首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《Experimental mycology》1989,13(3):274-288
Germination on complex media induced conidia of the entomopathogenMetarhizium anisopliae to produce infection structures (appressoria and penetration hyphae) when the germ tube contacted a hard surface. The morphology of the infection structures and their rate of formation are very similar to those observed for blowfly cuticle. Differentiation frequencies were greater (more than 70% as compared with less than 40%) on hydrophobic surfaces [Teflon, polyvinyl chloride, polystyrene, polypropylene, polyester (GelBond), aluminum foil] than on hydrophilic surfaces (agarose-coated polyester and cellophane). Differentiation frequencies were similar on both positively and negatively charged surfaces. Differentiationin vitro was stimulated by low levels of complex nitrogenous nutrients. Analysis of one- or multicomponent media suggested that amino acids and the lipid component of epicuticle act in combination with the hydrophobic cuticle surface to stimulate differentiation during pathogenesis. Thigmotropic and chemical stimuli for production of appressoria appear to be translated primarily during the second round of nuclear division because inhibitors of DNA and RNA synthesis do not prevent germination but block differentiation if applied before the second nuclear division. Inhibition of protein synthesis blocked both germination and differentiation.  相似文献   

2.
To gain entry to plants, many pathogenic fungi develop specialized infection structures called appressoria. Here, we demonstrate that appressorium morphogenesis in the rice blast fungus Magnaporthe oryzae is tightly regulated by the cell cycle. Shortly after a fungus spore lands on the rice (Oryza sativa) leaf surface, a single round of mitosis always occurs in the germ tube. We found that initiation of infection structure development is regulated by a DNA replication-dependent checkpoint. Genetic intervention in DNA synthesis, by conditional mutation of the Never-in-Mitosis 1 gene, prevented germ tubes from developing nascent infection structures. Cellular differentiation of appressoria, however, required entry into mitosis because nimA temperature-sensitive mutants, blocked at mitotic entry, were unable to develop functional appressoria. Arresting the cell cycle after mitotic entry, by conditional inactivation of the Blocked-in-Mitosis 1 gene or expression of stabilized cyclinB-encoding alleles, did not impair appressorium differentiation, but instead prevented these cells from invading plant tissue. When considered together, these data suggest that appressorium-mediated plant infection is coordinated by three distinct cell cycle checkpoints that are necessary for establishment of plant disease.  相似文献   

3.
To infect plants, many pathogenic fungi develop specialized infection structures called appressoria. Here, we report that appressorium development in the rice blast fungus Magnaporthe oryzae involves an unusual cell division, in which nuclear division is spatially uncoupled from the site of cytokinesis and septum formation. The position of the appressorium septum is defined prior to mitosis by formation of a heteromeric septin ring complex, which was visualized by spatial localization of Septin4:green fluorescent protein (GFP) and Septin5:GFP fusion proteins. Mitosis in the fungal germ tube is followed by long-distance nuclear migration and rapid formation of an actomyosin contractile ring in the neck of the developing appressorium, at a position previously marked by the septin complex. By contrast, mutants impaired in appressorium development, such as Δpmk1 and ΔcpkA regulatory mutants, undergo coupled mitosis and cytokinesis within the germ tube. Perturbation of the spatial control of septation, by conditional mutation of the SEPTATION-ASSOCIATED1 gene of M. oryzae, prevented the fungus from causing rice blast disease. Overexpression of SEP1 did not affect septation during appressorium formation, but instead led to decoupling of nuclear division and cytokinesis in nongerminated conidial cells. When considered together, these results indicate that SEP1 is essential for determining the position and frequency of cell division sites in M. oryzae and demonstrate that differentiation of appressoria requires a cytokinetic event that is distinct from cell divisions within hyphae.  相似文献   

