首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
Chloroplasts were isolated from primary needles of 1-year-old seedlings and from secondary needles of a 20-year-old pine tree in a natural stand. In autumn the electron transport capacities of PSII, PSI and PS (II + I) decreased and the electron transport between PSII and PSI became inhibited in October in the 20-year-old tree. This inhibition lasted until May the following year. The partial reactions of PSI and PSII still showed low but fairly constant rates during the whole winter seedlings. Seasonal changes in the electron transport properties of 1-year-old showed the same general trends as observed in the 20-year-old tree, but the changes were less pronounced. However, in snow-covered seedlings the PSI-mediated electron transport and the electron transport from H2O to NADP increased during the late winter when the seedlings were still covered by snow. The total chlorophyll content of the needles decreased in autumn and winter. Low temperature fluorescence ratios of F692/F680 and F726/F680 indicated more severe destruction of the chlorophyll a antennae closely associated with the two photosystems than of the light harvesting chlorophyll a/b complex. In this case, too, the changes were more pronounced in the 20-year-old tree than in the 1-year-old seedlings. The chlorophyll/P700 ratios indicated a more marked reduction in the reaction centre molecules during autumn than in the antennae chlorophyll molecules. The changes in electron transport and low temperature fluorescence properties which occurred during autumn and winter were mainly reversed during spring.  相似文献   

2.
The red laser-induced chlorophyll-fluorescence induction kinetics of predarkened leaf samples were registered simultaneously in the 690 and 730 nm regions i.e., in the region of the two chlorophyll fluorescence emission maxima. From the induction kinetics the chlorophyll fluorescence ratio F690/F730 was calculated. The ratio F690/F730 shows to be dependent on the chlorophyll content of leaves. It is significantly higher in needles of damaged spruces (values of 0.45–0.9) than in normal green needles of healthy trees (values of 0.35–0.5). During development and greening of maple leaves the ratio F690/F730 decreases with increasing chlorophyll content. Determination of the ratio F690/F730 can be a suitable method of monitoring changes in chlorophyll content in a non-destructive way in the same leaves during development or the yellowish-green discolouration of needles of damaged spruces in the Black Forest with the typical tree decline symptoms.Abbreviations F690/F730 ratio of the fluorescence yield at the two fluorescence-emission maxima in the 690 and 730 nm regions - Fm maximum fluorescence - Fs steady-state fluorescence  相似文献   

3.
M. Senser  E. Beck 《Planta》1977,137(3):195-201
Hill reaction and noncyclic photophosphorylation of isolated class C chloroplasts of spruce (Picea abies (L.) Karst.), as well as 14CO2 fixation by whole needles at constant laboratory conditions proceeded at high rates during spring and early summer, declined during late summer and autumn by about 60%, remained at this level during winter, and recovered quickly in early spring. During summer, the whole needles proved to be frost labile, since after exposure to-20°C and careful thawing, fast chlorophyll degradation occurred. In addition, only photosynthetically inactive chloroplasts could be isolated from those precooled needles. On the contrary, during winter the photochemical activities of plastids from freshly harvested needles did not differ from those of artificially frozen-thawed needles. When isolated spruce chloroplasts were exposed to the same subfreezing temperatures as the whole needles, no influence of freezing on the photochemical activities was observed, irrespective of whether the plastids were isolated from frost sensitive or frost hardened needles. It is concluded that frost damage to spruce chloroplasts is due to an attack of membrane toxic compounds or lytic enzymes which were liberated upon freezing from more labile compartments. Frost hardening of the chloroplasts, as determined by the stability of chlorophyll after exposure of the needles to low temperatures, as well as by the isolation of photosynthetically active chloroplasts from such precooled needles, appeared to depend at least on 2 processes: (i) an alteration of the composition of the photosynthetically active membranes and (ii) and additional stabilization of these membranes by protecting substances. The first process was indicated by a large increase (decrease) of the capability of isolated chloroplasts for PMS-mediated photophosphorylation which accompanied natural or artificial frost hardening (dehardening). Production of cryoprotecting compounds was suggested by a significant higher stability against NaCl observed with class C chloroplasts isolated from frost hardened needles as compared to that of plastids from frost labile material. The decrease of the capability for both, the ferricyanide dependent photoreactions of the plastids and the CO2 fixation by whole needles, which was observed during the frost hardening phase, cannot be due to freezing injuries; it rather appears to be a consequence of the frost hardening process.  相似文献   

