe landing in five trials each. Kinematic data and ground reaction forces under the leading and trailing legs were recorded. Inverse dynamical analysis of both strategies showed that the leading leg performed more negative work in toe landing, while the vertical velocity at ground contact was lower. In addition, the impact forces were lower in toe landing than in heel landing. Toe landing was found to reduce gait velocity in the first step on the lower level and required higher moments and negative power around the ankle joint than heel landing. Our results indicate that heel landing may be preferred when stepping down small height differences, because it is less demanding especially for the plantar flexor muscles, while toe landing may be preferred for stepping down larger height differences, because it improves control over the momentum gained during the descent.  相似文献   

2.
In a previous study (Beuter et al. 1986) the authors modeled a stepping motion using a three-body linkage with four degrees of freedom. Stepping was simulated by using three task parameters (i.e., step height, length, and duration) and sinusoidal joint angular velocity profiles. The results supported the concept of a hierarchical control structure with open-loop control during normal operation. In this study we refine the dynamic model and improve the simulation technique by incorporating the dynamics of the leg after landing, adding a foot segment to the model, and preprogramming the complete step motion using cycloids. The equations of the forces and torques developed on the ground by the foot during the landing phase are derived using the Lagrangian method. Simulation results are compared to experimental data collected on a subject stepping four times over an obstacle using a Selspot motion analysis system. A hierarchical control model that incorporates a learning process is proposed. The model allows an efficient combination of open and closed loop control strategies and involves hardwired movement segments. We also test the hypothesis of cycloidal velocity profiles in the joint programs against experimental data using a novel curve-fitting procedure based on analytical rather than numerical differentiation. The results suggest multiob-jective optimization of the joint's motion. The control and learning model proposed here will help the understanding of the mechanisms responsible for assembling selected movement segments into goaldirected movement sequences in humans.  相似文献   

3.
Biomechanical influences on balance recovery by stepping.   总被引:5,自引:0,他引:5  
Stepping represents a common means for balance recovery after a perturbation to upright posture. Yet little is known regarding the biomechanical factors which determine whether a step succeeds in preventing a fall. In the present study, we developed a simple pendulum-spring model of balance recovery by stepping, and used this to assess how step length and step contact time influence the effort (leg contact force) and feasibility of balance recovery by stepping. We then compared model predictions of step characteristics which minimize leg contact force to experimentally observed values over a range of perturbation strengths. At all perturbation levels, experimentally observed step execution times were higher than optimal, and step lengths were smaller than optimal. However, the predicted increase in leg contact force associated with these deviations was substantial only for large perturbations. Furthermore, increases in the strength of the perturbation caused subjects to take larger, quicker steps, which reduced their predicted leg contact force. We interpret these data to reflect young subjects' desire to minimize recovery effort, subject to neuromuscular constraints on step execution time and step length. Finally, our model predicts that successful balance recovery by stepping is governed by a coupling between step length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless declines in one capacity are offset by enhancements in the others. This suggests that one's risk for falls may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a single motor capacity.  相似文献   

4.
Unilateral, below-knee amputees have an increased risk of falling compared to non-amputees. The regulation of whole-body angular momentum is important for preventing falls, but little is known about how amputees regulate angular momentum during walking. This study analyzed three-dimensional, whole-body angular momentum at four walking speeds in 12 amputees and 10 non-amputees. The range of angular momentum in all planes significantly decreased with increasing walking speed for both groups. However, the range of frontal-plane angular momentum was greater in amputees compared to non-amputees at the first three walking speeds. This range was correlated with a reduced second vertical ground reaction force peak in both the intact and residual legs. In the sagittal plane, the amputee range of angular momentum in the first half of the residual leg gait cycle was significantly larger than in the non-amputees at the three highest speeds. In the second half of the gait cycle, the range of sagittal-plane angular momentum was significantly smaller in amputees compared to the non-amputees at all speeds. Correlation analyses suggested that the greater range of angular momentum in the first half of the amputee gait cycle is associated with reduced residual leg braking and that the smaller range of angular momentum in the second half of the gait cycle is associated with reduced residual leg propulsion. Thus, reducing residual leg braking appears to be a compensatory mechanism to help regulate sagittal-plane angular momentum over the gait cycle, but may lead to an increased risk of falling.  相似文献   

