首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Twelve different kinds of blood group-specific lectins have been used along with monoclonal anti-A,-B and-H antibodies for detecting the corresponding antigens in selected human tissues. Although most of the lectins recognized the antigens in the tissue sections examined, they displayed marked differences in their recognition patterns in certain tissues.Helix asparsa agglutinin (HAA),Helix pomatia agglutinin (HPA) and monoclonal anti-A antibody recognized A antigens in the mucous cells of salivary glands from blood group A or AB nonsecretor as well as secretor individuals, whereasDolichos biflorus agglutinin (DBA).Griffonia simplicifolia agglutinin-I (GSA-I),Sophora japonica agglutinin (SJA) andVicia villosa agglutinin (VVA) did not bind to them from nonsecretors. A antigens in endothelial cells, lateral membrane of pancreatic acinar cells and small mucous-like cells of submandibular glands from some individuals were likewise recognized by HAA and HPA but not by other blood group A-specific lections. In contrast, both HAA and HPA did not recognize the A antigens in mucous cells of Brunner's glands while other A-specific lectins and monoclonal anti-A antibody reacted specifically with the antigens. Such a difference was not observed with lectins specific for blood group B. However, the B antigens in Brunner's glands were recognized by these lectins but not with monoclonal anti-B antibody. The difference in labelling ability was also noted among the blood group H-specific lectins and monoclonal anti-H antibody in endothelial cells of blood vessels.Ulex europaeus agglutinin-I reacted with these cells irrespective of ABO and the secretor status of the individuals, whileAnguilla anguilla agglutinin and monoclonal anti-H antibody reacted only with those cells from blood group O individuals. No reaction was observed withLotus tetragonolobus agglutinin in these tissue sites. These results suggest a great diversity of blood group antigens in different human tissues.  相似文献   

2.
Lectin histochemistry of human skeletal muscle   总被引:3,自引:0,他引:3  
Biotinyl derivatives of seven plant lectins-concanavalin A (Con A), peanut agglutinin (PNA), Ricinus communis agglutinin I (RCA I), Ulex europeus agglutinin I (UEA I), soybean agglutinin (SBA), Dolichos biflorus agglutinin (DBA), and wheat germ agglutinin (WGA)-were bound to cryostat sections of biopsied normal human muscle and visualized with avidin-horseradish peroxidase conjugates. A distinct staining pattern was observed with each lectin. The most general staining was observed with Con A, RCA I, and WGA, which permitted strong visualization of the plasmalemma-basement membrane unit, tubular profiles in the interior of muscle fibers, blood vessels, and connective tissue. PNA gave virtually no intracellular staining, while SBA and UEA I selectively stained blood vessels. DBA was unique in providing good visualization of myonuclei. In each case, lectin staining could be blocked by appropriate sugar inhibitors. Neuraminidase pretreatment of the cryostat sections altered the pattern of staining by all lectins except UEA I and Con A; staining with RCA I became stronger and that with WGA became less intense, while staining with PNA, SBA and DBA became stronger and more generalized, resembling that of RCA I. These effects of neuraminidase pretreatment are in conformity with the known structure of the oligosaccharide chains of membrane glycoproteins and specificities of the lectins involved.  相似文献   

3.
The expression of receptors for N-acetylgalactosamine-recognizing lectins, namely Helix pomatia agglutinin (HPA), Sophora japonica agglutinin (SJA), Bauhinia purpurea agglutinin (BPA), Vicia villosa agglutinin (VVA), and Wistaria floribunda agglutinin (WFA) was studied in early mouse embryos and teratocarcinoma cells. Each of these lectins as well as Dolichos biflorus agglutinin (DBA) bound differently to early embryonic cells, with the exception of VVA and WFA which showed indistinguishable reactivities. SJA reacted intensely with visceral endoderm, but hardly at all with parietal and primitive endoderm. Therefore, SJA will be useful for analyzing the mechanism of visceral-endoderm formation. Furthermore, the inner cell mass (ICM) of early blastocysts reacted intensely with DBA, while the ICM of late blastocysts reacted only faintly with this lectin. Primary endoderm derived from the ICM reacted faintly with SJA, HPA, and DBA, and these reactivities increased again during the differentiation of the endoderm. Therefore, these three lectins could be used in the analysis of early stages during the differentiation of endoderm from the ICM. The results illustrate the highly complex nature of developmentally regulated alterations of cell-surface carbohydrates during the early stages of embryogenesis.  相似文献   