4.
Kinetics of fluorescence at room temperature, electron transport and photooxidation of P700 and cytochrome f have been studied in chloroplasts isolated from active and winter stressed Pinus silvestris. The winter stress induced block in the electron transport chain between the two photosystems is close to the site of plastoquinone, since winter stress and DCMU caused the same type of inhibition of the reoxidation of the primary electron acceptor Q of photosystem II. No winter inhibition of the electron transport between cytochrome f and P700 was observed. Time course studies of P700 photooxidation in chloroplasts of active and winter stressed pine have shown that the photosynthetic unit size must be about equal in the two types of chloroplasts. An apparent increase of the photosynthetic unit size was induced by winter stress, as revealed by the high chlorophyll/P700 ratio of winter stressed pine. The phenomenon is explained by the formation of photosynthetically inactive chlorophyll. Low-temperature fluorescence emission spectra were recorded when either chlorophyll a (433 nm) or chlorophyll b (477 nm) were preferentially excited. Winter stress induced the formation of a chlorophyll a fraction emitting at 673 nm. This chlorophyll is most likely derived from the chlorophyll a antennae of the two photosystems, and it probably contributes to the photosynthetically inactive pool of chlorophyll in winter stressed pine. The light harvesting chlorophyll a/b complex is relatively resistant to winter stress.  相似文献   

5.
Differential absorbance measurements and fluorometry were applied to examine the impact of dicyclohexylcarbodiimide (DCCD, an inhibitor of H+ conductance in thylakoid membranes) and nigericin (a K+/H+ antiporter) on photoinduced redox state transients of chlorophyll P700 and the induction curves of chlorophyll fluorescence in pea (Pisum sativum L., cv. Premium) leaves. The treatment of leaves with DCCD strongly modified the kinetics of P700+ absorbance changes (ΔA 810) by promoting rapid photooxidation of P700. These characteristic changes in ΔA 810 induction kinetics and P700+ accumulation did not appear when the leaves were treated with DCCD in the presence of nigericin. In addition to opposite modifications of ΔA 810 kinetics evoked by permeability-modifying agents, the fluorescence induction curves differed conspicuously depending on leaf incubation in DCCD solutions with or without nigericin. The observed modifications of fluorescence induction curves and ΔA 810 indicate that DCCD suppresses electron transport from photosystem II (PSII) to P700, whereas this inhibition is removed by nigericin. The results suggest that slowing down of the electron transport rate in the presence of DCCD was caused by elevation of ΔpH in thylakoids. The prevention of pH gradient formation in the presence of protonophore lowered also the steady-state P700+ level in far-red irradiated leaves and accelerated the subsequent dark reduction of P700. These findings indicate that PSI-driven cyclic electron flow is accelerated after the removal of the pH gradient.  相似文献   

6.
Functional activities of two photosystems in orchid-specific embryos (protocorms) of a tropical hybrid orchid Bratonia were investigated before and after their cryopreservation by vitrification method. The kinetics of light-induced absorbance changes at 830 nm was analyzed as indicator of P700 redox conversions; changes in the variable chlorophyll fluorescence served to indicate the oxidation-reduction changes of the primary acceptor QA. Untreated protocorms exhibited low photochemical activity of photosystem II (PSII). In freeze-treated Bratonia protocorms, examined immediately after thawing, photosynthetic electron transport was strongly inhibited. Nevertheless, the cells retained activities of noncyclic electron flow and of alternative electron transport pathways related solely to PSI. However, Bratonia protocorms subjected to deep-freezing lost the capability of P700 photooxidation during the first day of reculturing. Deep freezing of protocorms had virtually no effect on the kinetics of dark relaxation of chlorophyll variable fluorescence, when measurements were made immediately after thawing. Unlike chlorophyll fluorescence, the kinetics of dark reduction of P700+ in protocorms exposed to freezing-thawing was substantially modified compared to untreated protocorms. Two exponential components with half-decay times of 27 and 310 ms were distinguished in the kinetics of P700+ reduction in treated samples, whereas the absorbance relaxation attributed to P700+ reduction in untreated samples followed an exponential decay with a half-decay time of 24 ms. Despite the appearance of additional slow component in the kinetics of P700+ reduction, the dark relaxation of variable fluorescence remained unaltered after deep freezing of protocorms. This observation indicates that the freezing-thawing procedure caused partial disorders in linear electron transport between PSII and PSI. Apparently, the functional interactions among carriers in the electron-transport chain were disturbed between the plastoquinone pool and the PSI reaction center. It is concluded that the vitrification method applied to protocorm cryopreservation did not cause their immediate death, but the protocorms died later, on the first day after reculturing.  相似文献   

