首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Glucosidase II was purified approximately 1700-fold to homogeneity from Triton X-100 extracts of mung bean microsomes. A single band with a molecular mass of 110 kDa was seen on sodium dodecyl sulfate gels. This band was susceptible to digestion by endoglucosaminidase H or peptide glycosidase F, and the change in mobility of the treated protein indicated the loss of one or two oligosaccharide chains. By gel filtration, the native enzyme was estimated to have a molecular mass of about 220 kDa, suggesting it was composed of two identical subunits. Glucosidase II showed a broad pH optima between 6.8 and 7.5 with reasonable activity even at 8.5, but there was almost no activity below pH 6.0. The purified enzyme could use p-nitrophenyl-alpha-D-glucopyranoside as a substrate but was also active with a number of glucose-containing high-mannose oligosaccharides. Glc2Man9GlcNAc was the best substrate while activity was significantly reduced when several mannose residues were removed, i.e. Glc2Man7-GlcNAc. The rate of activity was lowest with Glc1Man9GlcNAc, demonstrating that the innermost glucose is released the slowest. Evidence that the enzyme is specific for alpha 1,3-glucosidic linkages is shown by the fact that its activity on Glc2Man9GlcNAc was inhibited by nigerose, an alpha 1,3-linked glucose disaccharide, but not by alpha 1,2 (kojibiose)-, alpha 1,4(maltose)-, or alpha 1,6 (isomaltose)-linked glucose disaccharides. Glucosidase II was strongly inhibited by the glucosidase processing inhibitors deoxynojirimycin and 2,6-dideoxy-2,6-imino-7-O-(beta-D- glucopyranosyl)-D-glycero-L-guloheptitol, but less strongly by castanospermine and not at all by australine. Polyclonal antibodies prepared against the mung bean glucosidase II reacted with a 95-kDa protein from suspension-cultured soybean cells that also showed glucosidase II activity. Soybean cells were labeled with either [2-3H]mannose or [6-3H]galactose, and the glucosidase II was isolated by immunoprecipitation. Essentially all of the radioactive mannose was released from the protein by treatment with endoglucosaminidase H. The labeled oligosaccharide(s) released by endoglucosaminidase H was isolated and characterized by gel filtration and by treatment with various enzymes. The major oligosaccharide chain on the soybean glucosidase II appeared to be a Man9(GlcNAc)2 with small amounts of Glc1Man9(GlcNAc)2.  相似文献   

3.
Glucosidase I, the first enzyme involved in the post-translational processing of N-linked glycoproteins, was purified to homogeneity from the lactating bovine mammary tissue. The enzyme was extracted by differential treatment of the microsomal fraction with Triton X-100 and Lubrol PX. The solubilized enzyme was subjected to affinity chromatography on Affi-Gel 102 with N-5-carboxypentyldeoxynojirimycin as ligand and DEAE-Sepharose CL-6B chromatography. Purified glucosidase I shows a molecular mass of 320-330 kDa by gel filtration on Sephacryl S-300. SDS/polyacrylamide-gel electrophoresis under reducing conditions indicates a single band of approx. 85 kDa, indicating that the native enzyme is probably a tetrameric protein. Several criteria, including pH optimum of 6.6-7.0, specific hydrolytic action towards Glc3Man9GlcNAc2, to release the terminally alpha-1,2-linked glucosyl residue, and total lack of activity towards Glc1Man9GlcNAc2 and Glc2Man9GlcNAc2 saccharides, which are the biological substrates for processing glucosidase II, and 4-methylumbelliferyl alpha-D-glucopyranoside show the non-lysosomal origin and the processing-specific role of the purified enzyme. The enzyme does not require any metal ions for its activity. Hg2+, Ag+ and Cu2+ are potent inhibitors of the enzyme; this inhibition can be reversed by adding an excess of dithiothreitol. Among the saccharides tested, kojibiose (Glc alpha 1----2Glc) was inhibitory to the enzyme. Polyclonal antibodies raised against the enzyme in rabbit were found to be specific for glucosidase I, as revealed by Western-blot analysis and by immunoadsorption with Protein A-Sepharose. Anti-(glucosidase I) antibodies were cross-reactive towards a similar antigen in solubilized microsomal preparations from liver, mammary gland and heart from the bovine, guinea pig, rat and mouse.  相似文献   

