首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A consensus map of rye (Secale cereale L.) was constructed using JoinMap 2.0 based on mapping data from five different mapping populations, including ‘UC90’ × ‘E-line’, ‘P87’ × ‘P105’, ‘I0.1-line’ × ‘I0.1-line’, ‘E-line’ × ‘R-line’, and ‘Ds2’ × ‘RxL10’. The integration of the five mapping populations resulted in a 779-cM map containing 501 markers with the number of markers per chromosome ranging from 57 on 1R to 86 on 4R. The linkage sizes ranged from 71.5 cM on 2R to 148.7 cM on 4R. A comparison of the individual maps to the consensus map revealed that the linear locus order was generally in good agreement between the various populations, but the 4R orientations were not consistent among the five individual maps. The 4R short arm and long arm assignments were switched between the two population maps involving the ‘E-line’ parent and the other three individual maps. Map comparisons also indicated that marker order variations exist among the five individual maps. However, the chromosome 5R showed very little marker order variation among the five maps. The consensus map not only integrated the linkage data from different maps, but also greatly increased the map resolution, thus, facilitating molecular breeding activities involving rye and triticale.  相似文献   

2.
An integrated consensus genetic map for apple was constructed on the basis of segregation data from four genetically connected crosses (C1?=?Discovery × TN10-8, C2?=?Fiesta × Discovery, C3?=?Discovery × Prima, C4?=?Durello di Forli × Fiesta) with a total of 676 individuals using CarthaGene® software. First, integrated female–male maps were built for each population using common female–male simple sequence repeat markers (SSRs). Then, common SSRs over populations were used for the consensus map integration. The integrated consensus map consists of 1,046 markers, of which 159 are SSR markers, distributed over 17 linkage groups reflecting the basic chromosome number of apple. The total length of the integrated consensus map was 1,032 cM with a mean distance between adjacent loci of 1.1 cM. Markers were proportionally distributed over the 17 linkage groups (χ 2?=?16.53, df?=?16, p?=?0.41). A non-uniform marker distribution was observed within all of the linkage groups (LGs). Clustering of markers at the same position (within a 1-cM window) was observed throughout LGs and consisted predominantly of only two to three linked markers. The four integrated female–male maps showed a very good colinearity in marker order for their common markers, except for only two (CH01h01, CH05g03) and three (CH05a02z, NZ02b01, Lap-1) markers on LG17 and LG15, respectively. This integrated consensus map provides a framework for performing quantitative trait locus (QTL) detection in a multi-population design and evaluating the genetic background effect on QTL expression.  相似文献   

3.
Genetical maps of molecular markers in two very different F1-derived doubled-haploid populations of Brassica oleracea are compared and the first integrated map described. The F1 crosses were: Chinese kale×calabrese (var. alboglabra×var. italica) and cauliflower×Brussels sprout (var. botrytis×var. gemmifera). Integration of the two component maps using Joinmap v.2.0 was based on 105 common loci including RFLPs, AFLPs and microsatellites. This provided an effective method of producing a high-density consensus linkage map of the B. oleracea genome. Based on 547 markers mapping to nine linkage groups, the integrated map covers a total map length of 893 cM, with an average locus interval of 2.6 cM. Comparisons back to the component linkage maps revealed similar sequences of common markers, although significant differences in recombination frequency were observed between some pairs of homologous markers. Map integration resulted in an increased locus density and effective population size, providing a stronger framework for subsequent physical mapping and for precision mapping of QTLs using substitution lines. Received: 5 February 1999 / Accepted: 16 June 1999  相似文献   