7.
The time course of the responses of chlorophyll fluorescence in leaves of Aegopodium podagraria to changes in irradiance does not necessarily show the time constant of thylakoid energization at energy fluence rates below 10–25 W·m-2. In addition, other measures of thylakoid energization, such as lightscattering at 532 nm and the responses to saturating flashes, show that the related component disappears from these signals at low fluence rates, but not necessarily all together at the same fluence rate. However, this time constant still appears in the light-induced responses of the plasmalemma potential. This implies that the effect on the electrogenic proton pump in the plasmalemma is the most sensitive indicator of proton fluxes into the inner thylakoid space. These results are a further indication that energy-quenching is coupled ther indication that energy-quenching is coupled to transthylakoid proton fluxes via an intermediate, which is not active in Aegopodium podagraria at low irradiances.Abbreviations and symbols i time constant - F chlorophyll fluorescence - I constant component of irradiance - I v variable component of irradiance - S light-scattering - q E high-energy state quenching of chlorophyll fluorescence - T transmittance at 532 nm - V plasmalemma potential  相似文献   

8.
To evaluate the acclimative ability of current-year and previous-year needles of a shade tolerant conifer Taxus baccata L. to contrasting irradiance conditions, seedlings were raised under 27% solar irradiance and at 3 years of age they were transferred to an experimental garden and grown for one season under full irradiance (HL), 18% irradiance (ML) or 5% irradiance (LL). Whereas previous year needles did not change anatomically, current year needles in HL were thicker and had a thicker palisade and spongy mesophyll, and greater leaf mass per area than ML or LL needles. LL needles had greater nitrogen concentration than HL needles irrespective of age but only previous year LL needles also had an increased N per area content, thanks to their lack of reduction in LMA. Adjustment of chlorophyll and carotenoid content occurred in both needle age classes with LL and ML needles having much higher concentrations but, in current year needles, only slightly higher per area content than HL needles. Chlorophyll a/b ratio was not affected by age or irradiance. These modifications had no significant effect on photosynthetic capacities, which did not significantly differ between the age classes in HL or LL treatment and between treatments. On the other hand, high growth irradiance resulted in a greater photochemical yield, photochemical quenching, apparent electron transport rate and inducible non-photochemical quenching in needles formed in the current season. In previous year needles, however, only inducible NPQ was enhanced by high irradiance with other parameters remaining identical among treatments. To test sensitivity to photoinhibition, at the end of the summer plants from the three irradiance levels were transferred to a HL situation and F v/F M was determined over the following 18 days. Sensitivity to photoinhibition was negatively related to growth irradiance and previous year needles were less photoinhibited than current year needles. Thus, differences in acclimation ability between needle age classes were most pronounced at the level of anatomy and light reactions of photosynthesis, both of which showed almost no plasticity in previous year needles but were considerably modified by irradiance in current year needles.  相似文献   