4.
We have isolated and characterized a new yeast mutation in the glucosylation steps of lipid-linked oligosaccharide biosynthesis, alg8-1. Cells carrying the alg8-1 mutation accumulate Glc1Man9GlcNAc2-lipid both in vivo and in vitro. We present evidence showing that the alg8-1 mutation blocks addition of the second alpha 1,3-linked glucose. alg8-1 cells transfer Glc1Man9GlcNAc2 to protein instead of the wild type oligosaccharide, Glc3Man9GlcNAc2. Pulse-chase studies indicate that the Glc1Man9GlcNAc2 transferred is processed more slowly than the wild type oligosaccharide. The yeast mutation gls1-1 lacks glucosidase I activity (Esmon, B., Esmon, P.C., and Schekman, R. (1984) J. Biol. Chem. 259, 10322-10327), the enzyme responsible for removing the alpha 1,2-linked glucose residues from protein-linked oligosaccharides. We demonstrate that gls1-1 cells contain glucosidase II activity (which removes alpha 1,3-linked glucose residues) and have constructed the alg8-1 gls1-1 haploid double mutant. The Glc1Man9GlcNAc2 oligosaccharide was trimmed normally in these cells, demonstrating that the alg8-1 oligosaccharide contained an alpha 1,3-linked glucose residue. A novel Glc2 compound was probably produced by the action of the biosynthetic enzyme that normally adds the alpha 1,2-linked glucose to lipid-linked Glc2Man9GlcNAc2. This enzyme may be able to slowly add alpha 1,2-linked glucose residue to protein-bound Glc1Man9GlcNAc2. The relevance of these findings to similar observations in other systems where glucose residues are added to asparagine-linked oligosaccharides and the possible significance of the reduced rate of oligosaccharide trimming in the alg mutants are discussed.  相似文献   

5.
Glucosidase II is an endoplasmic-reticulum-localized enzyme that cleaves the two internally alpha-1,3-linked glucosyl residues of the oligosaccharide Glc alpha 1----2Glc alpha 1----3Glc alpha 1----3Man5-9GlcNAc2 during the biosynthesis of asparagine-linked glycoproteins. We have purified this enzyme to homogeneity from the lactating bovine mammary gland. The enzyme is a high-mannose-type asparagine-linked glycoprotein with a molecular mass of approx. 290 kDa. Upon SDS/polyacrylamide-gel electrophoresis under reducing conditions, the purified enzyme shows two subunits of 62 and 64 kDa, both of which are glycosylated. The pH optimum is between 6.6 and 7.0. Specific polyclonal antibodies raised against the bovine mammary enzyme also recognize a similar antigen in heart, liver and the mammary gland of bovine, guinea pig, rat and mouse. These antibodies were used to develop a sensitive enzyme-linked immunosorbent assay for glucosidase II.  相似文献   

6.
Following the action of glucosidase I to clip the terminal alpha1,2-linked glucose, glucosidase II sequentially cleaves the two inner alpha1,3-linked glucose residues from the Glcalpha1,2Glcalpha1,3Glcalpha1,3Man(9)GlcNAc(2) oligosaccharide of the incipient glycoprotein as it undergoes folding and maturation. Glucosidase II belongs to family 31 glycosidases. These enzymes act by the acid-base catalytic mechanism. The cDNA of the wild-type and several mutant forms of the fusion protein of the enzyme in which mutations were introduced in the conserved motif D(564)MNE(567) were expressed in Sf9 cells, and the proteins were purified on Ni-NTA matrix. The catalytic activity of the purified proteins was determined with radioactive Glc(2)Man(9)GlcNAc(2) substrate. The results show that the aspartate and glutamate within the D(564)MNE(567) motif can serve for catalysis, most likely as the acid-base pair within the active site of the enzyme. The developmental regulation of glucosidase II was studied during the ontogeny of the mouse mammary gland for its growth and differentiation. The mRNA of both alpha and beta subunits of the enzyme, immunoreactive alpha and beta subunits, and enzyme activity were measured over the complete developmental cycle. The changes in all the parameters were consistent with similar fluctuations with several other enzymes of the N-glycosylation machinery reported earlier, reaching a three- to fourfold increase over the basal level in the virgin gland at the peak of lactation. Altogether it appears that there is a coordinated regulation of the enzymes involved in protein N-glycosylation during the development of the mouse mammary gland.  相似文献   