4.
We have developed an integrated map from five elite cultivars of Vitis vinifera L.; Syrah, Pinot Noir, Grenache, Cabernet Sauvignon and Riesling which are parents of three segregating populations. A new source of markers, SNPs, identified in ESTs and unique BAC-end sequences was added to the available IGGP reference set of SSRs. The complete integrated map comprises 1,134 markers (350 AFLP((R)), 332 BESs, 169 ESTs, 283 SSRs) spanning 1,443 cM over 19 linkage groups and shows a mean distance between neighbouring loci of 1.27 cM. Marker order was mainly conserved between the integrated map and the highly dense Syrah x Pinot Noir consensus map except for few inversions. Moreover, the marker order has been validated through the assembled genome sequence of Pinot Noir. We have also assessed the transferability of SNP-based markers among five V. vinifera varieties, enabling marker validation across different genotypes. This integrated map can serve as a fundamental tool for molecular breeding in V. vinifera and related species and provide a basis for studies of genome organization and evolution in grapevines.  相似文献   

5.
An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench.   总被引:5,自引:0,他引:5  
We report the development, testing, and use (for genetic mapping) of a large number of polymerase chain reaction (PCR) primer sets that amplify DNA simple sequence repeat (SSR) loci of Sorghum bicolor (L.) Moench. Most of the primer sets were developed from clones isolated from two sorghum bacterial artificial chromosome (BAC) libraries and three enriched sorghum genomic-DNA (gDNA) libraries. A few were developed from sorghum DNA sequences present in public databases. The libraries were probed with radiolabeled di- and trinucleotide oligomers, the BAC libraries with four and six oligomers, respectively, and the enriched gDNA libraries with four and three oligomers, respectively. Both types of libraries were markedly enriched for SSRs relative to a size-fractionated gDNA library studied earlier. However, only 2% of the sequenced clones obtained from the size-fractionated gDNA library lacked a SSR, whereas 13% and 17% of the sequenced clones obtained from the BAC and enriched gDNA libraries, respectively, lacked a SSR. Primer sets were produced for 313 SSR loci. Two-hundred sixty-six (85%) of the loci were amplified and 165 (53%) of the loci were found to be polymorphic in a population composed of 18 diverse sorghum lines. (AG/TC)n and (AC/TG)n repeats comprised 91% of the dinucleotide SSRs and 52% of all of the SSRs at the polymorphic loci, whereas four types of repeats comprised 66% of the trinucleotide SSRs at the loci. Primer sequences are reported for the 165 polymorphic loci and for eight monomorphic loci that have a high degree of homology to genes. Also reported are the genetic map locations of 113 novel SSR loci (including four SSR-containing gene loci) and a linkage map composed of 147 SSR loci and 323 RFLP (restriction fragment length polymorphism) loci. The number of SSR loci per linkage group ranges from 8 to 30. The SSR loci are distributed relatively evenly throughout approximately 75% of the 1406-cM linkage map, but segments of five linkage groups comprising about 25% of the map either lack or contain few SSR loci. Mapping of SSR loci isolated from BAC clones located to these segments is likely to be the most efficient method for placing SSR loci in the segments.  相似文献   

6.
In this study we combined three major rat genome maps, by adding 66 markers to the Kyoto Laboratory Animal Science map (KLAS map), and constructed an integrated map. The resultant integrated map consists of 5,682 redundant markers, spanning a genetic length of 2,028 cM. Eighty genetic markers were anchored to the cytogenetic map, fixing all the genetic maps in the physically correct orientation. This map encapsulates the progress in rat mapping studies in past years and offers useful information for QTL analysis. The map figures are available at http:/(/)www.anim.med.kyoto-u.ac.jp/.  相似文献   

7.
Amplified fragment length polymorphism (AFLP) is an efficient molecular technique for generating a large number of DNA-based genetic markers in Populus. We have constructed an integrated genetic map for a Populus backcross population derived from two selected P. deltoides clones using AFLP markers. A traditional strategy for genetic mapping in outcrossing species, such as forest trees, is based on two-way pseudo-testcross configurations of the markers (testcross markers) heterozygous in one parent and null in the other. By using the markers segregating in both parents (intercross markers) as bridges, the two parent-specific genetic maps can be aligned. In this study, we detected a number of non-parental heteroduplex markers resulting from the PCR amplification of two DNA segments that have a high degree of homology to one another but differ in their nucleotide sequences. These heteroduplex markers detected have served as bridges to generate an integrated map which includes 19 major linkage groups equal to the Populus haploid chromosome number and 24 minor groups. The 19 major linkage groups cover a total of 2,927 cM, with an average spacing between two markers of 23. 3 cM. The map developed in this study provides a first step in producing a highly saturated linkage map of the Populus deltoides genome. Received: 10 September 1999 / Accepted: 3 November 1999  相似文献   