9.
The Photosystem I reaction centre protein CP1, isolated from barley using polyacrylamide gel electrophoresis showed an EPR (Electron Paramgnetic Resonance) spectrum with the polarisation pattern AEEAAE, typical of the primary donor triplet state 3P700, created via radical pair formation and recombination. 3P700 could also be detected by Fluorescence Detected Magnetic Resonance (FDMR) at f > 700 nm even in the presence of a large number of chlorophyll antennae. Its zero field splitting parameters, D=282.5×10-4 cm-1 and E=38.5×10-4 cm-1, were independent of the detection wavelength, and agreed with ADMR (Absorption Detected Magnetic Resonance) and EPR values. The signs of the 3P700 D+E and D-E transitions were positive (increase in fluorescence intensity on applying a resonance microwave field). In contrast, in the emission band 685 < f < 700 nm FDMR spectra with negative D+E and D-E transitions were detected, and the D value was wavelength-dependent. These FDMR results support an excitation energy transfer model for CP1, derived from time-resolved fluorescence studies, in which two chlorophyll antenna forms are distinguished, with fluorescence at 685 < f < 700 nm (inner core antennae, F690), and f > 700 nm (low energy antenna sites, F720), in addition to the P700. The FDMR spectrum in F690 emission can be interpreted as that of 3P700, observed via reverse singlet excitation energy transfer and added to the FDMR spectrum of the antenna triplet states generated via intramolecular intersystem crossing. This would indicate that reversible energy transfer between F690 and P700 occurs even at 4.2 K.Abbreviations Chl chlorophyll - CP1 core chlorophyll protein of Photosystem I - EPR electron paramagnetic resonance - F690, F720 chlorophyll forms having fluorescence maximum at 690–695 and 720 nm, respectively - F(A)(O)DMR fluorescence (absorption) (optical) detected magnetic resonance - FF fluorescence fading - ISC intramolecular intersystem crossing - f fluorescence emission wave-length - LHC I light harvesting chlorophyll a/b protein of Photosystem I - P700 primary donor of Photosystem I - PS I Photosystem I - RC reaction centre - RP radical pair - SDS sodium dodecyl sulphate - ZFS zero field splitting  相似文献   

10.
Inhibition of photosynthesis was followed during autumn and early winter in current-year sun and shade needles of unfertilized and fertilized Norway spruce [Picea abies (L.) Karst.] by simultaneous measurements of photosynthetic O2 evolution and chlorophyll a fluorescence at 20 °C. The CO2-saturated rate of O2 evolution was generally higher in sun needles of fertilized trees than in those of unfertilized trees over a wide range of incident photon flux densities (PFDs). Furthermore, the maximum photo-chemical efficiency of photosystem (PS) II, as indicated by the ratio of variable to maximum fluorescence (FV/FM) was generally higher for sun needles of fertilized trees. The depression of fv/fm during frost periods was more pronounced in sun needles than in shade needles, indicating that winter inhibition in Norway spruce is strongly light-dependent. However, the inhibition of the rate of O2 evolution at high PFDs in needles of fertilized trees during early winter was partly independent of the light regime experienced by those needles in the field, which appeared to result in a pronounced decrease in the proportion of oxidized PS II reaction centres in shade needles. A nearly identical linear relationship between the quantum yield of PS II electron transport determined by chlorophyll fluorescence and the quantum yield of O2 evolution (gross rate of O2 evolution/PFD) was obtained for the investigated types of needles during autumn and early winter. Except for shade needles of fertilized trees, this appeared to be largely achieved by adjustments in thermal energy dissipation within PS II.  相似文献   

11.
This introductory overview shows that cold, in particular frost, stresses a plant in manifold ways and that the plant’s response, being injurious or adaptive, must be considered a syndrome rather than a single reaction. In the course of the year perennial plants of the temperate climate zones undergo frost hardening in autumn and dehardening in spring. Using Scots pine (Pinus sylvestris L.) as a model plant the environmental signals inducing frost hardening and dehardening, respectively, were investigated. Over 2 years the changes in frost resistance of Scots pine needles were recorded together with the annual courses of day-length and ambient temperature. Both act as environmental signals for frost hardening and dehardening. Climate chamber experiments showed that short day-length as a signal triggering frost hardening could be replaced by irradiation with far red light, while red light inhibited hardening. The involvement of phytochrome as a signal receptor could be corroborated by respective night-break experiments. More rapid frost hardening than by short day or far red treatment was achieved by applying a short period (6 h) of mild frost which did not exceed the plant’s cold resistance. Both types of signals were independently effective but the rates of frost hardening were not additive. The maximal rate of hardening was − 0.93°C per day and frost tolerance of < − 72°C was achieved. For dehardening, temperature was an even more effective signal than day-length.  相似文献   