4.
Conidial germination and differentiation – the so-called prepenetration processes – of the barley powdery mildew fungus (Blumeria graminis f. sp. hordei) are essential prerequisites for facilitating penetration of the host cuticle. Although the cell cycle is known to be pivotal to cellular differentiation in several phytopathogenic fungi there is as yet no information available concerning the relationship between cell cycle and infection structure development in the obligate biotroph B. graminis. The timing of specific developmental events with respect to nuclear division and morphogenesis was followed on artificial and host leaf surfaces by 4′,6-diamidino-2-phenylindole (DAPI) staining in combination with a pharmacological approach applying specific cell cycle inhibitors. It was found that the uninucleate conidia germinated and then underwent a single round of mitosis 5–6 h after inoculation. During primary germ tube formation the nucleus frequently migrated close to the site of primary germ tube emergence. This nuclear repositioning was distinctly promoted by very-long-chain aldehydes that are common host cuticular wax constituents known to induce conidial differentiation. The subsequent morphogenesis of the appressorial germ tube preceded mitosis that was spatially uncoupled from subsequent cytokinesis. Blocking of S-phase with hydroxyurea did not inhibit formation of the appressorial germ tube but prevented cytokinesis and appressorium maturation. Benomyl treatment that arrests the cell cycle in mitosis inhibited nuclear separation, cytokinesis, and formation of mature appressoria. Thus, we conclude that a completed mitosis is not a prerequisite for the formation and swelling of the appressorial germ tube, which normally provides the destination for one of the daughter nuclei, while appressorium maturation depends on mitosis.  相似文献   

5.
Thymidine kinase (TK) and deoxycytidine kinase (dCK) activity levels, [3H]thymidine (TdR) and 5-bromo-2′-deoxyuridine (BUdR) incorporation and 5-fluoro-2′-deoxyuridine (FUdR) sensitivity have been compared in TK-deficient (TU63 and TU84) and normal (TU291 and M3b) strains of the myxomycete, Physarum polycephalum. The mutants had about 2% of the TK and 100% of the dCK activity of wild-type (wt) strains. They incorporated some TdR into both nuclear (nDNA) and mitochondrial DNA (mtDNA) but incorporated too little BUdR to give a buoyant density shift in nuclear DNA. They grew in the presence of levels of FUdR which completely blocked DNA synthesis in TU291. The FUdR sensitivity of strain M3b could be increased by supplementing growth medium with folic acid.  相似文献   

6.
Hyaline, non pigmented microconidia of Sporothrix schenckii were harvested and allowed to form germ tubes in a basal medium with glucose at pH 4.0 and 25 °C. These conditions supported only the development of the mycelial form of Sporothrix schenckii in a reproducible, synchronized manner which allowed further analysis of the early cellular events ocurring during the germination of the conidia. The relationship between macromolecular synthesis (DNA, RNA and protein synthesis) and nuclear division, hyphal growth and septum formation were established. Following inoculation, protein synthesis was observed after 10 minutes followed by RNA synthesis, after 1 h and DNA synthesis after 2 h. The first nuclear division was observed during the 9 to 12 h interval after inoculation. Germ tube formation slightly preceeded nuclear division and was first evidenced 9 h after the induction of germination but was not completed until 12 h after inoculation. Septation was first observed in the germ tubes 0.25 m from the mother cell-germ tube function 9 h after induction of germination.  相似文献   

7.
Unbudded singlets from exponentially growing yeast cells of Sporothrix schenckii were harvested, selected by filtration and allowed to form germ tubes in a basal medium with glucose at pH 4.0 and 25 degrees C. These conditions supported only the development of the mycelial form of S. schenckii in a reproducible manner which allowed further analysis of the early cellular events occurring during the yeast-to-mycelium transition. The relationship between macromolecular synthesis (DNA and RNA synthesis) and nuclear division, hyphal growth and septum formation were investigated during germ tube formation. RNA synthesis started 0 to 3 h after the induction of germ tube formation, followed by DNA synthesis and the first nuclear division, which took place between 3 and 6 h. Germ tube formation followed nuclear division and was first evidenced 6 h after the induction of germ tube formation, but was not completed until 12 h after inoculation. Septation was first observed in these germ tubes at the mother cell-germ tube junction 6 h after induction. Addition of hydroxyurea, an inhibitor of DNA synthesis, to the medium, also inhibited nuclear division and germ tube growth, suggesting that these processes in S. schenckii are dependent upon DNA synthesis.  相似文献   