5.
ObjectiveIf balance is lost, quick step execution can prevent falls. Research has shown that speed of voluntary stepping was able to predict future falls in old adults. The aim of the study was to investigate voluntary stepping behavior, as well as to compare timing and leg push-off force–time relation parameters of involved and uninvolved legs in stroke survivors during single- and dual-task conditions. We also aimed to compare timing and leg push-off force–time relation parameters between stroke survivors and healthy individuals in both task conditions.MethodsTen stroke survivors performed a voluntary step execution test with their involved and uninvolved legs under two conditions: while focusing only on the stepping task and while a separate attention-demanding task was performed simultaneously. Temporal parameters related to the step time were measured including the duration of the step initiation phase, the preparatory phase, the swing phase, and the total step time. In addition, force–time parameters representing the push-off power during stepping were calculated from ground reaction data and compared with 10 healthy controls.ResultsThe involved legs of stroke survivors had a significantly slower stepping time than uninvolved legs due to increased swing phase duration during both single- and dual-task conditions. For dual compared to single task, the stepping time increased significantly due to a significant increase in the duration of step initiation. In general, the force time parameters were significantly different in both legs of stroke survivors as compared to healthy controls, with no significant effect of dual compared with single-task conditions in both groups.ConclusionsThe inability of stroke survivors to swing the involved leg quickly may be the most significant factor contributing to the large number of falls to the paretic side. The results suggest that stroke survivors were unable to rapidly produce muscle force in fast actions. This may be the mechanism of delayed execution of a fast step when balance is lost, thus increasing the likelihood of falls in stroke survivors.  相似文献   

6.
Humans running and hopping maintain similar center-of-mass motions, despite large changes in surface stiffness and damping. The goal of this study was to determine the contributions of anticipation and reaction when human hoppers encounter surprise, expected, and random changes from a soft elastic surface (27 kN/m) to a hard surface (411 kN/m). Subjects encountered the expected hard surface on every fourth hop and the random hard surface on an average of 25% of the hops in a trial. When hoppers on a soft surface were surprised by a hard surface, the ankle and knee joints were forced into greater flexion by passive interaction with the hard surface. Within 52 ms after subjects landed on the surprise hard surface, joint flexion increased, and the legs became less stiff than on the soft surface. These mechanical changes occurred before electromyography (EMG) first changed 68-188 ms after landing. Due to the fast mechanical reaction to the surprise hard surface, center-of-mass displacement and average leg stiffness were the same as on expected and random hard surfaces. This similarity is striking because subjects anticipated the expected and random hard surfaces by landing with their knees more flexed. Subjects also anticipated the expected hard surface by increasing the level of EMG by 24-76% during the 50 ms before landing. These results show that passive mechanisms alter leg stiffness for unexpected surface changes before muscle EMG changes and may be critical for adjustments to variable terrain encountered during locomotion in the natural world.  相似文献   

7.
It is common practice to study jump landing mechanics by having subjects step off a box set at a certain height instead of landing from a jump. This practice assumes that the landing mechanics are similar between stepping off a box and a countermovement jump as long as the heights can be matched. The mechanics of the two methods had never been compared when landing from identical heights. Thus, the purpose of this study was to compare the mechanics of landing from a countermovement jump to landing from a step-off. Participants performed three maximal countermovement jumps. The mechanics of one countermovement jump was compared with a center of mass fall height matched step-off landing. The step-off landing showed a more rapid time to peak ground reaction force (GRF) in both genders and greater GRF peak and loading rate in males only. No difference was observed between joint angles at initial contact; however, the countermovement jump showed significantly greater joint flexion angles at peak GRF for both genders. EMG showed greater muscle activity during the countermovement jump condition in all subjects. It was concluded that countermovement jump landings are different from step-off landings; thus, results from analyses involving step-off landings should be taken with caution if the aim is to relate them to landing from a jump.  相似文献   