12.
The light dependent chloroplast development of dark grown seedlings of Pinus silvestris L. was followed by analyses of chlorophyll content, chlorophyll a/b ratios, chlorophyll/P700 ratios, chlorophyll-protein complexes and structural changes. Low-temperature fluorescence emission spectra of isolated chloroplasts and separation of sodium dodecyl sulphate solubilized chlorophyll-protein complexes by gel electrophoresis showed that the chlorophyll-protein complexes of photosystem 1 (P700-CPa), photosystem II (PS II-CPa) and the light-harvesting complex LH–CPa/b were present in dark grown seedlings. The low-temperature fuoorescence emission maxima of isolated P700–CPa and PS II–CPa shifted towards longer wavelengths during greening in light, indicating a light induced change of the chlorophyll organisation in the two photosystems. Illumination caused LH–CPa/b to increase relative to P700–CPa, whereas the ratio between LH–CPa/b and PS II–CPa remained essentially constant. Analyses of low-temperature fluorescence spectra with or without 0.01 M Mg2+ showed that the Mg2+ controlled distribution of excitation energy into PS I was activated upon illumination of the seedlings. The photosynthetic unit size, as defined by the chlorophyll/P700 ratio, did not change over a 96 h illumination period, although the chlorophyll content increased about 6–fold during that time. This result and the constant electron transport rate per unit chlorophyll and time during chlorophyll accumulation provided evidence for a sequential development of the photosynthetic units when illuminating dark grown pine cotyledons. Electron micrographs showed that exposure of dark grown seedlings to light for 2 h caused the prolamellar body to disappear and grana to form. These changes occurred prior to substantial accumulation of chlorophyll or change in the ratio between LH–CPa/b and P700–CPa. However, both the water-splitting system of photosystem II and the Mg2+ controlled redistribution of excitation energy was activated during this period.  相似文献   

13.
Effects of mild and severe soil drought on the water status of needles, chlorophyll a fluorescence, shoot electrical admittance, and concentrations of photosynthetic pigments in needles of seedlings of Picea abies (L.) Karst. were examined under controlled greenhouse conditions. Drought stress reduced shoot admittance linearly with a decrease in shoot water potential (w) and increase in water deficit (WD) and led to a decrease in concentrations of chlorophyll a, b and carotenoids. Severe water stress (shoot w=–2.4 MPa) had a negative effect on chlorophyll a fluorescence parameters including PSII activity (Fv/Fm), and the vitality index (Rfd). Variations in these parameters suggest an inhibition of the photosynthetic electron transport in spruce needles. Water stress led to a decrease in the mobility of electrolytes in tissues, which was reflected by decreased shoot electrical admittance. After re-watering for 21 days the WD in needles decreased and the shoot water potential increased. In the re-watered plants, the chloroplast function was restored and chlorophyll a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in the seedlings triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. We conclude that the shoot electrical admittance and photosynthetic electron transport in leaves are closely linked to changes in water status and their decrease is among the initial responses of seedlings to water stress.  相似文献   

14.
The blue, green and red fluorescence emission of green wheat ( Triticum aestivum L. var. Rector) and soybean leaves ( Glycine max L. var. Maple Arrow) as induced by UV light (nitrogen laser: 337 nm) was determined in a phytochamber and in plants grown in the field. The fluorescence emission spectra show a blue maximum near 450 nm, a green shoulder near 530 nm and the two red chlorophyll fluorescence maxima near 690 and 735 nm. The ratio of blue to red fluorescence, F450/F690, exhibited a clear correlation to the irradiance applied during the growth of the plants. In contrast, the chlorophyll fluorescence ratio, F690/F735, and the ratio of blue to green fluorescence, F450/F530, seem not to be or are only slightly influenced by the irradiance applied during plant growth. The blue fluorescence F450 only slightly decreased, whereas the red chlorophyll fluorescence decreased with increasing irradiance applied during growth of the plants. This, in turn, resulted in greatly increased values of the ratio, F450/F690, from 0.5 – 1.5 to 6.4 – 8.0. The decrease in the chlorophyll fluorescence with increasing irradiance seems to be caused by the accumulation of UV light absorbing substances in the epidermal layer which considerably reduces the UV laser light which passes through the epidermis and excites the chlorophyll fluorescence of the chloroplasts in the subepidermal mesophyll cells.  相似文献   