7.
The effect of castanospermine on the processing of N-linked oligosaccharides was examined in the parent mouse lymphoma cell line and in a mutant cell line that lacks glucosidase II. When the parent cell line was grown in the presence of castanospermine at 100 micrograms/ml, glucose-containing high-mannose oligosaccharides were obtained that were not found in the absence of inhibitor. These oligosaccharides bound tightly to concanavalin A-Sepharose and were eluted in the same position as oligosaccharides from the mutant cells grown in the absence or presence of the alkaloid. The castanospermine-induced oligosaccharides were characterized by gel filtration on Bio-Gel P-4, by h.p.l.c. analysis, by enzymic digestions and by methylation analysis of [3H]mannose-labelled and [3H]galactose-labelled oligosaccharides. The major oligosaccharide released by endoglucosaminidase H in either parent or mutant cells grown in castanospermine was a Glc3Man7GlcNAc, with smaller amounts of Glc3Man8GlcNAc and Glc3Man9GlcNAc. On the other hand, in the absence of castanospermine the mutant produces mostly Glc2Man7GlcNAc. In addition to the above oligosaccharides, castanospermine stimulated the formation of an endoglucosaminidase H-resistant oligosaccharide in both cell lines. This oligosaccharide was characterized as a Glc2Man5GlcNAc2 (i.e., Glc(1,2)Glc(1,3)Man(1,2)Man(1,2)Man(1,3)[Man(1,6)]Man-GlcNAc-GlcNAc). Castanospermine was tested directly on glucosidase I and glucosidase II in lymphoma cell extracts by using [Glc-3H]Glc3Man9GlcNAc and [Glc-3H]Glc2Man9GlcNAc as substrates. Castanospermine was a potent inhibitor of both activities, but glucosidase I appeared to be more sensitive to inhibition.  相似文献   

8.
Glucosidase I is an endoplasmic reticulum (ER) type II membrane enzyme that cleaves the distal alpha1,2-glucose of the asparagine-linked GlcNAc2-Man9-Glc3 precursor. To identify sequence motifs responsible for ER localization, we prepared a protein chimera by transferring the cytosolic and transmembrane domain of glucosidase I to the luminal domain of Golgi-Man9-mannosidase. The GIM9 hybrid was overexpressed in COS 1 cells as an ER-resident protein that displayed alpha1,2-mannosidase activity, excluding the possibility that the glucosidase I-specific domains interfere with folding of the Man9-mannosidase catalytic domain. After substitution of the Args in position 7, 8, or 9 relative to the N-terminus by leucine, the GIM9 mutants were transported to the cell surface indicating that the (Arg)3 sequence functions as an ER-targeting motif. Cell surface expression was also observed after substitution of Arg-7 or Arg-8 but not Arg-9 in GIM9 by either lysine or histidine. Thus the side chain structure, including its positive charge, appears to be essential for signal function. Analysis of the N-linked glycans suggests that the (Arg)3 sequence mediates ER localization through Golgi-to-ER retrograde transport. Glucosidase I remained localized in the ER after truncation or mutation of the N-terminal (Arg)3 signal, in contrast to comparable GIM9 mutants. ER localization was also observed with an M9GI chimera consisting of the cytosolic and transmembrane domain of Man9-mannosidase and the glucosidase I catalytic domain. ER-specific targeting information must therefore be provided by sequence motifs contained within the glucosidase I luminal domain. This structural information appears to direct ER localization by retention rather than by retrieval, as concluded from N-linked Man9-GlcNAc2 being the major glycan released from the wild-type enzyme.  相似文献   

