首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1. Radiolabelled (14C) amino acids were used to investigate the influence of sediment size as well as dissolved free amino acid (DFAA) concentration and composition on immobilization and mineralization of DFAAs by biofilms from a first-order stream. 2. Over time (240 min), biofilms on stony substrata immobilized a DFAA mixture more effectively than those on sandy substrata, however proportional mineralization of immobilized DFAAs was higher for sandy substrata (36 v 20%). 3. Using stony substrata, the DFAA mixture was immobilized more rapidly than glycine alone at ‘near-natural’ amino acid concentrations (c. 37 μgl?1), as well as enriched concentrations (1 and 100 mg 1-?1). Instantaneous rates of glycine immobilization and mineralization were not saturated at glycine enrichments of up to 980 mgl?1. 4. With both the amino acid mixture and glycine alone, proportional mineralization of the immobilized amino acids increased on enrichment to Img 1-?1 (DFAA mixture: from 25 to 37%; glycine alone: from 50 to 54%), but then fell on further enrichment to 100mgl?1 (DFAA mixture: 11%; glycine alone: 7%). 5. Results are discussed in terms of the potential trophic utility of immobilized DFAAs as well as the apparent roles of biotic and abiotic immobilization mechanisms. Immobilization and mineralization responses to variables investigated in this study give an insight into potential variability of carbon immobilization and retention in stream-bed sediments. This is fundamental to an understanding of how DOC may become available to higher trophic levels.  相似文献   

2.
SUMMARY. 1. In laboratory experiments, 9.7–25.7% of dissolved organic carbon (DOC) in groundwater (at concentrations of 18.7–24.8 mg 1-−1) was immobilized after perfusion through 8-cm-deep (22-cm-diameter) cores of stony stream-bed substratum.
2. This represented immobilization rates of 7.1–23.5 mg m−2 h−1 or, extrapolated across the year, potential immobilization rates within the stream bed of 62.2–205.9g m−2 yr−1. Actual rates in the entire stream bed were probably higher because perfusion through the experimental cores did not reduce groundwater DOC concentrations to levels measured in the adjacent stream.
3. Natural concentrations of dissolved free amino acids (DFAAs) in groundwater were generally unchanged following perfusion through the cores, suggesting the maintenance of a dynamic equilibrium in their concentrations.
4. Selective enrichments of amino acids in groundwater (up to 20-fold) were entirely immobilized following perfusion, indicating their rapid retention and flux in this environment. Thus, immobilization of the bulk DOC in stream-bed cores probably did not reflect net reductions in dissolved free, low-molecular-weight material, with higher molecular weight, more 'refractory' material being immobilized instead.
5. We conclude that groundwater can contribute substantial amounts of DOC, both high and low molecular weight, to a stream ecosystem. The stream bed is the site at which much of this material could be initially immobilized and made available to the stream trophic structure.  相似文献   

3.
Dissolved free amino acid (DFAA) concentration and composition and dissolved organic carbon (DOC) concentration were measured over 16 months at three depths in hypertrophic Hartbeespoort Dam, South Africa and in its two perenially inflowing rivers. The range of DFAA concentrations in the reservoir and both rivers were similar with dominant DFAA consisting of serine, glycine, alanine and ornithine in all three systems. The range of DOC concentrations in the rivers was 1.5–11.1 mg l–1, the major river (Crocodile) having about twice the DOC concentration of the Magalies River. The DFAA/DOC ratios ranged between 0.02–1.1% in the Crocodile River and 0.13–3.7% in the Magalies River. DFAA and DOC concentrations were positively correlated to the Magalies River flow, but for the Crocodile River, which received domestic and industrial effluents, DOC was inversely correlated to flow. The source of DFAA in both rivers was mainly terrestrial, in contrast to the main DOC source in the Crocodile River which was the effluents. The DFAA load of the Crocodile River ranged between 0.22 and 208 kg C d–1.DOC (5.0–24.8mg l–1) in Hartbeespoort Dam generally decreased with depth but DFAA (15–4800 nmol l–1) concentration showed no clear trend. The DFAA/DOC ratios varied between 0.02 and 2.9%. DFAA concentrations were correlated (r = 0.3, n = 30, p = 0.04) with bacterial numbers at 0 and 10 m only while no significant correlations were found with bacterial production, chlorophyll a concentration and phytoplankton primary and EDOC (extracellular DOC) production at any depth. The rate of bacterial utilization of DFAA was low compared with data from other lakes. Diurnal phytoplankton production of DFAA in the euphotic zone of the whole lake was calculated to vary between 268 and 30 780 t C d–1 indicating autochthonous DFAA sources were dominant to allochthonous DFAA sources. The autochthonous production of DFAA was > 2 × gross bacterial production of the euphotic zone indicating that although DFAA concentrations were frequently < 10 g C l–1, the rate of DFAA production exceeded bacterial requirements.  相似文献   