8.
The thymidine analogue 5-bromodeoxyuridine (BUdR) has a differential effect on the synthesis of tissue-specific products and molecules required for growth and division. Proliferating myogenic cells cultured in BUdR fail to fuse and fail to initiate the synthesis of contractile protein filaments. Conversely, BUdR has but a minor effect on cell viability and reproductive integrity. Low concentrations of BUdR result in an enhancement of cell number relative to the controls; higher concentrations are cytotoxic. Suppression of myogenesis is reversible after at least 10 cell generations of growth in the analogue. Cells that do not synthesize DNA, such as postmitotic myoblasts and myotubes, are not affected by BUdR. Incorporation of BUdR for one round of DNA synthesis was accomplished by first incubating myogenic cells, prior to fusion, in 5-fluorodeoxyuridine (FUdR) to block DNA synthesis and collect cells in the presynthetic phase. The cells were then allowed to synthesize either normal DNA or BU-DNA for one S period by circumventing the FUdR block with BUdR or BUdR plus thymidine (TdR). The cultures were continued in FUdR to prevent dilution of the incorporated analogue by further division. After 3 days, the cultures from the FUdR-BUdR series showed the typical BUdR effect; the cells were excessively flattened and few multinucleated myotubes formed. Cells in the control cultures were of normal morphology, and multinucleated myotubes were present. These results were confirmed in another experiment in which BUdR-3H was added to 2-day cultures in which myotubes were forming. Fusion of thymidine-3H-labeled cells begins at 8 hr after the preceding S phase. In contrast, cells which incorporate BUdR-3H for one S period do not fuse with normal myotubes.  相似文献   

9.
Summary Biflagellate zoospores from the giant kelpMacrocystis pyrifera underwent germination after adhering to a substrate and produced germ tubes that were approximately 13–15 m in length. Coincident with the germ tube elongation was organelle (other than the nucleus) translocation along the tube. Shortly after formation of the germ tube, the zoospore nucleus divided and one daughter nucleus translocated along the germ tube. The nucleus did not appear to undergo chromosomal condensation prior to division. The nuclear division and/or translocation of the daughter nucleus did not begin until well after germ tube elongation was complete, demonstrating that these are temporally distinct developmental events. The translocation of one daughter nucleus coincided with differentiation of the distal end of the germ tube into a bulbous structure. Following this, the first gametophytic cross wall was formed and, subsequently, the daughter nucleus remaining in the original zoospore body underwent repositioning, assuming a position in the germ tube near the cross wall. Cytochalasin D inhibited germ tube elongation suggesting that actin microfilaments are probably involved in this developmental process. In addition, when cytochalasin D was added to the culture after the germ tube elongation was complete, it did not affect either nuclear division or translocation, indicating that microfilaments were not directly involved in these nuclear events. Colchicine and the plant specific microtubule disrupting agent, amiprophos methyl blocked nuclear division and translocation without affecting germination or germ tube elongation. These data suggest that actin microfilaments are primarily responsible for complete germination, specifically germ tube elongation, while microtubules are involved in nuclear division and translocation. The present study demonstrates that germination (and germ tube elongation) and nuclear translocation inM. pyrifera gametophytes are temporally and mechanistically distinct developmental events.  相似文献   

10.
We report on the elucidation of two separate pathways of spore germination in a plant pathogenic fungus Colletotrichum gloeosporioides f. sp. aeschynomene. Conidia of the fungus can germinate either from one side or from both sides, depending on external conditions. In shake culture that includes an extract made up from fresh peas, the unicellular conidium divides and one of the two cells develops a germ tube. On a solid surface this germ tube differentiates an appressorium. In rich medium without pea extract, germination is highly similar to Aspergillus spore germination: the conidium swells, forms a single germ tube and then divides and forms a second germ tube. Conidia that germinate in a rich medium do not form appressoria even on a solid surface and are non-pathogenic. In rich medium, cAMP stimulates germination in rich liquid cultures and induces appressoria formation on a hard surface. In pea extract cAMP induces swelling and formation of irregular germ tubes and appressoria. Our results suggest that plant surface signals induce pathogenic-specific spore germination in a cAMP-independent manner. cAMP is required for saprophytic germination and for appressorium formation.  相似文献   

11.
The mechanisms of penetration of Phytophthora cinnamomi Rands into seedling eucalypt roots were studied by light and electron microscopy. Culture grown seedlings of root-rot tolerant Eucalyptus st johnii and root-rot susceptible Eucalyptus obliqua were inoculated with both zoospores and mycelium. Zoospores encysted on roots of both species and the germ tubes penetrated without the formation of appressoria. Swellings, previously described as appressoria, were formed when the germ tube was slow to enter the host by intracellular penetration. Vegetative hyphae penetrated both inter- and intracellularly into the zones of root elongation and differentiation, often through root hairs. Evidence of hydrolysis of the host cell-wall at the point of penetration was observed in electron micrographs. Several hours after the germ tube penetrated the epidermis, a thick plug of amorphous material formed in the germ tube slightly below the level of the outer walls of the epidermal cells, sealing off the hypha within the root. Behaviour of zoospores and germ tubes and the mechanism of penetration were similar on both hosts. Micrographs do not suggest any kind of a hypersensitive reaction by the host cells during the early stages of infection.  相似文献   