9.
Purification and properties of glucosidase I from mung bean seedlings   总被引:3,自引:0,他引:3  
The microsomal enzyme fraction from mung bean seedlings was found to contain glucosidase activity capable of releasing [3H]glucose from the glucose-labeled Glc3Man9GlcNAc. The enzymatic activity could be released in a soluble form by treating the microsomal particles with 1.5% Triton X-100. When the solubilized enzyme fraction was chromatographed on DE-52, it was possible to resolve glucosidase I activity (measured by the release of [3H]glucose from Glc3Man9GlcNAc) from glucosidase II (measured by release of [3H]glucose from Glc2Man9GlcNAc). The glucosidase I was purified about 200-fold by chromatography on hydroxylapatite, Sephadex G-200, dextran-Sepharose, and concanavalin A-Sepharose. The purified enzyme was free of glucosidase II and aryl-glucosidase activities. Only a single glucose residue could be released from the Glc3Man9GlcNAc by this purified enzyme and the other product was the Glc2Man9GlcNAc. Furthermore, this enzyme was inhibited in a dose-dependent manner by kojibiose, an alpha-1,2-linked glucose disaccharide, but not by other alpha-linked glucose disaccharides. These data indicate that this glucosidase is a specific alpha-1,2-glucosidase. The pH optimum for the glucosidase I was about 6.3 to 6.5, and no requirements for divalent cations were observed. The enzyme was inhibited strongly by the glucosidase processing inhibitors, castanospermine and deoxynojirimycin, and less strongly by the plant pyrrolidine alkaloid, 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine. However, the enzyme was not inhibited by the mannosidase processing inhibitors, swainsonine, deoxymannojirimycin or 1,4-dideoxy-1,4-imino-D-mannitol. The stability of the enzyme under various conditions and other properties of the enzyme were determined.  相似文献   

10.
Glucosidase II (Glc'ase II) is a glycan-processing enzyme that trims two alpha1,3-linked Glc residues in succession from the glycoprotein oligosaccharide Glc2Man9GlcNAc2 to give Glc1Man9GlcNAc2 and Man9GlcNAc2 in the endoplasmic reticulum (ER). Monoglucosylated glycans, such as Glc1-Man9GlcNAc2, generated by this process play a key role in glycoprotein quality control in the ER, because they are primary ligands for the lectin chaperones calnexin (CNX) and calreticulin (CRT). A precise analysis of the substrate specificity of Glc'ase II is expected to further our understanding of the molecular basis to glycoprotein quality control, because Glc'ase II potentially competes with CNX/CRT for the same glycans, Glc1Man7-9GlcNAc2. In this study, a quantitative analysis of the specificity of Glc'ase II using a series of structurally defined synthetic glycans was carried out. In the presence of CRT, Glc'ase II-mediated trimming from Glc2Man9GlcNAc2 stopped at Glc1Man9GlcNAc2, supporting the notion that the glycan structure delivered to the CNX/CRT cycle is Glc1Man9GlcNAc2. Unexpectedly, our experiments showed that Glc1Man8(B)GlcNAc2 had nearly the same reactivity as Glc1Man9GlcNAc2, which was markedly greater than that of its positional isomer Glc1Man8(C)GlcNAc2. An analysis with glycoprotein-like probes revealed the stepwise formation of Glc1Man9GlcNAc2 and Man9GlcNAc2 from Glc2Man9GlcNAc2, even in the presence of CRT. It was also shown that Glc1Man8(B)GlcNAc2 had even greater reactivity than Glc1Man9GlcNAc2 at the glycoprotein level. Moreover, inhibitory activities by nonglucosylated glycans suggested that Glc'ase II recognized the C arm (Manalpha1, 2Manalpha1, 6Man-) of high mannose-type glycans.  相似文献   