4.
Diel patterns of dissolved free amino acid (DFAA) concentration and microheterotrophic utilization were examined in the spring and fall of 1981 in euphotic waters from the base of the mixed layer off the southern California coast. The average depths of the isotherms sampled were 19.2 m for spring and 9.0 m for fall. Total DFAA levels were generally higher in the spring than in the fall, 18 to 66 nM and 14 to 20 nM, respectively. Two daily concentration maxima and minima were observed for total DFAAs as well as for most individual DFAAs. Maxima were usually measured in the mid-dark period and in the early afternoon; minima were typically observed in early morning and late afternoon. Bacterial cell numbers reached maximal values near midnight in both seasons. These increases coincided with one of the total DFAA maxima. The second total DFAA maximum occurred in early to midafternoon, during the time of maximum photosynthetic carbon production and rapid dissolved amino acid utilization. Microbial metabolism (incorporation plus respiration) of selected 3H-amino acids was 2.7 to 4.1 times greater during the daylight hours. DFAA turnover times, based on these metabolic measurements, ranged between 11 and 36 h for the amino acids tested, and rates were 1.7 to 3.7 times faster in the daylight hours than at night. DFAA distributions were related to primary production and chlorophyll a concentrations. Amino acids were estimated to represent 9 to 45% of the total phytoplankton exudate. Microheterotrophic utilization or production of total protein amino acids was estimated as 3.6 μg of C liter−1 day−1 in spring and 1.9 μg of C liter−1 day−1 in the fall. Assimilation efficiency for dissolved amino acids averaged 65% for marine microheterotrophs.  相似文献   

5.
Hartbeespoort Dam, a hypertrophic, warm monomictic impoundment in South Africa, receives extremely high phosphorus loads (14.6–25.9 g m–2 a–1) that are dominated by point source discharges from municipal wastewater treatment works. The reduced state of the phosphorus discharged from the works has led to the dominance of the dissolved phosphorus pool by low molecular weight orthophosphates which are analytically detectable as soluble reactive phosphorus (SRP; 60% of total phosphorus pool). Seasonality in the in-lake total phosphorus pool is regulated by a combination of abiotic and hydrological processes; biotic processes appear to play a minor role. Mass balance calculations indicate that between 62 and 77% of the annual total phosphorus inflow load is retained within the impoundment each year.  相似文献   

6.
Escherichia intermedia cells were immobilized by entrapment in a carrageenan gel and used for -DOPA synthesis from catechol, pyruvate, and ammonia. A preparation containing 75 mg of cell per gram of gel retained 60–65% of its original activity. The effect of substrate concentrations on the initial rate of -DOPA synthesis was very similar for free and immobilized cells, and substrate inhibition was observed for the three substrates. In batch reactors, up to 7.8 g l−1 of -DOPA was obtained in 20 h (productivity 0.39 g l−1 h−1). Cells immobilized in a carrageenan gel showed higher -DOPA synthesis, in both initial rates conditions and batch reactors, than cells immobilized in a polyacrylamide gel.  相似文献   

7.
Of the immobilization methods tested, alginate beads treated with glutaraldehyde gave the most stable and economic method for immobilizing l-arabinose isomerase for the industrial production of tagatose. l-Arabinose isomerase immobilized in a packed-bed reactor produced an average of 30 g tagatose l–1 day–1 from 100 g galactose l–1 for 8 days.  相似文献   

8.
Three concentrations of the herbicide simazine were added to in situ macrophyte-free enclosures with and without sediment contact. Changes in the concentrations of total ammonia, total reactive phosphorus, and silicon were monitored, and net sediment flux was calculated from the difference in nutrient concentration between bottomed and unbottomed enclosures. Rates of sediment release for all three nutrients were unaltered by 0.1 mg · l–1 simazine in relation to a control, whereas rates were increased proportionally at 1.0 and 5.0 mg · l–1. These results suggest that increases in dissolved nutrients commonly observed following herbicide treatment of shallow waters may not be attributable solely to macrophyte decay, byt may also involve a complex interaction of biotic and abiotic sediment nutrient exchange processes.Contribution Number 103 from the University of Manitoba Field Station, Delta Marsh, Canada  相似文献   