12.
通过DAPI荧光染料染色观察胶孢炭疽菌Colletotrichumgloeosporioides附着胞发育过程中的核相动态变化,结果显示,第2次有丝分裂发生的部位在分生孢子产生芽管的一端中;分裂后,最接近芽管的一个子核移入芽管顶端,或通过芽管移入附着胞中。0.10μg/mL的三环唑可完全抑制附着胞中黑色素形成,但不影响核的分裂。三环唑处理12h后,发生2次有丝分裂数量约为73%,而发生3次有丝分裂的数量约为23.9%;绝大多数附着胞中是单核,双核数量小于5%。  相似文献   

13.
14.
Modes of branching of appressoria on conidial germ tubes of 36 Erysiphe spp. were studied. Only unlobed appressoria, termed alobatus pattern, were seen in E. lonicerae, E. magnifica and E. symphoricarpi. Viewed from above with light or scanning electron microscopes, other species had ± irregular lobing, but from below in the plane of contact with the substrate successive dichotomous branchings at 120° were seen to produce a five-lobed appressorium within 6 h. Each division produced a temporarily dormant outward-facing lobe and an inward limb that continued growth and division to form the axis of curved, hooked, single- or double-headed symmetrical or asymmetrical structures in a helicoid cyme-like pattern. Outlines of extracellular material after removal of germinated conidia confirmed this manner of branching. After 36 h some lobes re-divided forming botryose or jigsaw patterns even extending with extra appressoria to form candelabra-like structures. Conidia developed only one true germ tube; rarely secondary unswollen tubes emerged from spare shoulders or ends. The same true germ tubes developed initially on host surfaces, where secondary tubes and/or extensions from appressorial lobes grew into colony-forming hyphae. Lobed appressoria of Neoerysphe and Phyllactinia also branched at 120°. Podosphaera xanthii exhibited a simpler branching pattern.  相似文献   

15.
Early events during the germination of spores of the fern Onoclea sensibilis were studied to determine the time during germination when ethylene had its greatest inhibiting effect. Water imbibition by dry spores was rapid and did not appear to be inhibited by ethylene. During normal germination DNA synthesis occurred about four hours before the nucleus moved from a central position to the spore periphery. Following nuclear movement, mitosis and cell division occurred, partitioning the spore into a small rhizoid cell and a large protonemal cell. Cell division was complete approximately six hours after nuclear movement. Ethylene treatment of the spores blocked DNA synthesis, nuclear movement, and cell division. The earliest DNA replication in uninhibited spores was observed after 14 hours of germination, and the maximal rate of spore labeling with 3H-thymidine was between 16 and 20 hours. Spores were most sensitive to ethylene, however, during the stages of germination prior to DNA synthesis, and it was concluded that ethylene did not directly inhibit DNA replication but blocked germination at some earlier fundamental step. The effects of ethylene were reversible. since complete recovery from inhibition of germination was possible if ethylene was released and the spores were kept in light. Recovery was much slower in darkness. It was hypothesized that light acted photosynthetically to overcome the ethylene inhibition of germination. Consistent with this, it was shown that spores exhibit net photosynthesis after only two hours of germination.  相似文献   

16.
Significant stimulation of the number of appressoria, penetration and colonization by conidia ofHelminthosporium carbonum occurred on decolorized maize leaves when exogenous carbohydrates and leaf leachates were added. Germination and germ tube length, however, did not exhibit appreciable differences on decolorized or non-decolorized maize leaves. Lower germination was recorded by leached conidia on decolorized leaves; while appressoria, penetration and colonization were absent. Addition of exogenous nutrients (sucrose>leaf leachates>yeast extract>glucose) enabled conidia to accomplish appressoria, penetration and colonization. Optimum levels for various nutrients observed were 2% (w/v) sucrose/glucose or 0.1% (w/v) yeast extract. Higher concentrations inhibited the infection stages of the pathogen. Depletion of host carbohydrates from green islands/infection sites adversely affect appressoria formation, penetration and colonization; and the loss of carbohydrates from the spore affects germination. Cytokinin-like activity at the infection site/green islands increased with the period of incubation of the host as compared to the surrounding tissue or tissue under water drops. The culture filtrate extracts ofH. carbonum recorded cytokinin-like activity which increased with growth of the fungus. TLC (thin layer chromatography) of cytokinin-like substances (tissue extract and culture filtrate) revealed major activity was confined to Rf zones 0.6 to 0.8 which co-chromatographed with zeatin and zeatin riboside. These substances increase at infection sites by virtue of which carbohydrates accumulate at these sites ensuring a continuous supply to the growing pathogen.  相似文献   

