首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In two montane watersheds that receive minimal deposition of atmospheric nitrogen, 15–71% of dissolved organic nitrogen (DON) was bioavailable in stream water over a 2-year period. Discharge-weighted concentrations of bulk DON were between 102 and 135 μg/l, and the C:N ratio differed substantially between humic and non-humic fractions of DON. Approximately 70% of DON export occurred during snowmelt, and 40% of that DON was biologically available to microbes in stream sediments. Concentrations of bioavailable DON in stream water were 2–16 times greater than dissolved inorganic nitrogen (DIN) during the growing season, and bioavailable DON was depleted within 2–14 days during experimental incubations. Uptake of DON was influenced by the concentration of inorganic N in stream water, the concentration of non-humic DON in stream water, and the C:N ratio of the non-humic fraction of dissolved organic matter (DOM). Uptake of DON declined logarithmically as the concentration of inorganic N in stream water increased. Experimental additions of inorganic N also caused a decline in uptake of DON and net production of DON when the C:N ratio of non-humic DOM was high. This study indicates that the relative and absolute amount of bioavailable DON can vary greatly within and across years due to interactions between the availability of inorganic nutrients and composition of DOM. DOM has the potential to be used biotically at a high rate in nitrogen-poor streams, and it may be generated by heterotrophic microbes when DIN and labile DOM with low relative nitrogen content become abundant.  相似文献   

2.
We have studied 15 catchments supplying freshwater to a French Atlantic coastal lagoon, where increase in nitrogen loads due to agriculture is supposed to have destabilized the ecosystem in the last decades. The catchment is a lowland composed of Pleistocene sands with an average slope of 0.25%. To study the nutrient export in relation to land-use surface waters were sampled bi-weekly between October 2006 and January 2009 and land-use was established by plane photographs and Geographic Information System (GIS). Cultivated pine forests represent more than 80% of the total surface and 7% of the catchment area has been deforested recently. Significant areas of some catchments are used for maize crop. Housing is confined to the coastal zone. Maize and forest crop give a robust signature in terms of nitrate export. In view of modeling the nutrient fluxes, we have established the mean export rate for every land-use: forested parcels, deforested parcels, cultivated surfaces, and housing areas export 45, 93, 2850, and 61 kg N-nitrate km?2 year?1, respectively. Exports of ammonium, dissolved organic N (DON), and dissolved inorganic P (DIP) could not be related to land use. The mean export is 13, 100, and 0.57 kg km?2 year?1 for N-ammonium, DON, and DIP, respectively. The modeling of nitrogen flux is in good agreement with our measures for the largest catchment, which supplies about 90% of the total continental DIN flux. However, small catchments are more dynamic due to hydrological conditions and the model is less accurate. This work has permitted to complete and unify scattered studies about nutrient cycling in this area. Thus we have established and compared the nitrogen budget of cornfields and cultivated pine forest. We have emphasized that (i) fertilizer use should be reduced in cornfields because they stock between 200 and 6400 kg DIN km?2 year?1, and (ii) the nitrogen budget in pine forest mostly depends on tree harvesting and symbiotic N-fixation, which is poorly constrained. Export of N by rivers represents a small contribution to the N budget of soils.  相似文献   

3.
Relatively high deposition ofnitrogen (N) in the northeastern United States hascaused concern because sites could become N saturated.In the past, mass-balance studies have been used tomonitor the N status of sites and to investigate theimpact of increased N deposition. Typically, theseefforts have focused on dissolved inorganic forms ofN (DIN = NH4-N + NO3-N) and have largelyignored dissolved organic nitrogen (DON) due todifficulties in its analysis. Recent advances in themeasurement of total dissolved nitrogen (TDN) havefacilitated measurement of DON as the residual of TDN– DIN. We calculated DON and DIN budgets using data onprecipitation and streamwater chemistry collected from9 forested watersheds at 4 sites in New England. TDNin precipitation was composed primarily of DIN. Netretention of TDN ranged from 62 to 89% (4.7 to 10 kghaminus 1 yrminus 1) of annual inputs. DON made up themajority of TDN in stream exports, suggesting thatinclusion of DON is critical to assessing N dynamicseven in areas with large anthropogenic inputs of DIN.Despite the dominance of DON in streamwater,precipitation inputs of DON were approximately equalto outputs. DON concentrations in streamwater did notappear significantly influenced by seasonal biologicalcontrols, but did increase with discharge on somewatersheds. Streamwater NO3-N was the onlyfraction of N that exhibited a seasonal pattern, withconcentrations increasing during the winter months andpeaking during snowmelt runoff. Concentrations ofNO3-N varied considerably among watersheds andare related to DOC:DON ratios in streamwater. AnnualDIN exports were negatively correlated withstreamwater DOC:DON ratios, indicating that theseratios might be a useful index of N status of uplandforests.  相似文献   