8.
We developed a genetic linkage map of sweetpotato using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers and a mapping population consisting of 202 individuals derived from a broad cross between Xushu 18 and Xu 781, and mapped quantitative trait loci (QTL) for the storage root dry-matter content. The linkage map for Xushu 18 included 90 linkage groups with 2077 markers (1936 AFLP and 141 SSR) and covered 8,184.5 cM with an average marker distance of 3.9 cM, and the map for Xu 781 contained 90 linkage groups with 1954 markers (1824 AFLP and 130 SSR) and covered 8,151.7 cM with an average marker distance of 4.2 cM. The maps described herein have the best coverage of the sweetpotato genome and the highest marker density reported to date. These are the first maps developed that have 90 complete linkage groups, which is in agreement with the actual number of chromosomes. Duplex and triplex markers were used to detect the homologous groups, and 13 and 14 homologous groups were identified in Xushu 18 and Xu 781 maps, respectively. Interval mapping was performed first and, subsequently, a multiple QTL model was used to refine the position and magnitude of the QTL. A total of 27 QTL for dry-matter content were mapped, explaining 9.0–45.1 % of the variation; 77.8 % of the QTL had a positive effect on the variation. This work represents an important step forward in genomics and marker-assisted breeding of sweetpotato.  相似文献   

9.
玉米SSR连锁图谱构建及叶面积的QTL定位   总被引:4,自引:0,他引:4  
刘建超  褚群  蔡红光  米国华  陈范骏 《遗传》2010,32(6):625-631
叶片是玉米进行光合作用的主要器官,叶面积的大小(尤其是穗三叶面积)对于玉米干物质的积累及产量形成起着至关重要的作用。研究玉米叶面积的遗传基础对于指导玉米高产育种具有理论意义。文章以两个叶面积差异显著的亲本478×武312为基础材料所构建的218个F8代的重组自交系为作图群体,构建了一张包含184个SSR标记的遗传连锁图谱,图谱总长度为2084.1cM,平均图距为11.3cM。通过两年的田间试验对玉米叶面积(穗三叶)进行了QTL定位分析。两年共定位到7个和叶面积相关的QTL位点,2006年定位到4个QTL位点;2007年定位到3个QTL位点。在第2染色体umc1542-umc1518标记区间发现一个主效QTL位点,该位点可以在两年同时检测到,两年分别解释12.5%和17.3%的表型变异。该位点能稳定地检测到且具有较大的贡献率,可能会在玉米叶面积分子标记辅助选择上有所应用。  相似文献   

10.
11.
An integrated genetic linkage map of avocado   总被引:5,自引:0,他引:5  
 An avocado genomic library was screened with various microsatellite repeats. (A/T)n and (TC/AG)n sequences were found to be the most frequent repeats. One hundred and seventy-two positive clones were sequenced successfully of which 113 were found to contain simple sequence repeats (SSR). Polymerase chain reaction primers were designed to the regions flanking the SSR in 62 clones. A GenBank search of avocado DNA sequences revealed 1 sequence containing a (CT)10 repeat. A total of 92 avocado-specific SSR markers were screened for polymorphism using 50 offspring of a cross between the avocado cultivars ‘Pinkerton’ and ‘Ettinger’. Both are standard avocado cultivars which are normally outcrossed and highly heterozygous. Fifty polymorphic SSR loci, 17 random amplified polymorphic DNA (RAPD) and 23 minisatellite DNA Fingerprint (DFP) bands were used to construct the avocado genetic map. The resulting data were analyzed with various mapping programs in order to assess which program best accommodated data from progeny of heterozygous parents. The analyses resulted in 12 linkage groups with 34 markers (25 SSRs, 3 RAPDs and 6 DFP bands) covering 352.6 cM. This initial map can serve as a basis for developing a detailed genomic map and for detection of linkage between markers and quantitative trait loci. Received: 2 April 1996 / Accepted: 28 February 1997  相似文献   