8.
We have previously reported that elderly compared to young women executed downward stepping with substantially greater leg stiffness. Because antagonist muscle coactivity increases joint stiffness we hypothesized that increased leg stiffness in aging is associated with increased muscle coactivity. We also explored the possibility that the magnitude of the preparatory muscle activity preceding impact also differed between young and old subjects. Young (n=11, 20. 8 yr) and old (n=12, 69 yr) women performed downward stepping from a platform set at 20% body height. The leg was modeled as a simple mass-spring system. From video and ground reaction force data leg stiffness was computed as the ratio of force under the foot and the linear shortening of the limb. EMG activity of the vastus lateralis, biceps femoris, gastrocnemius lateralis, and tibialis anterior were recorded with a telemetric system. Elders compared to young subjects had 64% greater leg stiffness during downward stepping. Muscle activity over a 200-ms period preceding touch down was 136% greater in elderly than in young subjects. Biceps femoris and tibialis anterior coactivity during ground contact was 120% greater in the elders. Muscle pre- and coactivity, respectively, accounted for about 50% of the variance in leg stiffness. In conclusion, elderly people elevate muscle pre- and coactivity during downward stepping to stiffen the leg in compensation for impaired neuromotor functions.  相似文献   

9.
Walking is a complex dynamic task that requires the regulation of whole-body angular momentum to maintain dynamic balance while performing walking subtasks such as propelling the body forward and accelerating the leg into swing. In human walking, the primary mechanism to regulate angular momentum is muscle force generation. Muscles accelerate body segments and generate ground reaction forces that alter angular momentum about the body’s center-of-mass to restore and maintain dynamic stability. In addition, gravity contributes to whole-body angular momentum through its contribution to the ground reaction forces. The purpose of this study was to generate a muscle-actuated forward dynamics simulation of normal walking to quantify how individual muscles and gravity contribute to whole-body angular momentum in the sagittal plane. In early stance, the uniarticular hip and knee extensors (GMAX and VAS), biarticular hamstrings (HAM) and ankle dorsiflexors (TA) generated backward angular momentum while the ankle plantar flexors (SOL and GAS) generated forward momentum. In late stance, SOL and GAS were the primary contributors and generated angular momentum in opposite directions. SOL generated primarily forward angular momentum while GAS generated backward angular momentum. The difference between muscles was due to their relative contributions to the horizontal and vertical ground reaction forces. Gravity contributed to the body’s angular momentum in early stance and to a lesser extent in late stance, which was counteracted primarily by the plantar flexors. These results may provide insight into balance and movement disorders and provide a basis for developing locomotor therapies that target specific muscle groups.  相似文献   

10.
Running is beneficial for physical, social, and emotional health, and participating in physical activity, including running, is becoming more popular for people with an amputation. However, this population has a greater risk of falling relative to people without an amputation, which may be a barrier to running. Understanding how dynamic balance is maintained during running is important for removing this barrier. To investigate dynamic balance, we quantified whole-body angular momentum in eight people with a unilateral transtibial amputation (TTA) using running-specific prostheses (RSPs) compared to eight people without TTA during running at 2.5, 3.0, and 3.5 m/s. People with TTA had greater ranges of whole-body angular momentum compared to people without TTA in the frontal and sagittal planes (p < 0.01). These greater ranges resulted from smaller peak medial, lateral, and braking ground reaction forces from the amputated leg compared to the intact leg and people without TTA. Reduced RSP mass relative to the biological leg also influenced whole-body angular momentum as evidenced by smaller ranges of amputated leg angular momentum compared to the intact leg in the frontal and sagittal planes. Smaller amputated leg angular momentum corresponded with smaller contralateral arm angular momentum in the sagittal plane (p < 0.01). People with TTA maintain balance during running with altered muscle coordination and prosthesis characteristics. Restoring mediolateral force generation through prosthetic design advances may help in regulating the frontal plane component of whole-body angular momentum for people with TTA, with potential to improve their ability to maintain balance during running.  相似文献   

