首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
3.
4.
A physical restriction map of the genome of the cyanobacterium Synechococcus sp. strain PCC 7002 was assembled from AscI, NotI, SalI, and SfiI digests of intact genomic DNA separated on a contour-clamped homogeneous electric field pulsed-field gel electrophoresis system. An average genome size of 2.7 x 10(6) bp was calculated from 21 NotI, 37 SalI, or 27 SfiI fragments obtained by the digestions. The genomic map was assembled by using three different strategies: linking clone analysis, pulsed-field fragment hybridization, and individual clone hybridization to singly and doubly restriction-digested large DNA fragments. The relative positions of 21 genes or operons were determined, and these data suggest that the gene order is not highly conserved between Synechococcus sp. strain PCC 7002 and Anabaena sp. strain PCC 7120.  相似文献   

5.
A role for cpeYZ in cyanobacterial phycoerythrin biosynthesis.   总被引:5,自引:1,他引:4       下载免费PDF全文
Pigment mutant strain FdR1 of the filamentous cyanobacterium Fremyella diplosiphon is characterized by constitutive synthesis of the phycobiliprotein phycoerythrin due to insertional inactivation of the rcaC regulatory gene by endogenous transposon Tn5469. Whereas the parental strain Fd33 harbors five genomic copies of Tn5469, cells of strain FdR1 harbor six genomic copies of the element; the sixth copy in FdR1 is localized to the rcaC gene. Electroporation of FdR1 cells yielded secondary pigment mutant strains FdR1E1 and FdR1E4, which identically exhibited the FdR1 phenotype with significantly reduced levels of phycoerythrin. In both FdR1E1 and FdR1E4, a seventh genomic copy of Tn5469 was localized to the cpeY gene of the sequenced but phenotypically uncharacterized cpeYZ gene set. This gene set is located downstream of the cpeBA operon which encodes the alpha and beta subunits of phycoerythrin. Complementation experiments correlated cpeYZ activity to the phenotype of strains FdR1E1 and FdR1E4. The predicted CpeY and CpeZ proteins share significant sequence identity with the products of homologous cpeY and cpeZ genes reported for Pseudanabaena sp. strain PCC 7409 and Synechococcus sp. strain WH 8020, both of which synthesize phycoerythrin. The CpeY and CpeZ proteins belong to a family of structurally related cyanobacterial proteins that includes the subunits of the CpcE/CpcF phycocyanin alpha-subunit lyase of Synechococcus sp. strain PCC 7002 and the subunits of the PecE/PecF phycoerythrocyanin alpha-subunit lyase of Anabaena sp. strain PCC 7120. Phycobilisomes isolated from mutant strains FdR1E1 and FdR1E4 contained equal amounts of chromophorylated alpha and beta subunits of phycoerythrin at 46% of the levels of the parental strain FdR1. These results suggest that the cpeYZ gene products function in phycoerythrin synthesis, possibly as a lyase involved in the attachment of phycoerythrobilin to the alpha or beta subunit.  相似文献   

6.
Multiple rpoD-related genes of cyanobacteria.   总被引:3,自引:0,他引:3  
Genomes of many eubacterial strains have been shown to encode for multiple rpoD-related genes. In this report, we describe the identification of the multiple rpoD-related genes of cyanobacterial strains. DNAs of three cyanobacterial strains, Anabaena sp. PCC7120, Synechococcus sp. PCC7942, and Synechocystis sp. PCC6803, were examined by Southern hybridization, using a synthetic probe designed for detecting rpoD or rpoD-related genes. Four or five hybridization signals were found in each DNA. Four DNA regions of Synechococcus sp. PCC7942 corresponding to the hybridization signals were cloned and partially sequenced. The sequence data indicate the presence of genes, named rpoD1, rpoD2, rpoD3, and rpoD4, whose products are highly similar to the basic structure of the principal sigma factors of eubacterial strains. The rpoD1 gene showed the greatest similarity to the sigA gene of Anabaena sp. PCC7120.  相似文献   