15.
A new fluorescence imaging system for monitoring the uptake of the PSII-herbicide diuron (OCMU) was tested in tobacco leaves. UV-laser-induced (Λexc = 355 nm) fluorescence images were collected for blue fluorescence F440 (Λem = 440 nm), green fluorescence F520 (Λem = 520 nm), red chlorophyll fluorescence F690 (Λem = 690 nm) and for far-red chlorophyll fluorescence F740 (Λem = 740 nm). Diuron-treated leaf parts exhibited a higher red and far-red chlorophyll fluorescence emission (F690 and F740) than untreated leaf halves, whereas the blue and green fluorescence, F440 and F520, remained unaffected. As a consequence, the fluorescence ratios blue/red (F440/F690) and blue/far-red (F440/F740) significantly decreased in diuron-treated leaf parts. The time course of diuron uptake into the leaf could be followed by fluorescence images taken 10 and 30 min after diuron application. The novel high resolution fluorescence imaging method supplies information on the herbicide uptake of each point of the leaf area. Its great advantage as compared to the point data fluorescence measurements applied so far is discussed.  相似文献   

16.
The seasonal changes in the relative distribution of P700 chlorophyll-protein complex a1 and light harvesting chlorophyll-protein complex a/b were studied in a natural stand of Pinus silvestris. Similar measurements were made after artificial photobleaching of chlorophyll in pine seedlings or in isolated pine chloroplasts. The chlorophyll-protein complexes were solubilized by sodium dodecyl sulphate and separated by polyacrylamide gel electrophoresis. When autumn and winter destruction of chlorophyll occurs, the chlorophyll a antenna associated with P700 in photosystem 1 (P700-CPa1) is relatively more affected than the light harvesting complex, which lacks a reaction centre. These results are further supported by low-temperature fluorescence emission properties of isolated chloroplasts presented in this work and elsewhere. The destruction of chlorophyll in stressing autumn and winter climates is most probably caused by photosensitized oxidation of chlorophyll.  相似文献   

17.
Loss of chlorophyll (Chl) and carotenoids (Car) of leaves and changes in Chl fluorescence emission and polarisation, malondialdehyde (MDA) accumulation, and 2,6-dichlorophenol indophenol (DCPIP) photoreduction in chloroplasts of wheat seedlings grown under different irradiance and subsequently exposed to high irradiance stress (HIS; 250 W m–2) were studied in mature and senescent primary wheat leaves. Faster rate of pigment loss was observed in leaves of moderate irradiance (MI; 15 W m–2) grown plants, compared to high irradiance (HI-1 and HI-2; 30 and 45 W m–2) ones when exposed to HIS. A relatively lower loss of Car in the plants grown in HI-1 and HI-2 exposed to HIS suggests HI adaptation of these seedlings. The slower rate of increase in the ratio of Chl fluorescence emission (F685/F735) also may suggest photoprotective strategy of HI grown seedlings. There was a positive correlation between MDA accumulation and Chl fluorescence polarisation. The DCPIP photoreduction activity in chloroplasts isolated from HI-1 and HI-2 grown plants exposed to HIS showed slower loss of electron transport activity compared to MI grown plants. These observations suggest that plants grown under higher irradiance have capacity to manage the excess quanta better than those grown under lower irradiance.  相似文献   