11.
Muscle tuning during running: implications of an un-tuned landing   总被引:1,自引:0,他引:1  
BACKGROUND: The impact force in heel-toe running is an input signal into the body that initiates vibrations of the soft tissue compartments of the leg. These vibrations are heavily damped and the paradigm of muscle tuning suggests the body adapts to different input signals to minimize these vibrations. The objectives of the present study were to investigate the implications of not tuning a muscle properly for a landing with a frequency close to the resonance frequency of a soft tissue compartment and to look at the effect of an unexpected surface change on the subsequent step of running. METHOD: Thirteen male runners were recruited and performed heel-toe running over two surface conditions. The peak accelerations and biodynamic responses of the soft tissue compartments of the leg along with the EMG activity of related muscles were determined for expected soft, unexpected hard and expected hard landings. RESULTS AND CONCLUSIONS: For the unexpected hard landing there was a change in the input frequency of the impact force, shifting it closer to the resonance frequency of the soft tissue compartments. For the unexpected landing there was no muscle adaptation, as subjects did not know the running surface was going to change. In support of the muscle-tuning concept an increase in the soft tissue acceleration did occur. This increase was greater when the proximity of the input signal frequency was closer to the resonance frequency of the soft tissue compartment. Following the unexpected change in the input signal a change in pre-contact muscle activity to minimize soft tissue compartment vibrations was not found. This suggests if muscle tuning does occur it is not a continuous feedback response that occurs with every small change in the landing surface properties. In previous studies with significant adaptation periods to new input signals significant correlations between the changes in the input signal frequency and the EMG intensity have been shown, however, changes in soft tissue accelerations have not been found. The results of the present study showed that changes in these soft tissue accelerations can occur in response to a resonance frequency input signal when a muscle reaction has not happened.  相似文献   

12.
13.
Mechanical analysis of the landing phase in heel-toe running.   总被引:3,自引:0,他引:3  
Results of mechanical analyses of running may be helpful in the search for the etiology of running injuries. In this study a mechanical analysis was made of the landing phase of three trained heel-toe runners, running at their preferred speed and style. The body was modeled as a system of seven linked rigid segments, and the positions of markers defining these segments were monitored using 200 Hz video analysis. Information about the ground reaction force vector was collected using a force plate. Segment kinematics were combined with ground reaction force data for calculation of the net intersegmental forces and moments. The vertical component of the ground reaction force vector Fz was found to reach a first peak approximately 25 ms after touch-down. This peak occurs because, in the support leg, the vertical acceleration of the knee joint is not reduced relative to that of the ankle joint by rotation of the lower leg, so that the support leg segments collide with the floor. Rotation of the support upper leg, however, reduces the vertical acceleration of the hip joint relative to that of the knee joint, and thereby plays an important role in limiting the vertical forces during the first 40 ms. Between 40 and 100 ms after touch-down, the vertical forces are mainly limited by rotation of the support lower leg. At the instant that Fz reaches its first peak, net moments about ankle, knee and hip joints of the support leg are virtually zero. The net moment about the knee joint changed from -100 Nm (flexion) at touch-down to +200 Nm (extension) 50 ms after touch-down. These changes are too rapid to be explained by variations in the muscle activation levels and were ascribed to spring-like behavior of pre-activated knee flexor and knee extensor muscles. These results imply that the runners investigated had no opportunity to control the rotations of body segments during the first part of the contact phase, other than by selecting a certain geometry of the body and muscular (co-)activation levels prior to touch-down.  相似文献   