7.
A gene encoding the enzyme lycopene cyclase in the cyanobacterium Synechococcus sp strain PCC7942 was mapped by genetic complementation, cloned, and sequenced. This gene, which we have named crtL, was expressed in strains of Escherichia coli that were genetically engineered to accumulate the carotenoid precursors lycopene, neurosporene, and zeta-carotene. The crtL gene product converts the acyclic hydrocarbon lycopene into the bicyclic beta-carotene, an essential component of the photosynthetic apparatus in oxygen-evolving organisms and a source of vitamin A in human and animal nutrition. The enzyme also converts neurosporene to the monocyclic beta-zeacarotene but does not cyclize zeta-carotene, indicating that desaturation of the 7-8 or 7'-8' carbon-carbon bond is required for cyclization. The bleaching herbicide 2-(4-methylphenoxy)triethylamine hydrochloride (MPTA) effectively inhibits both cyclization reactions. A mutation that confers resistance to MPTA in Synechococcus sp PCC7942 was identified as a point mutation in the promoter region of crtL. The deduced amino acid sequence of lycopene cyclase specifies a polypeptide of 411 amino acids with a molecular weight of 46,125 and a pI of 6.0. An amino acid sequence motif indicative of FAD utilization is located at the N terminus of the polypeptide. DNA gel blot hybridization analysis indicated a single copy of crtL in Synechococcus sp PCC7942. Other than the FAD binding motif, the predicted amino acid sequence of the cyanobacterial lycopene cyclase bears little resemblance to the two known lycopene cyclase enzymes from nonphotosynthetic bacteria. Preliminary results from DNA gel blot hybridization experiments suggest that, like two earlier genes in the pathway, the Synechococcus gene encoding lycopene cyclase is homologous to plant and algal genes encoding this enzyme.  相似文献   

8.
R M Wynn  J Omaha  R Malkin 《Biochemistry》1989,28(13):5554-5560
Photosystem I (PSI) complexes have been isolated from two cyanobacterial strains, Synechococcus sp. PCC 7002 and 6301. These complexes contain six to seven low molecular mass subunits in addition to the two high molecular mass subunits previously shown to bind the primary reaction center components. Chemical cross-linking of ferredoxin to the complex identified a 17.5-kDa subunit as the ferredoxin-binding protein in the Synechococcus sp. PCC 6301-PSI complex. The amino acid sequence of this subunit, deduced from the DNA sequence of the gene, confirmed its identity as the psaD gene product. A 17-kDa subunit cross-links to the electron donor, cytochrome c-553, in a manner analogous to the cross-linking of plastocyanin to the higher plant PSI complex. Using antibodies raised against the spinach psaC gene product (a 9-kDa subunit which binds Fe-S centers A and B), we identified an analogous protein in the cyanobacterial PSI complex.  相似文献   

9.
10.
The gene for ribonucleotide reductase from Anabaena sp. strain PCC 7120 was identified and expressed in Escherichia coli. This gene codes for a 1,172-amino-acid protein that contains a 407-amino-acid intein. The intein splices itself from the protein when it is expressed in E. coli, yielding an active ribonucleotide reductase of 765 residues. The mature enzyme was purified to homogeneity from E. coli extracts. Anabaena ribonucleotide reductase is a monomer with a molecular weight of approximately 88,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Superose 12 column chromatography. The enzyme reduces ribonucleotides at the triphosphate level and requires a divalent cation and a deoxyribonucleoside triphosphate effector. The enzyme is absolutely dependent on the addition of the cofactor, 5'-adenosylcobalamin. These properties are characteristic of the class II-type reductases. The cyanobacterial enzyme has limited sequence homology to other class II reductases; the greatest similarity (38%) is to the reductase from Lactobacillus leichmannii. In contrast, the Anabaena reductase shows over 90% sequence similarity to putative reductases found in genome sequences of other cyanobacteria, such as Nostoc punctiforme, Synechococcus sp. strain WH8102, and Prochlorococcus marinus MED4, suggesting that the cyanobacterial reductases form a closely related subset of the class II enzymes.  相似文献   

11.
The secY gene product is an essential component of the Escherichia coli cytoplasmic membrane, which mediates the protein translocation across the membrane. We found a gene homologous to secY in the genome of the cyanobacterium Synechococcus PCC7942. The deduced amino acid sequence, 439 amino acids long, shows 43% homology with that of the E. coli secY. The hydrophobic profile suggests that the Synechococcus SecY protein is an integral membrane protein containing ten membrane-spanning segments, which are closely related to the E. coli counterpart. The SecY protein may participate in the protein translocation across the cytoplasmic or thylakoid membrane in Synechococcus PCC7942.  相似文献   

