共查询到20条相似文献,搜索用时 15 毫秒
1.
Antarctic soil ecosystems are amongst the most simplified on Earth and include only few soil arthropod species, generally
believed to be opportunistic omnivorous feeders. Using stable isotopic analyses, we investigated the food choice of two common
and widely distributed Antarctic soil arthropod species using natural abundances of 13C and 15N and an isotope labelling study. In the laboratory we fed the isotomid springtail Cryptopygus antarcticus six potential food sources (one algal species, two lichens and three mosses). Our results showed a clear preference for algae
and lichens rather than mosses. These results were corroborated by field data comparing stable isotope signatures from the
most dominant cryptogams and soil arthropods (C. antarcticus and the oribatid mite Alaskozetes antarcticus). Thus, for the first time in an Antarctic study, we present clear evidence that these soil arthropods show selectivity in
their choice of food and have a preference for algae and lichens above mosses. 相似文献
2.
Trophic structure of a coastal fish community determined with diet and stable isotope analyses 下载免费PDF全文
A combination of dietary guild analysis and nitrogen (δ15N) and carbon (δ13C) stable‐isotope analysis was used to assess the trophic structure of the fish community in Rhode Island and Block Island Sounds, an area off southern New England identified for offshore wind energy development. In the autumn of 2009, 2010 and 2011, stomach and tissue samples were taken from 20 fish and invertebrate species for analysis of diet composition and δ15N and δ13C signatures. The food chain in Rhode Island and Block Island Sounds comprises approximately four trophic levels within which the fish community is divided into distinct dietary guilds, including planktivores, benthivores, crustacivores and piscivores. Within these guilds, inter‐species isotopic and dietary overlap is high, suggesting that resource partitioning or competitive interactions play a major role in structuring the fish community. Carbon isotopes indicate that most fishes are supported by pelagic phytoplankton, although there is evidence that benthic production also plays a role, particularly for obligate benthivores such as skates Leucoraja spp. This type of analysis is useful for developing an ecosystem‐based approach to management, as it identifies species that act as direct links to basal resources as well as species groups that share trophic roles. 相似文献
3.
The diet of Weddell seals in McMurdo Sound, Antarctica as determined from scat collections and stable isotope analysis 总被引:10,自引:0,他引:10
The diet of adult and juvenile Weddell seals (Leptonychotes weddellii) in McMurdo Sound, Antarctica, was determined from both scat and stable isotope analyses, to ascertain if foraging behavior
varied with age, season, or diving pattern. Scats were collected over 6 years and recovered hard parts identified. Stable
carbon and nitrogen isotope values were determined for seal blood samples and potential prey items and used to identify primary
prey species and assess trophic interactions. Pleuragramma antarcticum remains were recovered from between 70 and 100% of the scats, and there was little evidence for inter-annual or age-specific
variation in foraging behavior. However, stable isotope and dive data analyses indicated that while most seals foraged predominantly
on pelagic fish and squid, some juveniles concentrated on shallow benthic Trematomus spp. Combining these three methods permitted firm conclusions about diet and foraging behavior to be drawn.
Received: 10 June 1997 / Accepted: 8 November 1997 相似文献
4.
Bernhard Klarner Roswitha B. Ehnes Georgia Erdmann Bernhard Eitzinger Melanie M. Pollierer Mark Maraun Stefan Scheu 《Oikos》2014,123(10):1173-1181
Anthropogenic land use shapes the dynamics and composition of central European forests and changes the quality and availability of resources of the decomposer system. These changes likely alter the structure and functioning of soil animal food webs. Using stable isotope analysis (13C, 15N) we investigated the trophic position and resource use of soil animal species in each of four forest types (coniferous, young managed beech, old managed beech and unmanaged beech forests) across three regions in Germany. Twenty‐eight species of soil invertebrates were analyzed covering three consumer levels and a representative spectrum of feeding types and morphologies. Data on stable isotope signatures of leaf litter, fine roots and soil were included to evaluate to which extent signatures of soil animals vary with those of local resources. Soil animal δ15N and δ13C signatures varied with the respective signatures of leaf litter and fine roots. After calibration to leaf litter signatures, soil animal stable isotope signatures of the different beech forests did not differ significantly. However, thick leaf litter layers, such as those in coniferous forests, were associated with low animal stable isotope signatures presumably due to reduced access of decomposer animals to root‐derived resources, suggesting that the decomposer food web is shifted towards leaf litter based energy pathways with the shift affecting all consumer levels. Variation in stable isotope signatures of soil animal species with litter quality parameters suggests that nutrition of third level but not first and second level consumers is related to litter quality, potentially due to microorganisms locking up litter resources thereby hampering their propagation to higher trophic levels. 相似文献
5.