14.
Older adults are more likely than young to fall upon a loss of balance, yet the factors responsible for this difference are not well understood. This study investigated whether age-related differences in movement stability, limb support, and protective stepping contribute to the greater likelihood of falling among older adults. Sixty young and 41 older, safety-harnessed, healthy adults were exposed to a novel and unexpected forward slip during a sit-to-stand task. More older than young adults fell (76% vs. 30%). Falls in both age groups were related to lesser stability and lower hip height at first step touchdown, with 97.1% of slip outcomes correctly classified based on these variables. Decreases in hip height at touchdown had over 20 times greater effect on the odds of falling than equivalent decreases in stability. Three age differences placed older adults at greater risk of falling: older adults had lower and more slowly rising hips at slip onset, they were less likely to respond to slipping with ample limb support, and they placed their stepping foot less posterior to their center of mass. The first two differences, each associated with deficient limb support, reduced hip ascent and increased hip descent. The third difference resulted in lesser stability at step touchdown. These results suggest that deficient limb support in normal movement patterns and in the reactive response to a perturbation is a major contributor to the high incidence of falls in older adults. Improving proactive and reactive limb support should be a focus of fall prevention efforts.  相似文献   

15.
In gymnastics every exercise finishes with a landing. The quality of landing depends on subjective (e.g. biomechanical) and objective (e.g. mechanical characteristics of landing area) factors. The aim of our research was to determine which biomechanical (temporal, kinematic and dynamic) characteristics of landing best predict the quality of landing. Twelve male gymnasts performed a stretched forward and backward salto; also with 1/2, 1/1 and 3/2 turns. Stepwise multiple regression extracted five predictors which explained 51.5% of landing quality variance. All predictors were defining asymmetries between legs (velocities, angles). To avoid asymmetric landings, gymnasts need to develop enough height; they need higher angular momentum around the transverse and longitudinal axis and they need to better control angular velocity in the longitudinal axis.  相似文献   

16.
Locomotion on complex substrata can be expressed in a plane by two geometric components of body movement: linear locomotion and rotational locomotion. This study examined pure rotation by analysing the geometry of leg movements and stepping patterns during the courtship turns of male Blattella germanica. Strict rotation or translation by an insect requires that each side of the body cover equal distance with respect to the substrate. There are three mechanisms by which the legs can maintain this equality: frequency of stepping, magnitude of the leg arcs relative to the body and the degree to which legs flex and extend during locomotion. During the courtship behaviour of Blattella germanica selected males executed turns involving body rotation along with leg movements in which the legs on the outside of the turn swung through greater average arcs than those on the inside of the turn. This difference should have resulted in a translation component. However, legs on the inside of the turn compensated by flexion and extension movements which were greater than those of opposing legs. The net effect was that both sides of the body covered equal average ground. These cockroaches used a wide variety of stepping combinations to effect rotation. The frequency of these combinations was compared to an expected frequency distribution of stepping combinations and further to an expected frequency of these stepping combinations used for straight walking. These comparisons demonstrated a similarity between interleg coordination during straight walking and that during turning in place.  相似文献   

17.
Little is known about the landing behavior of the trailing (recovery) foot and ensuing types of falls following a forward slip in walking. The purposes of this study were to (1) determine if community-dwelling older adults experienced bilateral slips at the same rate as had been previously observed for young adults during over-ground walking; (2) determine if fall rate in older adults was dependent on slip type (unilateral vs. bilateral); and (3) identify differences in spatiotemporal variables of the trailing leg step between unilateral and bilateral slips. One-hundred-seventy-four participants experienced an unannounced, unrehearsed slip while walking on a 7-m walkway. Each trial was monitored with a motion capture system and bilateral ground reaction force plates. Although the experimental design, developed with original data from a young adult population, favored bilateral slips, more older adults (35%) than anticipated (10% previously observed in young, p<0.001) displayed a unilateral slip. The probability of fall was equal in the two types of slips. Eighty-two people recovered from the slip, while the remaining 92 (53%) fell. These 92 were classified into two exclusive categories based on the heel distance at the time of fall arrest using cluster analysis: those which resembled a fall into a "splits" position (n=47) or a feet-forward fall (n=45). All (100%) unilateral slips led to splits falls, as expected. Yet, not all bilateral slips (only 83%) resulted in feet-forward falls. A longer forward recovery step with a prolonged step time led to both feet slipping, nearly together, hence a feet-forward fall.  相似文献   