12.
In both prokaryotes and eukaryotes, the heat shock protein ClpB functions as a molecular chaperone and plays a key role in resisting high temperature stress. ClpB is important for the development of thermotolerance in yeast and cyanobacteria but apparently not in Escherichia coli. We undertook a complementation study to investigate whether the ClpB protein from E coli (EcClpB) differs functionally from its cyanobacterial counterpart in the unicellular cyanobacterium Synechococcus sp. PCC 7942. The EcClpB protein is 56% identical to its ClpB1 homologue in Synechococcus. A plasmid construct was prepared containing the entire E coli clpB gene under the control of the Synechococcus clpB1 promoter. This construct was transformed into a Synechococcus clpB1 deletion strain (deltaclpB1) and integrated into a phenotypically neutral site of the chromosome. The full-length EcClpB protein (EcClpB-93) was induced in the transformed Synechococcus strain during heat shock as well as the smaller protein (EcClpB-79) that arises from a second translational start inside the single clpB message. Using cell survival measurements we show that the EcClpB protein can complement the Synechococcus deltaclpB1 mutant and restore its ability to develop thermotolerance. We also demonstrate that both EcClpB-93 and -79 appear to contribute to the degree of acquired thermotolerance restored to the Synechococcus complementation strains.  相似文献   

13.
14.
The operon encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the cyanobacterium Synechococcus sp. PCC7002 contains three rbc genes, rbcL, rbcX and rbcS, in this order. Introduction of translational frameshift into the rbcX gene resulted in a significant decrease in the production of large (RbcL) and small (RbcS) subunits of the Rubisco protein in Synechococcus sp. PCC7002 and in Escherichia coli. To investigate the function of the rbcX gene product (RbcX), we constructed the expression plasmid for the rbcX gene and examined the effects of RbcX on the recombinant Rubisco production in Escherichia coli. The coexpression experiments revealed that RbcX had marked effects on the production of large and small subunits of Rubisco without any significant influence on the mRNA level of rbc genes and/or the post-translational assembly of the Rubisco protein. The present rbcX coexpression system provides a novel and useful method for investigating the Rubisco maturation pathway.  相似文献   

15.
16.
The ntcA gene from Synechococcus sp. strain PCC 7942 encodes a regulatory protein which is required for the expression of all of the genes known to be subject to repression by ammonium in that cyanobacterium. Homologs to ntcA have now been cloned by hybridization from the cyanobacteria Synechocystis sp. strain PCC 6803 and Anabaena sp. strain PCC 7120. Sequence analysis has shown that these ntcA genes would encode polypeptides strongly similar (77 to 79% identity) to the Synechococcus NtcA protein. Sequences hybridizing to ntcA have been detected in the genomes of nine other cyanobacteria that were tested, including strains of the genera Anabaena, Calothrix, Fischerella, Nostoc, Pseudoanabaena, Synechococcus, and Synechocystis.  相似文献   

17.
18.
Two sequences with homology to a thioredoxin oligonucleotide probe were detected by Southern blot analysis of Anabaena sp. strain PCC 7120 genomic DNA. One of the sequences was shown to code for a protein with 37% amino acid identity to thioredoxins from Escherichia coli and Anabaena sp. strain PCC 7119. This is in contrast to the usual 50% homology observed among most procaryotic thioredoxins. One gene was identified in a library and was subcloned into a pUC vector and used to transform E. coli strains lacking functional thioredoxin. The Anabaena strain 7120 thioredoxin gene did not complement the trxA mutation in E. coli. Transformed cells were not able to use methionine sulfoxide as a methionine source or support replication of T7 bacteriophage or the filamentous viruses M13 and f1. Sequence analysis of a 720-base-pair TaqI fragment indicated an open reading frame of 115 amino acids. The Anabaena strain 7120 thioredoxin gene was expressed in E. coli, and the protein was purified by assaying for protein disulfide reductase activity, using insulin as a substrate. The Anabaena strain 7120 thioredoxin exhibited the properties of a conventional thioredoxin. It is a small heat-stable redox protein and an efficient protein disulfide reductase. It is not a substrate for E. coli thioredoxin reductase. Chemically reduced Anabaena strain 7120 thioredoxin was able to serve as reducing agent for both E. coli and Anabaena strain 7119 ribonucleotide reductases, although with less efficiency than the homologous counterparts. The Anabaena strain 7120 thioredoxin cross-reacted with polyclonal antibodies to Anabaena strain 7119 thioredoxin. However, this unusual thioredoxin was not detected in extracts of Anabaena strain 7120, and its physiological function is unknown.  相似文献   

19.
20.
Abstract An internal fragment of the recA gene of Streptomyces cattleya was amplified by the polymerase chain reaction (PCR) employing degenerate oligonucleotide primers. Using this fragment as a hybridization probe, a recA homologous gene could be shown in each tested Streptomyces strain. A 4.4 kb Bam HI fragment which carried the complete recA gene was isolated from Streptomyces lividans TK24. Sequence analysis suggested that the coding region of the recA gene consists of 1122 bp. The highest similarity (∼78%) could be detected to the recA genes of Mycobacterium tuberculosis and Mycobacterium leprae . After fusion with an E. coli promoter the S. lividans recA gene could partially complement an Escherichia coli recA mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号