12.
Only a few genetic maps based on recombinant inbred line (RIL) and backcross (BC) populations have been developed for tetraploid groundnut. The marker density, however, is not very satisfactory especially in the context of large genome size (2800 Mb/1C) and 20 linkage groups (LGs). Therefore, using marker segregation data for 10 RILs and one BC population from the international groundnut community, with the help of common markers across different populations, a reference consensus genetic map has been developed. This map is comprised of 897 marker loci including 895 simple sequence repeat (SSR) and 2 cleaved amplified polymorphic sequence (CAPS) loci distributed on 20 LGs (a01-a10 and b01-b10) spanning a map distance of 3, 863.6 cM with an average map density of 4.4 cM. The highest numbers of markers (70) were integrated on a01 and the least number of markers (21) on b09. The marker density, however, was lowest (6.4 cM) on a08 and highest (2.5 cM) on a01. The reference consensus map has been divided into 20 cM long 203 BINs. These BINs carry 1 (a10_02, a10_08 and a10_09) to 20 (a10_04) loci with an average of 4 marker loci per BIN. Although the polymorphism information content (PIC) value was available for 526 markers in 190 BINs, 36 and 111 BINs have at least one marker with >0.70 and >0.50 PIC values, respectively. This information will be useful for selecting highly informative and uniformly distributed markers for developing new genetic maps, background selection and diversity analysis. Most importantly, this reference consensus map will serve as a reliable reference for aligning new genetic and physical maps, performing QTL analysis in a multi-populations design, evaluating the genetic background effect on QTL expression, and serving other genetic and molecular breeding activities in groundnut.  相似文献   

13.
14.
An integrated DArT-SSR linkage map of durum wheat   总被引:2,自引:0,他引:2  
Genetic mapping in durum wheat (Triticum durum Desf.) is constrained by its large genome and allopolyploid nature. We developed a Diversity Arrays Technology (DArT) platform for durum wheat to enable efficient and cost-effective mapping and molecular breeding applications. Genomic representations from 56 durum accessions were used to assemble a DArT genotyping microarray. Microsatellite (SSR) and DArT markers were mapped on a durum wheat recombinant inbred population (176 lines). The integrated DArT-SSR map included 554 loci (162 SSRs and 392 DArT markers) and spanned 2022 cM (5 cM/marker on average). The DArT markers from durum wheat were positioned in respect to anchor SSRs and hexaploid wheat DArT markers. DArT markers compared favourably to SSRs to evaluate genetic relationships among the durum panel, with 1315 DArT polymorphisms found across the accessions. Combining DArT and SSR platforms provides an efficient and rapid method of generating linkage maps in durum wheat.  相似文献   

15.
16.
A genetic linkage map of apricot ( Prunus armeniaca L.) was constructed using AFLP and SSR markers. The map is based on an F(2) population (76 individuals) derived from self-pollination of an F(1) individual ('Lito') originated from a cross between 'Stark Early Orange' and 'Tyrinthos'. This family, designated as 'Lito' x 'Lito', segregated for two important agronomical traits: plum pox virus resistance (PPV) and self-incompatibility. A total of 211 markers (180 AFLPs, 29 SSRs and two agronomic traits) were assigned to 11 linkage groups covering 602 cM of the apricot genome. The average distance (cM/marker) between adjacent markers is 3.84 cM. The PPV resistance trait was mapped on linkage group G1 and the self-incompatibility trait was mapped on linkage group G6. Twenty two loci held in common with other Prunus maps allowed us to compare and establish homologies among the respective linkage groups.  相似文献   