4.
Y Okamura 《Histochemistry》1990,94(5):489-496
Cytochemical localization of blood group ABH antigens was examined in secretory cells of human cervical glands by application of a post-embedding lectin-gold as well as immuno-gold labeling procedure using monoclonal antibodies. Blood group specific lectins such as Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) and Ulex europaeus agglutinin-I (UEA-I) reacted with secretory granules but not with other cytoplasmic organellae such as nucleus and cell membrane. The reactivity of secretory granules with these lectins showed strict dependence on the blood group and secretor status of tissue donors. The binding patterns with these lectins were not homogeneous, but exhibited marked cellular and subcellular heterogeneity. Thus, for example, in blood group A individuals, some granules were stained strongly with DBA and others were weakly or not at all with the lectin. Such a heterogenous labeling with the lectin was observed even in the same cells. Similar results were obtained with UEA-I and GSAI-B4 staining in blood group O and B secretor individuals, respectively. Monoclonal antibodies likewise reacted specifically with the granules but they occasionally bound to some nucleus. The labeling pattern of the antibodies with the granules was essentially the same as those of lectins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
When various lectins were mixed with radioactively labeled embryoglycan (polylactosamine-type glycoprotein-bound carbohydrates from early embryonic cells) isolated from F9 embryonal carcinoma cells and the resulting complex was precipitated with ammonium sulfate, the glycan was found to react with the following lectins: Helix pomatia agglutinin (HPA), soybean agglutinin (SBA), Sophora japonica agglutinin (SJA), and Ricinus communis agglutinin-1 (RCA-1). Furthermore, affinity chromatography on lectin-agarose revealed that receptors for Griffonia simplicifolia agglutinin-I (GS-I) were also carried by the glycan. Together with the previous finding that the glycan carries receptors for Dolichos biflorus agglutinin (DBA) and peanut agglutinin (PNA), the present result established that the glycan has receptors for a variety of lectins recognizing N-acetylgalactosamine and/or galactose in teratocarcinoma cells. Intact molecules carrying GS-1 receptors and SJA receptors were isolated from F9 cells and teratocarcinoma OTT6050 and were shown to be high-molecular weight glycoproteins similar to DBA receptors isolated from the same sources.  相似文献   

6.
The distribution of saccharide moieties in human interfollicular epidermis was studied with fluorochrome-coupled lectins. In frozen sections Concanavalin A (Con A), Lens culinaris agglutinin (LCA), Ricinus communis agglutinin I (RCAI), and wheat germ agglutinin (WGA) stained intensively both dermis and viable epidermal cell layers, whereas peanut agglutinin (PNA) bound only to living epidermal cell layers. Ulex europaeus agglutinin I (UEAI) bound to dermal endothelial cells and upper cell layers of the epidermis but left the basal cell layer unstained. Dolichos biflorus agglutinin (DBA) bound only to basal epidermal cells, whereas both soybean agglutinin (SBA) and Helix pomatia agglutinin (HPA) showed strong binding to the spinous and granular cell layers. On routinely processed paraffin sections, a distinctly different staining pattern was seen with many lectins, and to reveal the binding of some lectins a pretreatment with protease was required. All keratin-positive cells in human epidermal cell suspensions, obtained with the suction blister method, bound PNA, whereas only a fraction of the keratinocytes bound either DBA or UEAI. Such a difference in lectin binding pattern was also seen in epidermal cell cultures both immediately after attachment and in organized cell colonies. This suggests that in addition to basal cells, more differentiated epidermal cells from the spinous cell layer are also able to adhere and spread in culture conditions. Gel electrophoretic analysis of the lectin-binding glycoproteins in detergent extracts of metabolically labeled primary keratinocyte cultures revealed that the lectins recognized both distinct and shared glycoproteins. A much different lectin binding pattern was seen in embryonic human skin: fetal epidermis did not show any binding of DBA, whereas UEAI showed diffuse binding to all cell layers but gave a bright staining of dermal endothelial cells. This was in contrast to staining results obtained with a monoclonal cytokeratin antibody, which showed the presence of a distinct basal cell layer in fetal epidermis also. The results indicate that expression of saccharide moieties in human epidermal keratinocytes is related to the stage of cellular differentiation, different cell layers expressing different terminal saccharide moieties. The results also suggest that the emergence of a mature cell surface glycoconjugate pattern in human epidermis is preceded by the acquisition of cell layer-specific, differential keratin expression.  相似文献   