4.
In aquatic ecosystems, carbon (C) availability strongly influences nitrogen (N) dynamics. One manifestation of this linkage is the importance in the dissolved organic matter (DOM) pool of dissolved organic nitrogen (DON), which can serve as both a C and an N source, yet our knowledge of how specific properties of DOM influence N dynamics are limited. To empirically examine the impact of labile DOM on the responses of bacteria to DON and dissolved inorganic nitrogen (DIN), bacterial abundance and community composition were examined in controlled laboratory microcosms subjected to various combinations of dissolved organic carbon (DOC), DON, and DIN treatments. Bacterial communities that had colonized glass beads incubated in a stream were treated with various glucose concentrations and combinations of inorganic and organic N (derived from algal exudate, bacterial protein, and humic matter). The results revealed a strong influence of C availability on bacterial utilization of DON and DIN, with preferential uptake of DON under low C concentrations. Bacterial DON uptake was affected by the concentration and by its chemical nature (labile versus recalcitrant). Labile organic N sources (algal exudate and bacterial protein) were utilized equally well as DIN as an N source, but this was not the case for the recalcitrant humic matter DON treatment. Clear differences in bacterial community composition among treatments were observed based on terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes. C, DIN, and DON treatments likely drove changes in bacterial community composition that in turn affected the rates of DON and DIN utilization under various C concentrations.  相似文献   

5.
In this study biogeochemical export in a set of catchments that vary from 6 ha to almost 1500 ha is investigated. Studying catchments across this large range of scales enables us to investigate the scale dependence and fundamental processes controlling catchment biogeochemical export that would not have been possible with a more limited data set. The Devil Canyon catchment, in the San Bernardino Mountains, California, has some of the highest atmospheric N deposition rates in the world (40–90 kg ha−1year−1 at the crest of the catchment). These high rates of deposition have translated into consistently high levels of NOin 3 some streams of the San Bernardino Mountains. However, the streams of the Devil Canyon catchment have widely varying dissolved inorganic nitrogen (DIN) concentrations and export. These differences are also, to a more limited extent, present for dissolved organic carbon (DOC) but not in other dissolved species (Cl, SO24,Ca2+ and other weathering products). As catchment size increases DIN and DOC concentrations first increase until catchment area is ∼150 ha but then decrease as catchment scale increases beyond that size. The scale dependence of DIN export implies that catchments at different spatial scales are at different degrees of N saturation. The reason for this scale effect appears to be the dominance of flushing of DIN out of soil at small scales due to the temporal asynchrony between nutrient availability and biological N demand, the groundwater exfiltration of this flushed DIN at intermediate scales and the removal of this DIN from streamflow through in-stream processes and groundwater–surface water interaction at larger scales. While the particular scale effect observed here may not occur over the same range in catchment area in other ecosystems, it is likely that other ecosystems have similar scale dependant export for DIN and DOC.  相似文献   

6.
Understanding interactions between permanently frozen soils and stream chemistry is important in predicting the effects of management, natural disturbance and changing permafrost distribution on stream ecosystems and nutrient budgets in subarctic watersheds. Chemical measurements of groundwater, soil water and stream water were made in two watersheds in the taiga of interior Alaska. One watershed (HiP) had extensive permafrost and the other (LoP) had limited permafrost. Soil water collected within the rooting zone (0.3--0.5 m) in both watersheds was high in dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN) but low in dissolved minerals (dominantly Ca, Mg and Na) and conductivity. The reverse was true for groundwater from springs and wells. Permafrost in the HiP basin prevented deep percolation of water and generated stormflows rich in DOC. The presence of permafrost in HiP resulted in higher fluxes of DOC, DON and DIN into stream water from upland soils.  相似文献   