Feeding ecology of phocid seals and some walrus in the Alaskan and Canadian Arctic as determined by stomach contents and stable isotope analysis 总被引:1,自引:0,他引:1
Larissa-A. Dehn Gay G. Sheffield Erich H. Follmann Lawrence K. Duffy Dana L. Thomas Todd M. O’Hara 《Polar Biology》2007,30(2):167-181
Feeding habits of ringed (Phoca hispida), bearded (Erignathus barbatus), spotted (Phoca largha) and ribbon (Phoca fasciata) seals and walrus (Odobenus rosmarus) were studied using stomach contents and stable carbon and nitrogen isotopes. Bearded seals fed benthically, primarily crustaceans and mollusks. Both zooplankton and fish were significant prey for ringed seals, while fish was principal spotted seal prey. Few gastric contents were available from ribbon seals. δ15N was positively correlated with age in ribbon seals and δ13C was positively correlated with age in ringed and ribbon seals. δ15N was highest in spotted seals, in agreement with their fish-dominated diet. δ15N was not different between Alaskan-harvested ringed and bearded seals, while δ15N was lowest in ribbon seals and walrus. Carbon-13 was most enriched in bearded seals and walrus reflecting benthic ecosystem use. Canadian ringed seals were depleted in 13C compared to Alaskan pinnipeds, likely because of Beaufort Sea versus Chukchi and Bering seas influence. 相似文献
6.
Abstract 1. Termites (Isoptera) in tropical savannas are known as ecosystem engineers, affecting the spatial and temporal distribution of water, carbon, cations, and nutrients through their mound structures. Their mounds, however, also offer habitation to diverse taxa and feeding guilds of other invertebrates; a keystone role that has not been properly quantified. 2. The aim of this study was to explore the ecosystem role of termitaria in determining invertebrate diversity and their potential trophic interactions. We used stable isotopes to distinguish termite‐feeding invertebrates from invertebrates merely living in termite mounds under field conditions. 3. The results suggest that inquiline spiders (Arachnida) do not feed on termites directly, but on other invertebrates within the termitaria that are termitophagous, elevating the spiders three trophic levels higher than the termites. 4. This study is the first to demonstrate food web interactions among inquiline invertebrates with a stable isotope approach. It provides evidence that termites play a keystone role in the system by providing habitat for various, trophically interacting invertebrates. These results illustrate a rather unexplored ecosystem property of savanna termites. 相似文献
7.
8.
1. Stable isotope analysis, coupled with dietary data from the literature, was used to investigate trophic patterns of freshwater fauna in a tropical stream food web (Guadeloupe, French West Indies).
2. Primary producers (biofilm, algae and plant detritus of terrestrial origin) showed distinct δ13 C signatures, which allowed for a powerful discrimination of carbon sources. Both autochthonous (13 C-enriched signatures) and allochthonous (13 C-depleted signatures) resources enter the food web. The migrating behaviour of fishes and shrimps between marine and freshwater during their life cycles can be followed by carbon isotopes. Here, shrimp δ13 C signatures were shown to shift from −16‰ (for juveniles under marine influence) to −24.7‰ (for adults in freshwater habitats). For resident species, δ13 C values partly reflected the species' habitat preferences along the river continuum : species living in river mouths were 13 C-enriched in comparison with those collected upstream.
3. Nitrogen isotopic ratios were also discriminating and defined three main trophic guilds among consumers. The δ15 N values of herbivores/detritivores were 5.0–8.4‰, omnivores 8.8–10.2‰ and carnivores 11–12.7‰.
4. Mixing model equations were employed to calculate the possible range of contribution made by respective food sources to the diet of each species. The results revealed the importance of omnivorous species and the dependence of riverine biota on terrestrial subsidies, such as leaf detritus and fruits. Finally, the abundance of shrimps and their feeding habits placed in relief their key role in tropical freshwater food webs. Isotopic analysis provides a useful tool for assessing animal feeding patterns. 相似文献
2. Primary producers (biofilm, algae and plant detritus of terrestrial origin) showed distinct δ
3. Nitrogen isotopic ratios were also discriminating and defined three main trophic guilds among consumers. The δ
4. Mixing model equations were employed to calculate the possible range of contribution made by respective food sources to the diet of each species. The results revealed the importance of omnivorous species and the dependence of riverine biota on terrestrial subsidies, such as leaf detritus and fruits. Finally, the abundance of shrimps and their feeding habits placed in relief their key role in tropical freshwater food webs. Isotopic analysis provides a useful tool for assessing animal feeding patterns. 相似文献
9.