7.
Summary Cytochemical localization of blood group ABH antigens was examined in secretory cells of human cervical glands by application of a post-embedding lectin-gold as well as immuno-gold labeling procedure using monoclonal antibodies. Blood group specific lectins such as Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) and Ulex europaeus agglutinin-I (UEA-I) reacted with secretory granules but not with other cytoplasmic organellae such as nucleus and cell membrane. The reactivity of secretory granules with these lectins showed strict dependence on the blood group and secretor status of tissue donors. The binding patterns with these lectins were not homogeneous, but exhibited marked cellular and subcellular heterogeneity. Thus, for example, in blood group A individuals, some granules were stained strongly with DBA and others were weakly or not at all with the lectin. Such a heterogenous labeling with the lectin was observed even in the same cells. Similar results were obtained with UEA-I and GSAI-B4 staining in blood group O and B secretor individuals, respectively. Monoclonal antibodies likewise reacted specifically with the granules but they occasionally bound to some nucleus. The labeling pattern of the antibodies with the granules was essentially the same as those of lectins. However, difference was also observed between monoclonal antibody and lectin staining, that is, monoclonal anti-A antibody reacted weakly but consistently with granules from blood group A nonsecretors but DBA (HPA) did not; staining with UEA-I was observed in granules from the secretor individuals of any blood groups whereas monoclonal anti-H antibody reacted with granules from blood group O and some A secretor individuals but not from B and AB secretor individuals; GSAI-B4 reacted uniformly with granules throughout the cells whereas monoclonal anti-B antibody bound to limited number of granules in the same cells. This was confirmed by the double labeling experiments with the lectin and the antibody. These results suggest that the different types of antigens as to the binding ability for monoclonal antibodies and lectins are expressed on different granules in the same cell.  相似文献   

8.
We applied a peroxidase-antiperoxidase technique to study the distribution pattern and binding characteristics of the lectin from the marine sponge Geodia cydonium (Geodia cydonium agglutinin; GCA) in various human tissues. This lectin has been shown to possess a broad reactivity, but there was a distinct distribution of binding sites within the different organs. In the histochemical system GCA displayed no blood group specificity and labeled red blood cells, the vascular endothelium, and epithelial cells showing blood group antigen expression independent of the ABH blood group status. However, inhibition of GCA reactivity by simple sugars and complex carbohydrates demonstrated tissue-specific differences of lectin binding related to the ABH blood group status of the tissue and revealed information on the structural requirements of the histological lectin binding site. Tissues that totally lacked blood group antigens or that expressed only the H-antigen disclosed a GCA reactivity which was completely inhibited by lactose. In contrast, tissues that expressed blood group A- or blood group B-antigen exhibited a lactose-resistant lectin binding which was inhibited only by water-soluble blood group substance A from peptone A and by bovine glycophorin but not by other complex carbohydrates, including human glycophorin and human asialoglycophorin. Competitive inhibition studies in situ revealed that GCA binding was not inhibited by blood group type I/II carbohydrate sequence-specific lectins or by lectins with other sugar specificities. Inhibition by lactose of GCA binding to some histological sites indicates that the binding site consists of a beta-linked galactose-containing disaccharide. However, periodate oxidation of tissue sections had no effect on lectin binding, pointing to a subterminal location of the relevant sequence. The results obtained from inhibition studies with simple saccharides and complex carbohydrates in relation to the expression of ABH blood group antigens suggest a complex lectin combining site(s) in histological specimens. The lectin may possess either one binding site with a range of affinities for different carbohydrates (besides beta-linked disaccharides the GCA binding site accommodates to carbohydrate determinants carrying the blood group A or blood group B determinant), or may possess two different binding sites. Besides an acceptor site for beta-linked disaccharides, an additional binding site may exist accommodating to extended carbohydrate sequences related to A or B blood group structures. In conclusion, GCA represents a blood group-nonspecific lectin whose binding affinities are determined by the ABH blood group status of the tissue.  相似文献   