7.
Ecosystem acidification and eutrophication resulting from increased deposition of dissolved inorganic nitrogen (DIN) are issues of increasing global concern. Consequently, costly policy decisions are being implemented to decrease nitrogen oxide (NO x ) emissions. Although declining DIN deposition along with rapid declines of DIN in surface waters have been reported in parts of Europe, the same observation is just emerging in North America. Here we find a significant decline in bulk deposition NO3 during the later part of a 28-year record in southcentral Ontario, Canada. Despite high N retention and substantial inter-annual variability in the long-term record due to periods of drought, we find significant declines in annual NO3 concentrations and export at six out of 11 streams that drain upland-dominated catchments. In contrast, five streams draining primarily wetland-dominated catchments with lower levels of NO3 show no decreasing trend in NO3 concentration or export. The rapid response in stream NO3 to declining atmospheric inputs was observed at sites with historically moderate inputs of DIN (~870 mg m−2 y−1) in bulk deposition. Topographic features such as slope, and related catchment features including wetland cover, appear to influence which catchments will respond positively to declining DIN deposition. These findings force us to revise our original conceptualization of the N saturation status of these catchments.  相似文献   

8.
Atmospheric N Deposition Increases Organic N Loss from Temperate Forests   总被引:2,自引:0,他引:2  
Atmospheric deposition of nitrogen (N) resulting from fossil fuel combustion has increased N inputs to temperate forests worldwide with large consequences for forest productivity and water quality. Recent work has illustrated that dissolved organic N (DON) often dominates N loss from unpolluted forests and that the relative magnitude of dissolved inorganic N (DIN) loss increases with atmospheric loading. In contrast to DIN, DON loss is thought to be controlled by soil dynamics that operate independently of N supply and demand and thus should track dissolved organic carbon (DOC) following strict stoichiometric constraints. Conversely, DON loss may shift with N supply if soil (SOM) or dissolved organic matter (DOM) is stoichiometrically altered. Here, we assess these two explanations of DON loss, which we refer to as the Passive Carbon Vehicle and the Stoichiometric Enrichment hypotheses, by analyzing patterns in soil and stream C and N in forest watersheds spanning a broad gradient in atmospheric N loading (5–45 kg N ha−1 y−1). We show that soil N and DON losses are not static but rather increase asymptotically with N loading whereas soil C and DOC do not, resulting in enrichment of organic N expressed as decreased soil C:N and stream DOC:DON ratios. DON losses from unpolluted sites are consistent with conservative dissolution and transport of refractory SOM. As N supply increases, however, N enrichment of organic losses is greater than expected from simple dissolution of enriched soils, suggesting activation of novel pathways of DON production or direct N enrichment of DOM. We suggest that our two hypotheses represent domains of control over forest DON loss as N supply increases but also that stoichiometric enrichment of bulk soils alone cannot fully account for large DON losses in the most N-polluted forests.  相似文献   

9.
Nitrate leaching to streams is a sensitive indicator of the biogeochemical status of forest ecosystems. Two primary theories predicting long-term (decadal) changes in nitrate loss rates (N saturation theory and the nutrient retention hypothesis) both predict increasing dissolved inorganic nitrogen (DIN) losses for watershed 6 (W6), the biogeochemical reference watershed at the Hubbard Brook Experimental Forest (HBEF). Measured values, however, have declined substantially since measurements began in the mid-1960s. Are these theories wrong, or are there other important controls on DIN losses at the annual to decadal time scale that have obscured the tendency toward higher losses over time? We tested the individual and combined effects of several forms of disturbance on DIN loss rates from northern hardwood forests by comparing predictions from a relatively simple model of forest carbon, nitrogen, and water dynamics (PnET-CN) with the long-term record of annual DIN loss from W6 at HBEF. Perturbations tested include interannual climate variation, changes in atmospheric chemistry (CO2, O3, N deposition), and physical and biotic disturbances (two harvests, a hurricane salvage, and a defoliation event). No single disturbance caused changes in DIN losses to mimic measured values. Only when run with all of the disturbances combined did the model-predicted pattern of interannual change in DIN loss approach the measured record. Single-disturbance simulations allow an estimation of the role of each in the total pattern of DIN loss. We conclude that DIN losses from W6 were elevated in the 1960s by a combination of recovery from extreme drought and a significant defoliation event. N deposition alone, in the absence of other disturbances, would have increased DIN losses by 0.35 g N m?2y?1. These findings indicate that predictions of DIN losses must take into account the full spectrum of disturbance events and changes in environmental conditions impacting the systems examined.  相似文献   