11.
Trimming glucosidase I and II have been solubilized from crude calf liver microsomes and partially enriched by a fractionated extraction procedure applying different concentrations of nonionic detergent and salt. The pH optimum of both enzymes was found to be close to 6.2, which discriminates them from hydrolases of lysosomal origin acting on p-nitrophenyl glycosides with the highest rate at more acidic pH. Glucosidase I and II and the nonspecific alpha-glucosidase(s) were inhibited by 1-deoxynojirimycin with median inhibitory concentration of 3 microM, 20 microM, 12 microM, respectively. Discrimination between these enzymes was strongly enhanced by N-alkylation of 1-deoxynojirimycin and formed the basis for the design of the affinity ligand. Glucosidase I has been purified to homogeneity by affinity chromatography on AH-Sepharose 4B with N-carboxypentyl-1-deoxynojirimycin as ligand. Sodium dodecyl sulfate gel electrophoresis of the purified enzyme revealed a subunit molecular mass of about 85 kDa. The molecular mass of the native enzyme, determined by gel chromatography, was approximately equal to 320-350 kDa, pointing to the association of subunits to a tetramer. Glucosidase I is rather stable when stored at 4 degrees C in the presence of detergent (t 1/2 approximately equal to 20 days) and showed high specificity for the hydrolysis of the terminal (alpha 1,2)-linked glucose residue in the natural substrate Glc3-Man9-(GlcNAc)2.  相似文献   

12.
Glucosidase I releases the distal alpha1,2-glucosyl residue in the Glc(3)Man(9)GlcNAc(2) precursor immediately after its transfer from the dolichol-P-P-linked intermediate in the endoplasmic reticulum and triggers the processes for the posttranslational remodeling, folding, and maturation of N-linked glycoproteins. The enzyme has been purified and characterized from several eukaryotic systems. Its cDNA and the gene have also been cloned. The enzyme is a target for the development of drugs for several pathological conditions. A structural analysis on the biochemically purified enzyme has been hampered because of its low abundance and unstable character. The recombinant enzyme has not been obtained in quantity and characterized. Glucosidase I is strongly inhibited by the glucose analog 1-deoxynojirimycin (DNM). To gain an insight into the architecture of the active site of the enzyme, we here report the synthesis of a photoactive derivative of DNM, viz. 4-(rho-azidosalicylamido)butyl-5-amido-pentyl-1-DNM (ASBA-P-DNM). With an IC(50) of 0.42 micro M, it is nearly nine times stronger inhibitor than DNM (IC(50) = 3.5 micro M). On photolysis, the bound [(125)I]ASBA-P-DNM specifically labels the native enzyme, which yields a 24-kDa peptide after treatment with V8 protease, apparently representing the region around its active site. Thus ASBA-P-DNM should serve as a novel reagent to conduct structure-function analysis on glucosidase I.  相似文献   

13.
Studies on N-linked oligosaccharide processing in the mouse lymphoma glucosidase II-deficient mutant cell line (PHAR2.7) as well as the parent BW5147 cells indicated that the former maintain their capacity to synthesize complex carbohydrate units through the use of the deglucosylation mechanism provided by endomannosidase. The in vivo activity of this enzyme was evident in the mutant cells from their production of substantial amounts of glucosylated mannose saccharides, predominantly Glc2Man; moreover, in the presence of 1-deoxymannojirimycin or kifunensine to prevent processing by mannosidase I, N-linked Man8GlcNAc2 was observed entirely in the form of the characteristic isomer in which the terminal mannose of the alpha 1,3-linked branch is missing (isomer A). In contrast, parent lymphoma cells, as well as HepG2 cells in the presence of 1-deoxymannojirimycin accumulated Man9GlcNAc2 as the primary deglucosylated N-linked oligosaccharide and contained only about 16% of their Man8GlcNAc2 as isomer A. In the presence of the glucosidase inhibitor castanospermine the mutant released Glc3Man instead of Glc2Man, and the parent cells converted their deglucosylation machinery to the endomannosidase route. Despite the mutant's capacity to accommodate a large traffic through this pathway no increase in the in vitro determined endomannosidase activity was evident. The exclusive utilization of endomannosidase by the mutant for the deglucosylation of its predominant N-linked Glc2Man9GlcNAc2 permitted an exploration of the in vivo site of this enzyme's action. Pulse-chase studies utilizing sucrose-D2O density gradient centrifugation indicated that the Glc2Man9GlcNAc2 to Man8GlcNAc2 conversion is a relatively late event that is temporally separated from the endoplasmic reticulum-situated processing of Glc3Man9GlcNAc2 to Glc2Man9GlcNAc2 and in contrast to the latter takes place in the Golgi compartment.  相似文献   