9.
Colloidal gold-labeled soybean agglutinin (SBA), Helix pomatia agglutinin (HPA), Dolichos biflorus agglutinin (DBA), and Griffonia simplicifolia lectin (GS-1) were used for electron microscopic observation of blood cells. Colloidal gold-labeled SBA, HPA, and DBA showed marked deposition on eosinophil granules at all stages of maturation. Gold particles were not deposited on basophils, neutrophils, monocytes, lymphocytes, or other blood cells. Only a few colloidal gold-labeled GS-1 were deposited on eosinophil granules. Eosinophil granules are rich in N-acetyl-D-galactosamine compounds, and the colloidal gold-labeled SBA, HPA, and DBA are useful for electron microscopic detection of eosinophil granules.  相似文献   

10.
Summary Eleven different fluorescent lectin-conjugates were used to reveal the location of carbohydrate residues in frozen sections of the anterior segment of bovine eyes. The lectins were specific for the following five major carbohydrate groups: (1) glucose/mannose group (Concanavalin A (Con A)); (2)N-acetylglucosamine group (wheat germ agglutinin (WGA)); (3) galactose/N-acetylgalactosamine group (Dolichos biflorus agglutinin (DBA),Helix pomatia agglutinin (HPA),Helix aspersa agglutinin (HAA),Psophocarpus tetragonolobus agglutinin (PTA),Griffonia simplicifolia agglutinin-I-B4 (GSA-I-B4),Artocarpus integrifolia agglutinin (JAC), peanut agglutinin (PNA) andRicinus communis agglutinin (RCA-I)); (4)l-fucose group (Ukex europaeus agglutinin (UEA-I)); (5) sialic acid group (wheat germ agglutinin (WGA)). All the studied lectins except UEA-I reacted widely with different structures and the results suggest that there are distinct patterns of expression of carbohydrate residues in the anterior segment of the bovine eye. UEA-I bound only to epithelial structures. Some of the lectins reacted very intensely with apical cell surfaces of conjunctival and corneal epithelia suggesting a different glycosylation at the glycocalyx of the epithelia. Also, the binding patterns of conjunctival and corneal epithelia differed with some of the lectins: PNA and RCA-I did not bind at all, and GSA-I-B4 bound only very weakly to the epithelium of the cornea, whereas they bound to the epithelium of the conjunctiva. In addition, HPA, HAA, PNA and WGA did not bind to the corneal basement membrane, but bound to the conjunctiva and vascular basement membranes. This suggests that corneal basement membrane is somehow different from other basement membranes. Lectins with the same carbohydrate specificity (DBA, HPA, HAA and PTA) reacted with the sections almost identically, but some differences were noticed: DBA did not bind to the basement membrane of the conjunctiva and the sclera and did bind to the basement membrane of the cornea, whereas other lectins with same carbohydrate specificities reacted vice versa. Also, the binding of PTA to the trabecular meshwork was negligible, whereas other lectins with the same carbohydrate specificities reacted with the trabecular meshwork. GSA-I-B4 reacted avidly with the endothelium of blood vessels and did not bind to the stroma, so that it made blood vessels very prominent and it might be used as an endothelial marker. This lectin also reacted avidly with the corneal endothelium. Therefore, GSA-I-B4 appears to be a specific marker in bovine tissues for both blood vessel and corneal endothelium cells.  相似文献   

11.
The fundic gland of the rat stomach was studied using the low-temperature embedding resin Lowicryl K4M and postembedding staining with lectin/colloidal-gold (CG) conjugates. Intense labeling with Ricinus communis agglutinin I was observed not only in mucous-producing cells but also in parietal cells. In contrast, Helix pomatia agglutinin (HPA) only labeled mucous neck cells and intermediate cells between mucous neck cells and chief cells. The other epithelial cells present in the rat fundic gland showed virtually no reaction with this lectin. Our results indicate that HPA might be a marker lectin of mucous neck cells and their derivatives. The combination of embedding in the hydrophilic resin Lowicryl K4M and postembedding staining with lectin-CG conjugates provided satisfactory staining results, and made it possible to visualize the precise distribution of terminal glycoconjugates in intracellular components as well as on the plasma membrane.  相似文献   