17.
18.
Construction and improvement of a genetic map for peanut (Arachis hypogaea L.) continues to be an important task in order to facilitate quantitative trait locus (QTL) analysis and the development of tools for marker-assisted breeding. The objective of this study was to develop a comparative integrated map from two cultivated × cultivated recombinant inbred line (RIL) mapping populations and to apply in mapping Tomato spotted wilt virus (TSWV) resistance trait in peanut. A total of 4,576 simple sequence repeat (SSR) markers from three sources: published SSR markers, newly developed SSR markers from expressed sequence tags (EST) and from bacterial artificial chromosome end-sequences were used for screening polymorphisms. Two cleaved amplified polymorphic sequence markers were also included to differentiate ahFAD2A alleles and ahFAD2B alleles. A total of 324 markers were anchored on this integrated map covering 1,352.1 cM with 21 linkage groups (LGs). Combining information from duplicated loci between LGs and comparing with published diploid maps, seven homoeologous groups were defined and 17 LGs (A1-A10, B1-B4, B7, B8, and B9) were aligned to corresponding A-subgenome or B-subgenome of diploid progenitors. One reciprocal translocation was confirmed in the tetraploid-cultivated peanut genome. Several chromosomal rearrangements were observed by comparing with published cultivated peanut maps. High consistency with cultivated peanut maps derived from different populations may support this integrated map as a reliable reference map for peanut whole genome sequencing assembling. Further two major QTLs for TSWV resistance were identified for each RILs, which illustrated the application of this map.  相似文献   

19.
The laboratory rat, Rattus novegicus, is a major model system for physiological and pathophysiological studies, and since 1966 more than 422,000 publications describe biological studies on the rat (NCBI/Medline). The rat is becoming an increasingly important genetic model for the study of specific diseases, as well as retaining its role as a major preclinical model system for pharmaceutical development. The initial genetic linkage map of the rat contained 432 genetic markers (Jacob et al. 1995) out of 1171 developed due to the relatively low polymorphism rate of the mapping cross used (SHR × BN) when compared to the interspecific crosses in the mouse. While the rat genome project continues to localize additional markers on the linkage map, and as of 11/97 more than 3,200 loci have been mapped. Current map construction is using two different crosses (SHRSP × BN and FHH × ACI) rather than the initial mapping cross. Consequently there is a need to provide integration among the different maps. We set out to develop an integrated map, as well as increase the number of markers on the rat genetic map. The crosses available for this analysis included the original mapping cross SHR × BN reciprocal F2 intercross (448 markers), a GH × BN intercross (205 markers), a SS/Mcw × BN intercross (235 markers), and a FHH/Eur × ACI/Hsd intercross (276 markers), which is also one of the new mapping crosses. Forty-six animals from each cross were genotyped with markers polymorphic for that cross. The maps appear to cover the vast majority of the rat genome. The availability of these additional markers should facilitate more complete whole genome scans in a greater number of strains and provide additional markers in specific genomic regions of interest. Received: 3 December 1997 / Accepted: 20 February 1998  相似文献   

20.
The objectives of this study were to assign both microsatellite and gene-based markers on porcine chromosome X to two radiation hybrid (RH) panels and to develop a more extensive integrated map of SSC-X. Thirty-five microsatellite and 20 gene-based markers were assigned to T43RH, and 16 previously unreported microsatellite and 15 gene-based markers were added to IMpRH map. Of these, 30 microsatellite and 12 gene-based markers were common to both RH maps. Twenty-two gene-based markers were submitted to BLASTN analysis for identification of orthologues of genes on HSA-X. Single nucleotide polymorphisms (SNPs) were detected for 12 gene-based markers, and nine of these were placed on the genetic map. A total of 92 known loci are present on at least one porcine chromosome X map. Thirty-seven loci are present on all three maps; 31 loci are found on only one map. Location of 33 gene-based markers on the comprehensive map translates into an integrated comparative map that supports conservation of gene order between SSC-X and HSA-X. This integrated map will be valuable for selection of candidate genes for porcine quantitative trait loci (QTLs) that map to SSC-X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号