14.
Ye BC  Zhang Z  Lei Z 《Genetic testing》2007,11(1):75-83
Thalassemia is endemic to many regions in southern China. The screening of severe determinants of thalassemia is of critical importance in management and control of thalassemia. We designed a protocol based on microarray technology to screen for a spectrum of alpha/beta-globin gene mutations in the Chinese population. A total of 38 probes were capable of screening 98% of alpha/beta-globin gene mutations in the China population, including 16 mutations of beta-globin [beta(41-42)(-TCTT), IVSII-654(C-->T), beta17(A-->T), -28(A-->G), beta(71-72)(+A), beta(71-72)(+T), HbE26(G-->A), -29(A-->G), beta(27-28)(+C), IVSI-1(G-->T), IVSI-5(G-->C), beta(14-15)(+G), IVSII-5(G-->C), beta41(+T), 37(G-->A), and beta43(G-->T)] and five mutations of alpha/beta[three deletions of -alpha;(3.7), -alpha(4.2), and --(SEA); two nondeletions of alpha(Quong Sze) codon alpha125(T-->C) and alpha(Constant Spring) codon alpha142(T-->C)]. Multiplex PCR products were amplified from human genomic DNA and allowed to hybridize with the oligonucleotide array. alpha/beta-Globin genotypes were assigned by quantitative analysis of the hybridization results. The protocol, standardized by analysis of 100 thalassemia samples with known mutations and 13 recombinant plasmids, was 100% reliable in genotyping all mutant alleles. In subsequent screening of 2,030 Chinese with unknown mutations, the protocol was 100% accurate. This method provides unambiguous detection of complex combinations of heterozygous, compound heterozygous, and homozygous alpha/beta-thalassemia genotypes. The protocol was also flexible, detecting globin gene mutations from different population groups.  相似文献   

15.
Bosis E  Nachliel E  Cohen T  Takeda Y  Ito Y  Bar-Nun S  Gutman M 《Biochemistry》2008,47(41):10970-10980
The calnexin/calreticulin cycle is a quality control system responsible for promoting the folding of newly synthesized glycoproteins entering the endoplasmic reticulum (ER). The association of calnexin and calreticulin with the glycoproteins is regulated by ER glucosidase II, which hydrolyzes Glc 2Man X GlcNAc 2 glycans to Glc 1Man X GlcNAc 2 and further to Glc 0Man X GlcNAc 2 ( X represents any number between 5 and 9). To gain new insights into the reaction mechanism of glucosidase II, we developed a kinetic model that describes the interactions between glucosidase II, calnexin/calreticulin, and the glycans. Our model accurately reconstructed the hydrolysis of glycans with nine mannose residues and glycans with seven mannose residues, as measured by Totani et al. [Totani, K., Ihara, Y., Matsuo, I., and Ito, Y. (2006) J. Biol. Chem. 281, 31502-31508]. Intriguingly, our model predicted that glucosidase II was inhibited by its nonglucosylated end products, where the inhibitory effect of Glc 0Man 7GlcNAc 2 was much stronger than that of Glc 0Man 9GlcNAc 2. These predictions were confirmed experimentally. Moreover, our model suggested that glycans with a different number of mannose residues can be equivalent substrates of glucosidase II, in contrast to what had been previously thought. We discuss the possibility that nonglucosylated glycans, existing in the ER, might regulate the entry of newly synthesized glycoproteins into the calnexin/calreticulin cycle. Our model also shows that glucosidase II does not interact with monoglucosylated glycans while they are bound to calnexin or calreticulin.  相似文献   