9.
Freely suspended and Ca-alginate-immobilized cells of Pimelobacter sp. were used for degradation of pyridine. When the pyridine concentration was up to 2 g l–1, freely suspended cells completely degraded pyridine regardless of the initial cell concentrations used. However, when the pyridine concentration increased to 4 g l–1, the initial cell concentration in freely suspended cell culture should be higher than 1.5 g dry cell weight l–1 for complete degradation of pyridine. In addition, a freely suspended cell culture with a high initial cell concentration resulted in a high volumetric pyridine-degradation rate, suggesting the potential use of immobilized cells for pyridine-degradation. When the immobilized cells were used for pyridine-degradation, neither specific pyridine-degradation rate nor tolerance against pyridine was improved. However, a high volumetric pyridine-degradation rate in the range 0.082–0.129 g l–1 hr–1 could be achieved by the immobilized cells because of the high cell concentration. Furthermore, when the immobilized cells were reused in degrading pyridine at a concentration of 2–4 g l–1 they did not lose their pyridine-degrading activity for 2 weeks. Taken together, the data obtained here showed the feasibility of using immobilized cells for pyridine-degradation.  相似文献   

10.
Summary Direct alcoholic fermentation of dextrin or soluble starch with selected amylolytic yeasts was studied in both batch and immobilized cell systems. In batch fermentations, Saccharomyces diastaticus was capable of fermenting high dextrin concentrations much more efficiently than Schwanniomyces castellii. From 200 g·l–1 of dextrin S. diastaticus produced 77 g·l–1 of ethanol (75% conversion efficiency). The conversion efficiency decreased to 59% but a higher final ethanol concentration of 120 g·l–1 was obtained with a medium containing 400 g·l–1 of dextrin. With a mixed culture of S. diastaticus and Schw. castellii 136 g·l–1 of ethanol was produced from 400 g·l–1 of dextrin (67% conversion efficiency). S. diastaticus cells attached well to polyurethane foam cubes and a S. diastaticus immobilized cell reactor produced 69 g·l–1 of ethanol from 200 g·l–1 of dextrin, corresponding to an ethanol productivity of 7.6g·l–1·h–1. The effluent from a two-stage immobilized cell reactor with S. diastaticus and Endomycopsis fibuligera contained 70 g·l–1 and 80 g·l–1 of ethanol using initial dextrin concentrations of 200 and 250 g·l–1 respectively. The corresponding values for ethanol productivity were 12.7 and 9.6 g·l–1·h–1. The productivity of the immobilized cell systems was higher than for the batch systems, but much lower than for glucose fermentation.  相似文献   

11.
Invertase was immobilized via its carbohydrate moiety. The immobilized enzyme has a specific activity of 5500 IU g–1, with 45% activity yield on immobilization. In a packed bed reactor, 90% 2.5 M sucrose was converted at a flow rate of 4 bed volumes h–1. The obtained specific productivity at 40 °C of 3 kg l–1 h–1 is the best one so far. Long-term stability was 290 days in 2.5 M sucrose at 40 °C and at a flow rate of 3 bed volumes h–1.  相似文献   

12.
Seasonal variability of dissolved organic carbon ina Mediterranean stream   总被引:1,自引:0,他引:1  
The seasonal variability of dissolved organic carbon(DOC) flux in a Mediterranean stream subjected todischarges of wide range of intensities and variabledry period was studied as a function of the hydrologicconditions, and the relationship between surface andsubsurface (hyporheic and groundwater) DOCconcentration. DOC concentration in stream water(2.6 mg l–1 ±1.5 SD) was higher thangroundwater (1.3 mg l–1 ± 1.2 SD) and lower thanhyporheic water (3.8 mg l–1 ±1.7 SD),suggesting that, at baseflow, stream DOC concentrationincreases when groundwater discharges through thehyporheic zone. Storms contributed to 39% of annualwater export and to 52% of the total annual DOCexport (220 kg km–2). A positive relationship wasobserved between Discharge (Q) and stream DOCconcentration. Discharge explained only 40% of theannual variance in stream DOC, but explained up to93% of the variance within floods. The rate of streamDOC changes with discharge change during storms (dDOC/dQ), ranged between 0 and 0.0045 C mgl–1 s l–1, with minimum values during Springand Summer, and maxima values in Fall and Winter.These dynamics suggest that storm inputs ofterrigenous DOC vary between seasons. During floods inthe dormant season, DOC recession curves were alwayssteeper than discharge decline, suggesting shortflushing of DOC from the leaching of fresh detritusstored in the riparian zone.  相似文献   