1. We assessed spatial and temporal variation in carbon and nitrogen isotopic signatures in different compartments of a single lake ecosystem. Stable isotope analyses were made on samples of particulate organic matter (POM), zooplankton, periphyton, macrophytes, macroinvertebrates and fish collected from several locations throughout the ice‐free period. 2. No spatial variation in δ13C or δ15N values was found for pelagic samples of POM and zooplankton. However, pelagic δ15N signatures increased steadily through the summer resulting in an almost 6‰ average increase in POM and zooplankton. A concurrent decrease in epilimnetic nitrate concentrations suggested that the increase in δ15N of POM and zooplankton could have resulted from a progressive 15N‐enrichment of the available inorganic nitrogen pool as the size of this pool was reduced. 3. Significant spatial variation in isotopic ratios was observed within littoral and profundal communities. Some spatial differences were likely related to lake‐specific characteristics, such as a major inlet and a small harbour area and some were interconnected with temporal events. 4. Marked differences between spring and autumn δ15N and δ13C values of fish at one site probably reflected a spring spawning immigration from a larger downstream lake and also indicated limited dispersal of these immigrants. 5. Our results indicate that restricted sampling of ecosystem components from lakes may provide misleading single values for the isotope end members needed for quantitative uses of stable isotopes in mixing models and for estimating trophic position. Hence we strongly advise that studies of individual lakes, or multiple lake comparisons, that utilise stable isotope analyses should pay more attention to potential within lake spatial and temporal variability of isotope ratios. 相似文献
10.
Establishing the ecological role of predators within an ecosystem is central to understanding community dynamics and is useful
in designing effective management and conservation strategies. We analysed differences in the trophic ecology of four species
of reef sharks (Carcharhinus melanopterus, Carcharhinus amblyrhynchos, Triaenodon obesus and Negaprion acutidens) at Ningaloo Reef, Western Australia, by analysing tissue stable isotopes (δ15N and δ13C). We also monitored animals using acoustic telemetry to determine long-term residency patterns in a bay at the southern
end of the reef, Coral Bay. Overall, mean δ13C was similar among species, ranging between −10.9 and −11.8‰, suggesting a food-web dependency on coastal producers. Classification
and regression tree analysis identified an effect of species on δ15N that separated C. amblyrhynchos and C. melanopterus from N. acutidens and T. obesus. For C. amblyrhynchos and C. melanopterus, animals were also divided by size classes, with smaller sharks having lower average δ15N than larger animals; this suggests that δ15N increases with size for these two species. Juvenile C. melanopterus, juvenile N. acutidens and adult T. obesus had trophic levels of 3.7, for juvenile C. amblyrhynchos and adult C. melanopterus it was 4, and adult C. amblyrhynchos had a value of 4.3. Trophic-level estimates for C. melanopterus and C. amblyrhynchos corroborate previous conclusions based on diet studies. We found no evidence for a difference in isotopic composition between
resident and non-resident sharks. The lack of variation in isotopic composition was consistent with high mean residency of
these species recorded using acoustic telemetry, which was 79% (±0.09 SE) of days monitored for T. obesus, followed by N. acutidens (57 ± 19.55%), C. amblyrhynchos (54 ± 13%) and C. melanopterus (33 ± 8.28%). High δ13C composition in reef sharks and long-term residency behaviour suggest that coastal marine reserves might provide effective
conservation refuges for some species. 相似文献
11.
The effects of formalin and ethanol preservation on the δ13 C and δ15 N isotope signatures of Arctic charr Salvelinus alpinus muscle tissue were examined. The lipid content of the tissue samples studied ranged from 3·6 to 6·1% and was not correlated with the magnitude of observed isotopic shifts in preserved samples. Ethanol and formalin significantly depleted and enriched, respectively, the δ13 C isotope signatures of preserved tissues when compared to control samples. Ethanol did not significantly enrich δ15 N signatures in comparison to controls, whereas formalin did. A meta-analysis of multiple species effects further demonstrated significant preservation effects in fish tissue. Statistical analysis of data obtained by correcting preserved tissue isotope signatures with literature, bootstrapped or meta-analysis derived correction factors demonstrated significant differences between corrected and control sample isotope signatures or failure to produce a unity slope when the data sets were regressed against one another. Species-specific, bootstrapped linear correction models resulted in no such errors. Results suggest that species-specific correction methods should be used for fishes because of the known wide variation in fish tissue lipid content and composition. Accordingly, the use of pilot studies will be required to develop correction factors that properly adjust for preservation effects when interpreting temporal patterns in historic analyses of food webs. 相似文献
12.