16.
Castanospermine, a plant alkaloid that inhibits the glycoprotein processing enzyme glucosidase I, has been used to inhibit N-linked oligosaccharide modification, resulting in the production of glycoproteins having Glc3Man7-9(GlcNAc)2 oligosaccharides. This alkaloid caused a significant inhibition of LDL endocytosis in cultured primate smooth muscle cells and human skin fibroblasts. At an optimum concentration of 250 micrograms/mL, castanospermine caused a 40% decrease in cell surface receptor-mediated LDL binding at 4 degrees C, with no apparent change in affinity. Further, the inhibitor had no direct effect on LDL metabolism. This inhibition of LDL receptor expression and function occurred only when the drug was present during de novo receptor synthesis, i.e., during up-regulation. Although the number of cell surface LDL receptors was significantly reduced in the presence of castanospermine, the total number of receptors in the cell was only slightly reduced, indicating that castanospermine induced a redistribution rather than a reduction in the number of receptors. Similarly, subcellular fractionation studies confirmed that castanospermine treatment of fibroblasts results in an altered distribution of receptor activity compared with controls. These findings are consistent with the conclusion that the decrease in specific LDL binding to cells grown in the presence of castanospermine is due to intracellular redistribution of the LDL receptor so that more receptor remains in internal compartments as a result of a diminished rate of transport.  相似文献   

17.
We have previously reported that the oligosaccharides transferred in vivo from dolichol-P-P derivatives in protein N-glycosylation in trypanosomatids are devoid of glucose residues and contain 2 N-acetylglucosamine and 6, 7, or 9 mannose units depending on the species. In this respect trypanosomatids differ from wild type mammalian, plant, insect, and fungal cells in which Glc3Man9GlcNAc2 is transferred. We are now reporting that incubation of Glc1-3Man9GlcNAc2-P-P-dolichol and Man7-9GlcNAc2-P-P-dolichol with membranes of Trypanosoma cruzi, Leptomonas samueli, Crithidia fasciculata, and Blastocrithidia culicis and an acceptor hexapeptide leads to the transfer of the six above mentioned lipid-linked oligosaccharides at the same rate. Control experiments performed under similar conditions but with rat liver and Saccharomyces cerevisiae membranes showed that, as already known, Glc3Man9GlcNAc2 is preferentially transferred in the latter systems. We have also previously reported that, once transferred to protein, the oligosaccharides become transiently glucosylated in trypanosomatids. Depending on the species, protein-linked Glc1Man5-9GlcNAc2 have been transiently detected in cells incubated with [14C] glucose. We are now reporting that glucosidase activities degrading both Glc1Man9GlcNAc2 and Glc2Man9GlcNAc2 were detected in T. cruzi, L. samueli, and C. fasciculata. The enzymatic activities were associated with a membrane fraction; they had a neutral optimum pH value, and similarly to mammalian glucosidase II, the enzyme acting on the monoglucosylated substrate showed a decreased affinity when the latter contained fewer mannose residues. No glucosidase I-like enzyme acting on Glc3Man9GlcNAc2 was detected in any of the three above-mentioned protozoan species. This result is consistent with the fact that no oligosaccharides containing 3 glucose units occur in trypanosomatids.  相似文献   

18.
When the purified plant glucosidase II was incubated with [3H]Glc2Man9GlcNAc in the presence of glycerol and the products were analyzed by gel filtration, a large peak of radioactivity emerged just before the glucose standard. The formation of this peak was dependent on both the presence of Glc2Man9GlcNAc and the presence of glycerol, and the amount of this product increased with time of incubation and amount of glucosidase II in the incubation. When the incubation was performed with [3H]Glc2Man9GlcNAc plus [14C]glycerol, the product contained both 14C and 3H. Strong acid hydrolysis of the purified product gave rise to [14C]glycerol and [3H]glucose. Various other chemical treatments and chromatographic techniques showed that the product was glucosyl----glycerol. Since the glucose was released by alpha-glucosidase, the product must be glucosyl-alpha-glycerol. This study demonstrates that the processing glucosidase II catalyzes a trans-glycosylation reaction in the presence of acceptors like glycerol. Since this transglycosylation reaction may give rise to unexpected products, investigators should be aware of its possible occurrence.  相似文献   