12.
Summary The fundic gland of the rat stomach was studied using the low-temperature embedding resin Lowicryl K4M and postembedding staining with lectin/colloidal-gold (CG) conjugates. Intense labeling with Ricinus communis agglutinin I was observed not only in mucous-producing cells but also in parietal cells. In contrast, Helix pomatia agglutinin (HPA) only labeled mucous neck cells and intermediate cells between mucous neck cells and chief cells. The other epithelial cells present in the rat fundic gland showed virtually no reaction with this lectin. Our results indicate that HPA might be a marker lectin of mucous neck cells and their derivatives. The combination of embedding in the hydrophilic resin Lowicryl K4M and postembedding staining with lectin-CG conjugates provided satisfactory staining results, and made it possible to visualize the precise distribution of terminal glycoconjugates in intracellular components as well as on the plasma membrane.  相似文献   

13.
Seven plant lectins, Dolichos biflorus agglutinin (DBA), Griffonia simplicifolia agglutinin (GSA, isolectin A4), Helix pomatia agglutinin (HPA), soybean (Glycine max) agglutinin (SBA), Salvia sclarea agglutinin (SSA), Vicia villosa agglutinin (VVA, isolectin B4) and Wistaria floribunda agglutinin (WFA), known to be specific for N-acetyl-D-galactosamine-(GalNAc) bearing glycoconjugates, have been compared by the binding of their radiolabelled derivatives, to eight well-characterized synthetic oligosaccharides immobilized via a spacer on an inert silica matrix (Synsorb). The eight oligosaccharides included the Forssman, the blood group A and the T antigens, as well as alpha GalNAc coupled directly to the support (Tn antigen) and also structures with GalNAc linked alpha or beta to positions 3 or 4 of an unsubstituted Gal. The binding studies clearly distinguished the lectins into alpha GalNAc-specific agglutinins like DBA, GSA and SSA, and lectins which recognize alpha- as well as beta-linked GalNAc residues like HPA, VVA, WFA and SBA. HPA was the only lectin which bound to the beta Gal1----3 alpha GalNAc-Synsorb adsorbent (T antigen) indicating that it also recognizes internal GalNAc residues. Among the alpha GalNAc-specific lectins, DBA strongly recognized blood group A structures while GSA displayed weaker recognition, and SSA bound only slightly to this affinity matrix. In addition, DBA and SSA were able to distinguish between GalNAc linked alpha 1----3 and GalNAc linked alpha 1----4, to the support, the latter being a much weaker ligand. These results were corroborated by the binding of the lectins to biological substrates as determined by their hemagglutination titers with native and enzyme-treated red blood cells carrying known GalNAc determinants, e.g. blood group A, and the Cad and Tn antigens. For SSA, the binding to the alpha GalNAc matrix was inhibited by a number of glycopeptides and glycoproteins confirming the strong preference of this lectin for alpha GalNAc-Ser/Thr-bearing glycoproteins.  相似文献   

14.
Summary The reactivity was examined of horseradish peroxidase labelledUlex europaeus agglutinin-I (UEA-I) andGriffonia simplicifolia agglutinin I-B4 (GSAI-B4) with red blood cells and vascular endothelium in formalin-fixed, paraffin embedded tissues from 18 primate species. The expression of blood group ABH antigens in these cells as well as secretions from other tissues was also examined by the indirect immunoperoxidase method using monoclonal anti-ABH antibodies as primary antibodies. In Prosimians and New World monkeys which lack ABH antigens on both red blood cells and endothelial cells, but produce these antigens in other tissue secretions, GSAI-B4 always reacted with both red blood cells and endothelial cells. In Old World monkeys, which express blood group antigens on endothelial cells but not on red blood cells, neither GSAI-B4 nor UEA-I reactivity were observed, except the endothelial cells from blood group B or O individuals occasionally reacted with GSAI-B4 or UEA-I, respectively. Although UEA-I reactivity was not observed in the endothelial cells of gibbon, it reacted with these cells from chimpanzees. In these two anthropoid apes, both endothelial cells and red blood cells expressed ABH antigens as in humans. These results suggest the close evolutionary relationship between the expression of blood group ABH antigens and lectin binding properties of red blood cells and endothelial cells in primate species.  相似文献   