10.
The bioavailability and composition of dissolved organic carbon (DOC) and nitrogen (DON) were examined in 10 major sub-catchments of the Swan-Canning estuary, which bisects the city of Perth, in south-western Australia. Catchments contain a mix of forest, agriculture, and urban-dominated land-use, with the degree of development increasing near the city center. We incubated water samples from the 10 sub-catchments for 14 days at 25°C, and measured changes in DOC and DON and dissolved inorganic nitrogen (DIN). A greater proportion of DON (4–44%) was decomposed compared to DOC (1–17%). Both agricultural and urban catchments had high proportions of bioavailable DOC and DON, but overall DOC and DON losses were greatest in urban catchments. Using resin isolation techniques, we found that DOC was concentrated in the hydrophobic (humic) fraction, whereas DON had both hydrophobic and hydrophilic (non-humic) fractions. Hydrophobic DOC content was positively related to DOC decomposition. In contrast, DON decomposition was highly correlated with hydrophilic DON content and inversely related to the hydrophilic DOC/DON ratio, indicating a labile fraction of DON from non-humic sources. Taken together, these relationships suggest that bioavailable DOC may be supplied in part from terrestrial plant material, but bioavailable DON is likely to be from highly labile sources, possibly autochthonous or anthropogenic. Overall, labile DON was greater than initial DIN concentration at seven of ten sites and was even dominant in highly developed catchments. This study highlights the importance of organic N in urbanizing coastal catchments that, in addition to DIN, may serve as a readily available source of N for in-stream and estuarine production.  相似文献   

11.
Surface and subsurface litter fulfil many functions in the biogeochemical cycling of C and N in terrestrial ecosystems. These were explored using a microcosm study by monitoring dissolved inorganic nitrogen (DIN) (NH4 +–N?+?NO3 ?–N), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and fluxes in drainage water under ambient outdoor temperatures. Subsurface litter remarkably reduced the DIN concentrations in winter, probably by microbial N uptake associated with higher C:N ratio of added litter compared with soil at 10–25?cm depth. Fluxes of DIN were generally dominated by NO3 ?–N; but NH4 +–N strongly dominated DIN fluxes during freeze–thaw events. Appreciable concentrations of NH4 +–N were observed in the drainage from the acid grassland soils throughout the experiment, indicating NH4 +–N mobility and export in drainage water especially during freeze–thaw. Litter contributed substantially to DOC and DON production and they were correlated positively (p?<?0.01) for all treatments. DOC and DON concentrations correlated with temperature for the control (p?<?0.01) and surface litter (p?<?0.001) treatments and they were higher in late summer. The subsurface litter treatment, however, moderated the effect of temperature on DOC and DON dynamics. Cumulative N species fluxes confirmed the dominance of litter as the source of DON and DOC in the drainage water. DON constituted 42, 46 and 62% of cumulative TDN flux for control, surface litter and subsurface litter treatments respectively.  相似文献   

12.
Mechanisms underlying catchment export of nitrogen (N) during seasonal transitions (i.e., winter to spring and summer to autumn) were investigated in high-elevation catchments of the Sierra Nevada using stable isotopes of nitrate and water, intensive monitoring of stream chemistry and detailed catchment N-budgets. We had four objectives: (1) determine the relative contribution of snowpack and soil nitrate to the spring nitrate pulse, (2) look for evidence of biotic control of N losses at the catchment scale, (3) examine dissolved organic nitrogen ( DON) export patterns to gain a better understanding of the biological and hydrological controls on DON loss, and (4) examine the relationship between soil physico-chemical conditions and N export. At the Emerald Lake watershed, nitrogen budgets and isotopic analyses of the spring nitrate pulse indicate that 50 to 70% of the total nitrate exported during snowmelt (ca. April to July) is derived from catchment soils and talus; the remainder is snowpack nitrate. The spring nitrate pulse occurred several weeks after the start of snowmelt and was different from export patterns of less biologically labile compounds such as silica and DON suggesting that: (1) nitrate is produced and released from soils only after intense flushing has occurred and (2) a microbial N-sink is operating in catchment soils during the early stages of snowmelt. DON concentrations varied less than 20–30% during snowmelt, indicating that soil processes tightly controlled DON losses.  相似文献   