Interactions between plants and microorganisms in the rhizosphere are complex and varied. They include the general transfer of nutrients and specific interactions mediated by the release of signalling molecules from plant roots. Until recently, understanding the nature of these interactions was limited by a reliance on traditional, cultivation-based techniques. Stable isotope probing provides the potential for cultivation-independent characterisation of organisms actively assimilating carbon derived from plant root exudate or added to the soil. Current applications have focused on interactions with relatively low-level specificity, but there is significant potential for mechanistic studies of more specific interactions, particularly if the sensitivity of the technique can be increased. 相似文献
13.
Trophic ecology of a freshwater sponge (Spongilla lacustris) revealed by stable isotope analysis 总被引:1,自引:0,他引:1
The vital roles that sponges play in marine habitats are well-known. However, sponges inhabiting freshwaters have been largely ignored despite having widespread distributions and often high local abundances. We used natural abundance stable isotope signatures of carbon and nitrogen (δ 13C and δ 15N) to infer the primary food source of the cosmopolitan freshwater sponge Spongilla lacustris. Our results suggest that S. lacustris feed largely on pelagic resources and may therefore link pelagic and benthic food webs. A facultative association between S. lacustris and endosymbiotic green algae caused S. lacustris to have significantly depleted carbon and nitrogen signatures that may reflect carbon and nitrogen exchange between sponges and their symbiotic algae. Isotopic data from specialist sponge consumers demonstrated that sponges hosting zoochlorellae were the major component of the diet of the spongillafly Climacia areolaris and the sponge-eating caddisfly Ceraclea resurgens suggesting that the symbiosis between freshwater sponges and algae is important to sponge predator trophic ecology. Our results help define the role of sponges in freshwater ecosystems and shed new light on the evolution and ecological consequences of a complex tri-trophic symbiosis involving freshwater sponges, zoochlorellae, and spongivorous insects. 相似文献
14.
Felix Weiss Robert W. Furness Rona A. R. McGill Ian J. Strange Juan F. Masello Petra Quillfeldt 《Polar Biology》2009,32(12):1753-1763
Seabird colonies provide rare opportunities to study trophic segregation in an entire bird community. We here present data on nitrogen and carbon isotope ratios of eight species of seabirds from New Island, Falkland Islands, and compare trophic levels (TL) and foraging distributions. We included adult feathers representing the interbreeding season, as well as chick feathers or down representing the breeding season. The stable isotope ratios indicated differences in feeding areas and TLs between species, consistent with the data of previous conventional diet analyses and observations at sea. We further reviewed conventional and stable isotope seabird community studies calculating the means and ranges of TLs observed across these studies. The mean TL (3.7) of the seabird community on New Island was at the lower end of the mean value range (3.5–4.5), but not significantly different, from the reviewed seabird communities. Seabirds on New Island had a range of 1.3 TLs, which is on the upper end of ranges within a community (0.4–1.5), indicating strong trophic structuring. 相似文献
15.
16.
Trophic position and seasonal changes in the diet of the red wood ant Formica aquilonia as indicated by stable isotope analysis 下载免费PDF全文
IVAN K. IAKOVLEV TATIANA A. NOVGORODOVA ALEXEI V. TIUNOV ZHANNA I. REZNIKOVA 《Ecological Entomology》2017,42(3):263-272
1. Red wood ants are among the most numerous generalist predators and strongly affect the composition of arthropod communities in forest ecosystems. However, their trophic position remains poorly understood. Stable isotope analysis was applied to study the trophic position of Formica aquilonia and reveal seasonal changes in its trophic links with both myrmecophilous aphids and other invertebrates in a mixed forest of western Siberia. 2. The δ15N values of F. aquilonia exceeded those of herbivores and aphids by approximately 3.5‰. Despite obligate trophobiotic relationships with aphids, F. aquilonia occupied the trophic position of first‐order predator. The higher content of 13C in the worker ants, compared with members of grazing food chains, was explained by their consumption of 13C‐enriched aphid honeydew. 3. Myrmecophilous tree‐dwelling aphids were enriched in 13C and 15N relative to grass‐inhabiting species, and the honeydew of tree‐dwelling aphids had higher δ13C values than those of the honeydew of grass‐inhabiting aphids. 4. The decrease in δ13C values of the worker ants from spring and summer to autumn apparently reflected the transition from the collection of tree sap and feeding on the aphid honeydew from trees with high 13C content in the spring and early summer to a more diverse liquid diet in late summer, which included 13C‐depleted honeydew of aphids from herbs. 5. The prevalence of the 15N‐depleted aphid honeydew in the ants' diet in the second half of the summer is discussed as one possible explanation for the seasonal decline in δ15N values of the worker ants. 相似文献
17.