15.
The binding of seven lectins (concanavalin A, Con A; Dolichos biflorus agglutinin, DBA; peanut agglutinin, PNA; Ricinus communis agglutinin I, RCA-I; soybean agglutinin, SBA; Ulex europeus agglutinin, UEA-I; and wheat germ agglutinin, WGA) to the small intestine in metamorphosing Xenopus laevis was studied by the avidin-biotin-peroxidase (ABC) method. The staining pattern of the epithelium with all lectins except for UEA-I and Con A changed gradually during metamorphic climax; the main component of the epithelium, absorptive cells, gradually became positive for DBA, PNA, and SBA and the scattered goblet cells for RCA-I and WGA. On the other hand, the change of the staining pattern in the connective tissue occurred only for Con A, RCA-I, and WGA, and this change took place rapidly at the beginning of climax (stage 60). Increased staining for Con A and WGA at stage 60 was observed only in a group of connective tissue cells close to the epithelium and in the basement membrane. As metamorphosis progressed, this localization of the staining intensity became less clear. At the completion of metamorphosis (stage 66), the absorptive cells were stained with all lectins except for UEA-I, whereas the goblet cells stained only with RCA-I and WGA. These results indicate that lectin histochemistry can distinguish between larval and adult cells of both two epithelial types (absorptive and goblet cells). The technique may also identify a group of connective tissue cells, close to the epithelium, that possibly induce the metamorphic epithelial changes.  相似文献   

16.
Summary Goblet cell mucin in 39 human colons was studied by methods specific for various sugar residues, including staining with three lectins,Dolichos biflorus agglutinin (DBA, specific for blood group A antigen),Griffonia simplicifolia agglutinin-I (GSA-I, B) and peanut agglutinin (PNA, T antigen), and immunostaining for A, B, H and T. Isoantigens A, B or H were found only in the right colon. GSA-I reactive goblet cells occurred in the right colon of both blood group A and B patients and possibly contained isoantigens. However DBA reactive cells were found in all cases. Prior neuraminidase digestion imparted anti-A, GSA-I and DBA reactivities to the cells lining the lower crypts in all cases. This pretreatment also imparted PNA and anti-T reactivities to goblet cells, only the latter reactivity being eliminated by galactose oxidase. Goblet cell mucin in transitional mucosa revealed decreased A and B, and increased H antigens. Enhanced galactose oxidase—Schiff (GOS) and anti-T reactivities were also noted. The present results revealed that some lectin reactions of goblet cells might be related to blood group antigens but others were not, and that different techniques for demonstrating reputedly the same sugar residues produced different results, indicating a need for proper evaluation of their specificity.  相似文献   

17.
In order to determine the effect of routine fixation on the lectin affinity of tissue structures, we used unconjugated lectins and an indirect immunoalkaline-phosphatase method for frozen sections, and the peroxidase-anti-peroxidase method for paraffin-embedded, formalin-fixed tissue sections. Fourteen hyperplastic human tonsils were used, and the results of the binding spectra of each lectin were compared. In general, the binding spectrum detected in the paraffin sections was part of the broader range of affinity obtained in the frozen sections. The lectin receptors on the cell surface were especially affected by formalin fixation. On the other hand, the paraffin sections, because of their superior morphology, showed a better localization of the cytoplasmic reaction product and discriminated the cell types more accurately. Thus, the two tissue preparations are rather complementary. In the tonsil peanut agglutinin (PNA) and periodic acid/Concanavalin A (PA/Con A) proved to be suitable tools for distinguishing exactly between the crypt and the surface epithelium. Ulex europaeus agglutinin I (UEA) is a reliable endothelial marker with a strong affinity to the crypt epithelium. In the frozen sections, PNA regularly stained follicular-centre cells on their cell surface. PNA, Helix pomatia agglutinin (HPA), soybean agglutinin (SBA) and Con A stained the histiocytic population, especially PNA which additionally stained an "asteroid" histiocyte. This cell probably corresponds to the antigen-presenting histiocyte of the T-system.  相似文献   