19.
Glucosidase II is an ER heterodimeric enzyme that cleaves sequentially the two innermost alpha-1,3-linked glucose residues from N-linked oligosaccharides on nascent glycoproteins. This processing allows the binding and release of monoglucosylated (Glc(1)Man(9)GlcNAc(2)) glycoproteins with calnexin and calreticulin, the lectin-like chaperones of the endoplasmic reticulum. We have isolated two cDNA isoforms of the human alpha subunit (alpha1 and alpha2) differing by a 66 bp stretch, and a cDNA for the corresponding beta subunit. The alpha1 and alpha2 forms have distinct mobilities on SDS-PAGE and are expressed in most of the cell lines we have tested, but were absent from the glucosidase II-deficient cell line PHA(R) 2.7. Using COS7 cells, the coexpression of the beta subunit with the catalytic alpha subunit was found to be essential for enzymatic activity, solubilization, and/or stability, and ER retention of the alpha/beta complex. Transfected cell extracts expressing either alpha1 or alpha2 forms with the beta subunit showed similar activities, while mutating( )the nucleophile (D542N) predicted from the glycoside hydrolase Family 31 active site consensus sequence abolished enzymatic activity. In order to compare the kinetic parameters of both alpha1/beta and alpha2/beta forms of human glucosidase II the protein was expressed with the baculovirus expression system. Expression of the human alpha or beta subunit alone led to the formation of active human/insect heteroenzymes, demonstrating functional complementation by the endogenous insect glucosidase II subunits. The activity of both forms of recombinant human glucosidase II was examined with a p-nitrophenyl alpha-D-glucopyranoside substrate, and a two binding site kinetic model for this substrate was shown. The K(M1-2) values and apparent K(i1-2 )for deoxynojirimycin and castanospermine were determined and found to be identical for both isoforms suggesting they have similar catalysis and inhibition characteristics. The substrate specificities of both isoforms using the physiological oligosaccharides were assessed and found to be similar.  相似文献   

20.
Studies on N-linked oligosaccharide processing were undertaken in HepG2 cells and calf thyroid slices to explore the possibility that the recently described Golgi endo-alpha-D-mannosidase (Lubas, W.A., and Spiro, R.G. (1987) J. Biol. Chem. 262, 3775-3781) is responsible for the frequently noted failure of glucosidase inhibitors to achieve complete cessation of complex carbohydrate unit synthesis. We have found that in the presence of the glucosidase inhibitors, castanospermine (CST) or 1-deoxynojirimycin, there is a substantial production of the glucosylated mannose saccharides (Glc3Man, Glc2Man, and Glc1Man) which are the characteristic products of endomannosidase action. Furthermore, in HepG2 cells, a secretion of these components into the medium could be demonstrated. Characterization of the N-linked polymannose oligosaccharides produced by HepG2 cells in the presence of CST (as well as 1-deoxymannojirimycin to prevent processing by alpha-mannosidase I) indicated the occurrence, in addition to the expected glucosylated species, of substantial amounts of Man8GlcNAc and Man7GlcNAc. Since Man9GlcNAc was almost completely absent and the Man8GlcNAc isomer was shown to be identical with that formed by the in vitro action of endomannosidase on glucosylated polymannose oligosaccharides, we concluded that this enzyme was actively functioning in the intact cells and could provide a pathway for circumventing the glucosidase blockade. Indeed, quantitative studies in HepG2 cells supported this contention as the continued formation of complex carbohydrate units (50% of control) during CST inhibition could be accounted for by the deglucosylation effected by endomannosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号