18.
The study addresses postural preparation to stepping. In particular, it tests a hypothesis that such preparation involves adjustments in the activity of ankle plantarflexors to produce shifts of the center of pressure. We investigated the initiation of a step from quiet stance when the subjects stood on boards with a decreased dimension of the support area in the anterior-posterior direction ("unstable boards"). Stepping from an unstable board was associated with decreased preparatory shifts of the center of pressure (COP) in the anterior-posterior direction from about 3 cm to 0.9 cm and further to 0.1cm when the support narrowed from comfortable standing to 3.3 cm and to nearly 0 cm. There was a smaller decrease in the COP shift in the medio-lateral direction. When the subjects stood on a board which rested on a very narrow ridge ("zero-support"), they showed an increase in the magnitude of changes in the horizontal force immediately prior to making a step. There was a general increase in the level of activation of leg and trunk muscles during stepping from unstable boards. The modulation of the activity of ankle plantarflexors increased during stepping from unstable boards. We conclude that, to initiate a step, COP shifts and changes in shear force can be modulated independently of each other in a constraint-specific manner. The results speak against the hypothesis that modulation of ankle plantarflexor activity during postural adjustments is directly related to the production of COP shifts.  相似文献   

19.
Recovery from a large perturbation, such as a slip, can be successful when stability of movement can be reestablished with protective stepping. Nevertheless, one dilemma for executing a protective step is that its liftoff can weaken support against limb collapse. This study investigated whether failures in limb support leading to falls after a protective step result from insufficient joint moment generation, and whether such insufficiency is greater among older fallers. A novel, unexpected slip was induced immediately following seat-off during a sit-to-stand. Joint work and mechanical energy were calculated for 43 young (9 falls, 34 recoveries) and 22 older (13 falls, 9 recoveries) adults who responded with a protective step. Comparisons of the work produced at three joints of the bilateral lower limbs revealed that insufficient concentric knee and hip extensor work prior to step liftoff was a primary differentiating factor between falling and recovery, regardless of age. Also, during stepping, fallers regardless of age failed to limit the eccentric knee extensor work at their stance limb sufficiently to retard rapid knee flexion and the consequent potential energy loss. We concluded that young and older fallers had comparable weak limb support. The greater fall incidence among the older adults likely resulted from a greater proportion of subjects who responded to the slip with insufficient knee extensor support, possibly attributable to age-differences in chair-rising. One strategy to address this dilemma may rely on task-specific training to enhance feedforward control that improves movement stability, and thus lessens the reliance on protective stepping.  相似文献   

20.
Lower-limb amputees have a higher risk of falling compared to non-amputees. Proper regulation of whole-body angular momentum is necessary to prevent falls, particularly in the frontal plane where individuals are most unstable. However, the balance recovery mechanisms used by lower-limb amputees when recovering from a perturbation are not well-understood. This study sought to understand the balance recovery mechanisms used by lower-limb amputees in response to mediolateral foot perturbations by examining changes to frontal plane whole-body angular momentum and hip joint work. These metrics provide a quantitative measure of frontal plane dynamic balance and associated joint contributions required to maintain balance during gait. Nine amputees and 11 non-amputees participated in this study where an unexpected medial or lateral foot placement perturbation occurred immediately prior to heel strike on the residual, sound or non-amputee limbs. Lateral perturbations of all limbs resulted in a reduced range of whole-body angular momentum and increased positive frontal plane hip work in the first half of single limb support. Medial perturbations for all limbs resulted in increased range of whole-body angular momentum and decreased positive frontal plane hip work, also in the first half of single limb support. These results suggest that medial foot placement perturbations are particularly challenging and that hip strategies play an important role in balance recovery. Thus, rehabilitation interventions that focus on hip muscles that regulate mediolateral balance, particularly the hip abductors, and the use of prostheses with active ankle control, may reduce the risk of falls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号