13.
Nitrogen (N) biogeochemistry of a mature Scots pine (Pinus sylvestris L.) stand subjected to an average total atmospheric N deposition of 48 kg ha?1 year?1 was studied during the period 1992–2007. The annual amount of dissolved inorganic nitrogen (DIN) in throughfall (TF) averaged 34 kg ha?1 year?1 over the 16-year monitoring period. The throughfall fluxes contained also considerable amounts of dissolved organic nitrogen (DON) (5–8.5 kg N ha?1 year?1), which should be incorporated in the estimate of N flux using throughfall collectors. Throughfall DIN fluxes declined at a rate of ?0.9 kg N ha?1 year?1, mainly due to the decreasing TF fluxes of ammonium (NH4), which accounted for 70% to TF DIN. The decrease in TF DIN was accompanied by a decrease in DIN leaching in the seepage water (?1.6 kg N ha?1 year?1), which occurred exclusively as nitrate (NO3 ?). Nitrate losses in the leachate of the forest floor (LFH) equalled the TF NO3 ? delivered to the LFH-layer. On the contrary, about half of the TF NH4 + was retained within the LFH-layer. Approximately 60% of the TF DIN fluxes were leached indicating that N inputs were far in excess of the N requirements of the forest. For DON, losses were only substantial from the LFH-layer, but no DON was leached in the seepage water. Despite the high N losses through nitrate leaching and NO x emission, the forest was still accumulating N, especially in the aggrading LFH-layer. The forest stand, on the contrary, was found to be a poor N sink.  相似文献   

14.
Little is known about how tropical forest canopies interact with atmospheric nitrogen deposition and how this affects the internal nutrient dynamics and the processing of external nutrient inputs. The objectives of this study therefore were (1) to investigate gross and net canopy nitrogen (N) fluxes (retention and leaching) and (2) the effect of canopy components on net canopy N retention. Tracers were applied on detached branches in a tropical wet lowland rainforest, Costa Rica. A novel 15N pool dilution method showed that gross canopy fluxes (retention and leaching) of NO3 ?, NH4 +, and dissolved organic nitrogen (DON) were remarkably higher than net throughfall fluxes. Gross fluxes of NH4 + and NO3 ? resulted in a negligible net flux whereas DON showed net uptake by the canopy. The highest quantity of 15N was recovered in epiphytic bryophytes (16.4%) although the largest biomass fraction was made up of leaves. The study demonstrates that tracer applications allow investigation of the dynamic and complex canopy exchange processes and that epiphytic communities play a major role in solute fluxes in tree canopies and therefore in the nutrient dynamics of tropical rain forests.  相似文献   

15.
The nitrogen (N) composition of streams draining eight upland regions of Britain was compared using monthly samples collected between April 1997 and April 1998. Stream samples were analysed for total N (TN), particulate N (PN), nitrate (NO3), ammonium (NH4), and dissolved organic nitrogen (DON). Concentrations of TN were small, generally less than 1.5 mg N l(-1), were dominated by dissolved forms of N, and varied significantly between regions. NO3 accounted for the majority of variability. Concentrations of DON also varied between regions but to a smaller extent than those of NO3. There were considerable variations in TN fluxes between upland regions, which ranged between 3.8 and 16.1 kg N ha(-1) year(-1). The majority of the variation was due to NO3 fluxes, which were largest in regions receiving largest inputs of atmospheric N deposition and ranged between 1.4 and 13.5 kg N ha(-1) year(-1). Fluxes of DON ranged between 1 and 3.5 kg N ha(-1) year( -1), while fluxes of PN were generally less than 0.5 kg N ha(-1) year(-1) , and NH4 fluxes ranged between 0.1 and 0.4 kg N ha(-1) year(-1). NO3 was the dominant fraction (47-84%) of N exported from all upland regions except the Highlands, where DON accounted for 52% of the TN flux. This study has shown that the DON fraction is an important component of the total N transported by upland streams in Britain.  相似文献   