18.
The distribution of structural and secretory glycoconjugates in the gastric region of metamorphosing Xenopus laevis was studied by the avidin-biotin-peroxidase (ABC) histochemical staining method using seven lectins (concanavalin A, Con A; Dolichos biflorus agglutinin, DBA; peanut agglutinin, PNA; Ricinus communis agglutinin I, RCA-I; soybean agglutinin, SBA; Ulex europeus agglutinin I, UEA-I; and wheat germ agglutinin, WGA). Throughout the larval period to stage 60, the epithelium consisting of surface cells and gland cells was stained in various patterns with all lectins examined, whereas the thin layer of connective tissue was positive only for RCA-I. At the beginning of metamorphic climax, the connective tissue became stained with Con A, SBA, and WGA, and its staining pattern varied with different lectins. The region just beneath the surface cells was strongly stained only with RCA-I. With the progression of development, both the epithelium and the connective tissue gradually changed their staining patterns. The surface cells, the gland cells, and the connective tissue conspicuously changed their staining patterns, respectively, for Con A and WGA; for Con A, PNA, RCA-I, SBA, and WGA; and for Con A, RCA-I, and WGA. At the completion of metamorphosis (stage 66), mucous neck cells became clearly identifiable in the epithelium, and their cytoplasm was strongly stained with DBA, PNA, RCA-I, and SBA. These results indicate that lectin histochemistry can provide good criteria for distinguishing among three epithelial cell types, namely, surface cells, gland cells, and mucous neck cells, and between adult and larval cells of each type.  相似文献   

19.
We studied the binding of Psophocarpus tetragonolobus agglutinin (PTA) conjugates to human adult tissues. In all kidney specimens studied, PTA bound in a blood group-independent way to endothelia in glomerular and intertubular capillaries as well as in larger vessels. In addition, a heterogeneous binding to collecting duct cells was seen. In specimens of human smooth, cardiac, and skeletal muscle, cerebellum, lung, thyroid gland, liver, proliferative endometrium, and placenta, PTA bound only to endothelial of capillaries and larger vessels. In epidermis and gingiva, PTA conjugates additionally revealed reactivity with keratinocytes. Similarly, in salivary gland, urinary bladder, gastrointestinal tract, mammary gland, and renal pelvis, PTA reacted with some epithelial cell layers. The PTA conjugates gave an even cell surface membrane staining of cultured umbilical vein endothelial cells. Lectin-affinity binding of radioactively surface-labeled endothelial cells showed that PTA and Ulex europaeus I agglutinin (UEA-I) recognized related major cell surface glycoproteins. The results with PTA conjugates show that certain N-acetyl galactosaminyl residues are, in addition to some epithelial cells, confined to endothelial cells in human tissues.  相似文献   

20.
We have investigated the interaction of five N-acetylgalactosamine (GalNAc) specific lectins with the glycosphingolipid globoside GL-4, inserted into phospholipid vesicles composed of phosphatidyl-ethanolamine and phosphatidic acid, with respect to their ability to induce vesicle agglutination, fusion, and destabilization. The following lectins were used: soybean agglutinin (SBA); Sophora japonica agglutinin (SJA); Helix pomatia agglutinin (HPA); Ricinus communis agglutinin II (RCAII); and Codium fragile agglutinin (CFA). SBA and SJA caused rapid vesicle agglutination while HPA, CFA, and RCAII were ineffective. However, in the presence of RCAII, but not HPA and CFA, the addition of Ca2+ caused vesicle agglutination which was specifically inhibited by the haptenic sugar GalNAc, while ethylenediaminetetraacetic acid (EDTA) dissociated the vesicle complex. RCAII/Ca2+-induced vesicle agglutination was accomplished by binding of Ca2+ to RCAII after the lectin/receptor interaction. The rate of SBA-induced vesicle agglutination was increased in the presence of Ca2+, independent of the order of Ca2+ addition, and was not reversed by EDTA, indicating that the mechanism by which Ca2+ stimulated agglutination in this case was different from that observed in the presence of RCAII. In contrast to RCAII/Ca2+, SBA/Ca2+ induced of the vesicles, which occurred only when Ca2+ was added after lectin addition. Close approach of adjacent bilayers was accomplished by nonspecific interactions of SBA with the bilayer after lectin binding to the receptor as revealed by a limited extent of SBA-induced fusion and an enhanced membrane permeability upon lectin binding. The phenomena observed can be explained in terms of a Ca2+-modulated reorientation of the carbohydrate head group, causing it to adopt a more perpendicular orientation with respect to the plane of the bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号