18.
Stable carbon and nitrogen isotope ratio analyses were used to characterize the primary energy sources and trophic positions of 16 common Lake Superior wave zone invertebrate species. Isotope data from six tributary species that were taxonomically and ecologically matched with common wave zone species revealed broad energetic separation between these similarly structured benthic food webs. Previously published stable isotope data for Lake Superior wetland and pelagic food webs were used to assess the relative importance of inter-habitat energy flow within the Lake Superior ecosystem. The results of these comparisons indicate that the Lake Superior wave zone is energetically distinct from its tributaries, wetlands, and to a lesser extent from its vast pelagic realm. This information and approach should prove useful in future studies on the bioenergetics of inter-zonal migrants and other species that forage in multiple habitats within the lake and also in revealing energetic connections among terrestrial, riverine, littoral, and pelagic food webs in the coastal ecosystems of Lake Superior. 相似文献
19.
Wawrik B Boling WB Van Nostrand JD Xie J Zhou J Bronk DA 《FEMS microbiology ecology》2012,79(2):400-411
Dissolved inorganic nitrogen (DIN) uptake by marine heterotrophic bacteria has important implications for the global nitrogen (N) and carbon (C) cycles. Bacterial nitrate utilization is more prevalent in the marine environment than traditionally thought, but the taxonomic identity of bacteria that utilize nitrate is difficult to determine using traditional methodologies. (15) N-based DNA stable isotope probing was applied to document direct use of nitrate by heterotrophic bacteria on the West Florida Shelf. Seawater was incubated in the presence of 2 μM (15) N ammonium or (15) N nitrate. DNA was extracted, fractionated via CsCl ultracentrifugation, and each fraction was analyzed by terminal restriction fragment length polymorphism (TRFLP) analysis. TRFs that exhibited density shifts when compared to controls that had not received (15) N amendments were identified by comparison with 16S rRNA gene sequence libraries. Relevant marine proteobacterial lineages, notably Thalassobacter and Alteromonadales, displayed evidence of (15) N incorporation. RT-PCR and functional gene microarray analysis could not demonstrate the expression of the assimilatory nitrate reductase gene, nasA, but mRNA for dissimilatory pathways, i.e. nirS, nirK, narG, nosZ, napA, and nrfA was detected. These data directly implicate several bacterial populations in nitrate uptake, but suggest a more complex pattern for N flow than traditionally implied. 相似文献
20.
Dominique Haubert Klaus Birkhofer Andreas Fließbach Matthias Gehre Stefan Scheu Liliane Ruess 《Oikos》2009,118(10):1579-1589
Using bulk tissue and fatty acid 13C analysis we investigated major trophic pathways from soil microorganisms to microbial consumers to predators in conventional versus organic farming systems planted for the first time with maize. Organic farming led to an increase in microbial biomass in particular that of fungi as indicated by phospholipid fatty acids (PLFAs). Microbial PLFAs reflected the conversion from C3 to C4 plants by a shift in δ13C of 2‰, whereas the isotopic signal in fatty acids (FAs) of Collembola was much more pronounced. In the euedaphic Protaphorura fimata the δ13C values in maize fields exceeded that in C3 (soybean) fields by up to 10‰, indicating a close relationship between diet and vegetation cover. In the epedaphic Orchesella villosaδ13C values shifted by 4‰, suggesting a wider food spectrum including carbon of former C3 crop residues. Differences in δ13C of corresponding FAs in consumers and resources were assessed to assign food web links. P. fimata was suggested as root and fungal feeder in soybean fields, fungal feeder in conventional and leaf consumer in organically managed maize fields. O. villosa likely fed on root and bacteria under soybean, and bacteria and fungi under maize. Comparison of δ13C values in FAs of the cursorial spider Pardosaagrestis and O. villosa implied the latter as important prey species in soybean fields. In contrast, the web‐building spider Mangora acalypha showed no predator–prey relationship with Collembola. The determination of δ13C values in trophic biomarker FAs allowed detailed insight into the structure of the decomposer food web and identified diet‐shifts in both consumers at the base of the food web and in top predators in organic versus conventional agricultural systems. The results indicate changes in major trophic links and therefore carbon flux through the food web by conversion of conventional into organic farming systems. 相似文献