13.
This study examined the importance of zooplankton in the flux of dissolved free amino acids (DFAA) in the water and into bacteria. DFAA release rates were followed in laboratory grazing experiments usingDaphnia galeata andEudiaptomus graciloides as grazers, andScenedesmus acutus andSynechococcus elongatus as food sources. Except for minor initial peaks, DFAAs were released continuously during the first 2 hours and made up 6–12% (in one experiment 50%) of the calculated ingestion rates. During three diel studies in lakes, effects of removal and increase of the density of zooplankton (>200m) on the pools of DFAA as well as on the bacterial production were followed. During two of the diel studies, higher DFAA pools were measured when 3–4 times the natural zooplankton density was present, and in one study a minor increase also occurred in the bacterial production, compared with results from experiments without zooplankton and with a natural zooplankton density. The increase in bacterial growth coincided with a decline in DFAA. During the third study, neither DFAA nor the bacterial production changed significantly when the zooplankton density was increased 3 times. Removal of zooplankton, however, caused a decline in both DFAA and bacterial production. Our data suggest a close relationship between occurrence of zooplankton and release of DFAA, but the factors regulating the amount of DFAA released and its effect on bacterial growth are not yet understood.  相似文献   

14.
Degradation kinetics of phenol by free and agar-entrapped cells of Candida tropicalis was studied in batch cultures. The initial phenol degradation rate achieved with free cells was higher than that obtained with immobilized cells, when phenol concentrations up to 1000 mg l–1 were used. However, at higher phenol concentrations, the behaviour was quite different. The initial degradation rate of the immobilized yeast cells was about 10 times higher than that of the free cells, at a phenol concentration of 3500 mg l–1. The semicontinuous and continuous degradation of phenol by immobilized yeast cells was also investigated in a multi-stage fluidized bed reactor. The highest phenol removal efficiencies and degradation rates as well as the lowest values of residual phenol and chemical oxygen demand were obtained in the semicontinuous culture when phenol concentrations up to 1560 mg l–1 were used.  相似文献   

15.
Summary Citric acid was produced with immobilized Yarrowia lipolytica yeast in repeated batch-shake-flask and air-lift fermentations. In active and passive immobilization methods calcium alginate, -carrageenan, polyurethane gel, nylon web and polyurethane foams were tested as carriers in repeated-batch fermentations. The highest citric acid productivity of 155 mg l–1 h–1 was reached with alginate-bead-immobilized cells in the first batch. A decrease in bead diameter from 5–6 mm to 2–3 mm increased the volumetric citric acid productivity threefold. In an air-lift bioreactor the highest citric acid productivity of 120 mg l–1 h–1 with a product concentration of 16.4 g l–1 was obtained with cells immobilized in -carrageenan beads. Offprint requests to: H. Kautola  相似文献   

16.
Shan H  Obbard JP 《Biotechnology letters》2003,25(17):1469-1471
Intensively cultured fish stock when fed protein-rich feeds typically excrete high concentrations of total ammoniacal-nitrogen (TAN) into the water column which can have adverse effects on productivity, and upon the environment when aquaculture water is discharged. An immobilized culture of nitrifying bacteria isolated from prawn pond water and known to effectively remove TAN from saline water was tested for its ability to remove TAN from freshwater. The culture was readily adaptable to non-saline conditions and maintained TAN at less than 0.25 mg l–1, even with a daily addition of 3.2 to 4.2 mg TAN l–1 per d. The use of the immobilized culture of nitrifying bacteria represents an innovative and economical in situ treatment technology for removal of TAN in both saline and freshwater.  相似文献   

17.
Vidal-Abarca  M. R.  Suárez  M. L.  Guerrero  C.  Velasco  J.  Moreno  J. L.  Millán  A.  Perán  A. 《Hydrobiologia》2001,455(1-3):71-78
Annual variations in the concentration of dissolved (DOC) and particulate organic carbon (CPOC = Coarse; FPOC = Fine; UPOC = Ultrafine) were studied in a 100 m-reach of the Chicamo stream, an intermittent saline stream in southeast Spain. DOC represented the most important fraction of organic carbon flowing in the Chicamo stream (>98%), with concentrations of about 1.7 mgC l–1 during most of the year, reaching 2.5 mgC l–1 in summer. One high flow episode during a rain storm in winter was characterized by a considerably increased concentration of DOC (9.4 mgC l–1). CPOC was the dominant POC fraction. Positive and significant correlations were found for DOC and discharge, which support the idea of allochthonous inputs due to floods. There was no significant correlation between POC and discharge. No significant correlations were found for DOC or POC with the physico-chemical parameters measured, while a negative significant correlation was found between DOC and temperature. The export of total organic carbon from the drainage basin of the Chicamo stream was low (6.2 × 10–4 gC m–2 yr–1) and typical of streams in arid and semi-arid regions. The results of a Principal Component Analysis defined three different phases. The first consisted of short periods, during which floods provide pulses of allochthonous organic carbon and nutrients, the second a dry phase (summer), defined by biotic interactions, during which the stream could acts as a `sink' of organic matter, and the third and final phase which is characterised by hydrological stability.  相似文献   