18.
The rate of CO2 fixation (Fc) and 680 nm chlorophyll fluorescence emission (F680) were measured simultaneously during induction of photosynthesis in Zea mays L. leaves under varying experimental conditions in order to assess the validity of fluorescence as an indicator of in vivo photosynthetic carbon assimilation. Z. mays leaves showed typical Kautsky fluorescence induction curves consisting of a fast rise in emission (O to P) followed by a slow quenching via a major transient (S-M) to a steady-state (T). After an initial lag, net CO2 assimilation commenced at a point corresponding to the onset of the S-M transient on the F680 induction curve. Subsequently, Fc and F680 always arrived at a steady-state simultaneously. Decreasing the dark-adaption period increased the rate of induction of both parameters. Alteration of leaf temperature produced anti-parallel changes in induction characteristics of Fc and F680. Reducing the CO2 level to below that required for saturation of photosynthesis also produced anti-parallel changes during induction, however, at CO2 concentrations tenfold greater than the atmospheric level the rate of F680 quenching from P to T was appreciably reduced without a similar change in the induction of Fc. Removal of CO2 at steady-state produced only a small increase in F680 and a correspondingly small decrease in F680 occurred when CO2 was re-introduced. The complex relationship between chlorophyll fluorescence and carbon assimilation in vivo is discussed and the applicability of fluorescence as an indicator of carbon assimilation is considered.Abbreviations Fc rate of CO2 fixation - F680 fluorescence emission at 680 nm  相似文献   

19.
《BBA》2003,1607(1):5-17
Photosynthetic organisms exposed to a dynamic light environment exhibit complex transients of photosynthetic activities that are strongly dependent on the temporal pattern of the incident irradiance. In a harmonically modulated light of intensity I≈const.+sin(ωt), chlorophyll fluorescence response consists of a steady-state component, a component modulated with the angular frequency of the irradiance ω and several upper harmonic components (2ω, 3ω and higher). Our earlier reverse engineering analysis suggests that the non-linear response can be caused by a negative feedback regulation of photosynthesis. Here, we present experimental evidence that the negative feedback regulation of the energetic coupling between phycobilisome and Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC6803 indeed results in the appearance of upper harmonic modes in the chlorophyll fluorescence emission. Dynamic changes in the coupling of the phycobilisome to PSII are not accompanied by corresponding antiparallel changes in the Photosystem I (PSI) excitation, suggesting a regulation limited to PSII. Strong upper harmonic modes were also found in the kinetics of the non-photochemical quenching (NPQ) of chlorophyll fluorescence, of the P700 redox state and of the CO2 assimilation in tobacco (Nicotiana tabaccum) exposed to harmonically modulated light. They are ascribed to negative feedback regulation of the reactions of the Calvin-Benson cycle limiting the photosynthetic electron transport. We propose that the observed non-linear response of photosynthesis may also be relevant in a natural light environment that is modulated, e.g., by ocean waves, moving canopy or by varying cloud cover. Under controlled laboratory conditions, the non-linear photosynthetic response provides a new insight into dynamics of the regulatory processes.  相似文献   

20.
Photoinhibitory processes in the photosynthetic apparatus of the seedlings of Abies alba (Mill.), Picea abies (Karst.), and Pinus mugo (Turra) growing under strong shade (5 % of full solar irradiance) or full irradiance conditions were investigated in winter and spring using chlorophyll a fluorescence techniques. The extent of photoinhibition in needles as indicated by a decrease in maximum quantum yield of PS II photochemistry (Fv/Fm) depended on species, air temperature and acclimation to the light environment. Unexpectedly, shade-tolerant Abies alba was less affected by low-temperature photoinhibition compared to the other species. Fv/Fm recovered with increasing air temperature. During winter, the seedlings of Picea abies growing in shade showed higher Fv/Fm than those from full light. Non-photochemical quenching of fluorescence (NPQ) measured at the same levels of actinic light was higher in needles acclimated to full light except for Abies alba in February. Photosynthetic performance in term of ETR (apparent electron transfer rate) was also higher in full light-acclimated needles. In April, at ambient temperature, recovery of PS II efficiency from the stress induced by illumination with saturating light was faster in the needles of Picea abies than in those of Abies alba. The shade-acclimated needles of Abies alba and Picea abies showed greater down-regulation of PS II induced by high light stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号