17.
Synchronous cultures of Escherichia coli strain B/r were used to investigate the relationship between deoxyribonucleic acid (DNA) replication and cell division. We have determined that terminal steps in division can proceed in the absence of DNA synthesis. Inhibition of DNA replication with nalidixic acid prior to the start of a new round of replication does not stop cell division, which indicates that the start of the round is not essential in triggering cell division. Inhibition of DNA replication at any time prior to the termination of a round of replication completely blocks cell division, which suggests that there may be a link between the end of the replication cycle and the commitment of the cell to divide. Studies that use a temperature-sensitive mutant which is unable to synthesize DNA at the nonpermissive temperature are in complete agreement with those that use nalidixic acid to inhibit DNA synthesis. This adds support to the idea that the treatments employed limit their action to DNA synthesis. Investigation of minicell production indicates that the production of minicells is blocked when DNA synthesis is inhibited with nalidixic acid. Although nuclear segregation is not required for cell division, DNA synthesis is still required to trigger division. The evidence presented suggests strongly that (i) DNA synthesis is essential for cell division, (ii) the end of a round of replication triggers cell division, and (iii) there is considerable time lapse (one-half generation) between the completion of a round of DNA replication and physical separation of the cells.  相似文献   

18.
Surface morphology of uredinia and urediniospores ofCerotelium fici (Cast.) Arth., and its infection process in mulberry (Morus alba L.) have been described using the scanning electron microscope. The uredinia ofC. fici are paraphysate and bear pedicellate urediniospores. The surface morphology of urediniospore is similar to most of the rust fungi which have pedicellate urediniospores. The infection process ofC. fici on mulberry leaves differs from other rust fungi in not forming appressoria over the stomates. Further, the germ tube of the urediniospore crosses over the stomata, and sometimes forms an appressorium close to the stoma rather than forming over it. Thus, the present study indicates that the formation of appressoria byC. fici on mulberry leaves is not site specific but an independent, specialized and inherent mechanism required byC. fici to penetrate the mulberry leaf cuticle and epidermis.  相似文献   

19.
In conidia of Neurospora crassa germinating at 25°C, DNA synthesis measured by incorporation of tritiated adenosine reaches a maximum soon after the outgrowth of the germ tube (6–7h after inoculation). In conidia heat-treated at 46°C (for 15h), a maximum of incorporation of the DNA precursor occurs already 1h after inoculation, then the incorporation progressively declines until the end of the heat-shock. When such conidia are shifted to 25°C, a maximum of DNA synthesis occurs during the development of the presumptive conidiophore as at the outgrowth of normal germ tubes. This wave of DNA synthesis is followed by a second maximum of DNA synthesis, occurring only in the microcyclized cultures, when the premature differentiation of proconidia takes place. Prevention of this second wave of DNA synthesis with hydroxyurea or 5-fluorodeoxyuridine respectively reduces or fully inhibits such induced conidial differentiation.  相似文献   

20.
Measurements were made over a 4-day period of the effect of added indoleacetic acid (IAA), puromycin, actinomycin D and 5-fluorodeoxyuridine (FUdR) on growth and the levels of total DNA, RNA, protein and cellulase in segments of tissue at the apex of decapitated etiolated epicotyls of Pisum sativum, L. var. Alaska.

The hormone induced swelling of parenchyma cells and cell division. By 3 days after IAA application, the amounts of DNA and protein were approximately double, RNA triple and cellulase 12 to 16 times the levels in controls. All of these changes were prevented by both puromycin and actinomycin D. FUdR prevented DNA synthesis and cell division but not swelling or synthesis of RNA, protein and cellulase.

It is concluded that IAA-induced RNA synthesis is required for cellulase synthesis and lateral cell expansion, whether or not cell division takes place.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号