18.
Sulfolobus solfataricus used 2-propanol and 2-propanone (acetone) when grown in static cultures at 78 °C with or without glucose at 10 g l–1. The presence of 3.92 g 2-propanol l–1 in both cases inhibited growth. However, acetone accumulation following 2-propanol depletion suggested that 2-propanol was co-metabolized via the acetone metabolic pathway. Glucose at 10 g l–1 increased 2-propanol and acetone utilization from 0.93 g l–1 to 1.77 g l–1 and from 0.11 g l–1 to 1.62 g l–1, respectively. Without glucose, immobilized S. solfataricus cells increased the 2-propanol removal rate to 0.035 g l–1 h–1, compared to 0.0012 g l–1 h–1 by its suspended counterpart. The results suggest the establishment of an immobilized reactor configuration is preferential for the treatment of high temperature solvent waste streams by this acidothermophilic Crenarchaeon.  相似文献   

19.
Solute, nutrient and bacterial inputs to the River Rhône from the interstitial habitat of a gravel bar and the floodplain aquifer were investigated during an artificial drought. Eight springs were investigated: four groundwater-fed springs in the floodplain, located at the bottom of the bank; and four interstitial-fed springs located at the downstream end of a gravel bar. During this period, the inflows of groundwater to the river represented an average input of 0.77 mg l–1 of nitrogen (of which 93.3% were nitrates), 0.0187 mg l–1 of total phosphorus (of which 42.2% was orthophosphate), 3.56 mg l–1 of silica, 2.315 ± 0.703 mg l–1 of dissolved organic carbon (DOC, of which 47% was biodegradable) and 7.3 × 104 ± 3.7 × 104 bacteria per ml (of which 8.8% were active). Silica, DOC, biodegradable DOC, and bacteria concentrations displayed temporal variations during the study, which seem to be linked to the biological activity of the groundwater biofilm. There was a strong heterogeneity between the two types of groundwater that flow to the river: concentrations of calcium and alkalinity were higher in bank springs than in gravel bars springs. In these latters, sulfate, sodium, nitrogen, phosphorus were significantly higher.  相似文献   

20.
This study documents for the first time both vertical and horizontal distribution patterns of the zooplankton community in Lake Kinneret during the period of thermal stratification. The zooplankton distribution patterns were explored in relation to abiotic (temperature, oxygen) and biotic (picocyanobacteria, ciliates, flagellates, phytoplankton, fish) environmental gradients. Sampling was carried out on 6–7 July 1992 at five stations and six depths from nearshore to offshore. Zooplankton abundance and biomass varied from 5 to 267 ind. l–1(mean: 95 ind. l–1), and from 0.1 to 65 d.w. mg m–3(mean: 24 d.w. mg m–3). Zooplankton taxonomic groups (Rotifera, Cladocera, Cyclopoida, Calanoida) and size classes (micro-, meso- and macrozooplankton) showed peaks of maximal density and biomass in the epilimnetic and metalimnetic strata (5 and 14 m). Depth, accounting for 31–39% of total spatial variation, reflected the vertical distribution of zooplankton in relation to temperature and oxygen declines, and the higher concentration of food resources (protists and phytoplankton) in the epilimnion and metalimnion. Onshore–offshore distance, accounting for 17–22% of the total spatial variance, reflected different distribution patterns shown among zooplankton groups and size classes. The macrozooplankton (Copepoda, Cladocera) was more abundant offshore, whereas microzooplankton (Rotifera and nauplii) predominated nearshore. These horizontal distribution patterns were related to small increases in temperature and phytoplankton biomass, and higher concentrations of fish in the littoral zone. Although limited to a short temporal scale, our study indicated that zooplankton spatial distribution in Lake Kinneret during the period of thermal stratification was related to physicochemical, food and predation factors, manifested differently along the vertical and nearshore–offshore gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号