16.
1. Riparian zones function as important ecotones that reduce nitrate concentration in groundwater and inputs into streams. In the boreal forest of interior Alaska, permafrost confines subsurface flow through the riparian zone to shallow organic horizons, where plant uptake of nitrate and denitrification are typically high. 2. In this study, riparian zone nitrogen retention was examined in a high permafrost catchment (approximately 53% of land area underlain by permafrost) and a low permafrost catchment (approximately 3%). To estimate the contribution of the riparian zone to catchment nitrogen retention, we analysed groundwater chemistry using an end‐member mixing model. 3. Stream nitrate concentration was over twofold greater in the low permafrost catchment than the high permafrost catchment. Riparian groundwater was not significantly different between catchments, averaging 13 μm overall. Nitrogen retention, measured using the end‐member mixing model, averaged 0.75 and 0.22 mmol N m?2 day?1 in low and high permafrost catchments, respectively, over the summer. The retention rate of nitrogen in the riparian zone was 10–15% of the export in stream flow. 4. Our results indicate that the riparian zone functions as an important sink for groundwater nitrate and dissolved organic carbon (DOC). However, differences in stream nitrate and DOC concentrations between catchments cannot be explained by solute inputs from riparian groundwater to the stream and differences between streams are probably attributable to deeper groundwater inputs or flows from springs that bypass the riparian zone.  相似文献   

17.
We present the first estimates of net anthropogenic nitrogen input (NANI) in European boreal catchments. In Swedish catchments, nitrogen (N) deposition is a major N input (31–94%). Hence, we used two different N deposition inputs to calculate NANI for 36 major Swedish catchments. The relationship between riverine N export and NANI was strongest when using only oxidized deposition (NOy) as atmospheric input (r2 = 0.70) rather than total deposition (i.e., both oxidized and reduced nitrogen, NOy + NHx deposition, r2 = 0.62). The y-intercept (NANI = 0) for the NANI calculated with NOy is significantly different from zero (p = 0.0042*) and indicates a background flux from the catchment of some 100 kg N km?2 year?1 in addition to anthropogenic inputs. This agrees with similar results from North American boreal catchments. The slope of the linear regressions was 0.25 for both N deposition inputs (NOy and NOy + NHx), suggesting that on average, 25% of the anthropogenic N inputs is exported by rivers to the Baltic Sea. Agricultural catchments in central and southern Sweden have increased their riverine N export up to tenfold compared to the inferred background flux. Although the relatively unperturbed northernmost catchments receive significant N loads from atmospheric deposition, these catchments do not show significantly elevated riverine N export. The fact that nitrogen export in Swedish catchments appears to be higher in proportion to NANI at higher loads suggests that N retention may be saturating as loading rates increase. In northern and western Sweden the export of nitrogen is largely controlled by the hydraulic load, i.e., the riverine discharge normalized by water surface area, which has units of distance time?1. Besides hydraulic load the percent total forest cover also affects the nitrogen export primarily in the northern and western catchments.  相似文献   

18.
Here we report measurements of organic and inorganic nitrogen (N) fluxes from the high-elevation Green Lakes Valley catchment in the Colorado Front Range for two snowmelt seasons (1998 and 1999). Surface water and soil samples were collected along an elevational gradient extending from the lightly vegetated alpine to the forested subalpine to assess how changes in land cover and basin area affect yields and concentrations of ammonium-N (NH4-N), nitrate-N (NO3-N), dissolved organic N (DON), and particulate organic N (PON). Streamwater yields of NO3-N decreased downstream from 4.3 kg ha−1 in the alpine to 0.75 kg ha−1 at treeline, while yields of DON were much less variable (0.40–0.34 kg ha−1). Yields of NH4-N and PON were low and showed little variation with basin area. NO3-N accounted for 40%–90% of total N along the sample transect and was the dominant form of N at all but the lowest elevation site. Concentrations of DON ranged from approximately 10% of total N in the alpine to 45% in the subalpine. For all sites, volume-weighted mean concentrations of total dissolved nitrogen (TDN) were significantly related to the DIN:DON ratio (R 2 = 0.81, P < 0.001) Concentrations of NO3-N were significantly higher at forested sites that received streamflow from the lightly vegetated alpine reaches of the catchment than in a control catchment that was entirely subalpine forest, suggesting that the alpine may subsidize downstream forested systems with inorganic N. KCl-extractable inorganic N and microbial biomass N showed no relationship to changes in soil properties and vegetative cover moving downstream in catchment. In contrast, soil carbon–nitrogen (C:N) ratios increased with increasing vegetative cover in catchment and were significantly higher in the subalpine compared to the alpine (P < 0.0001) Soil C:N ratios along the sample transect explained 78% of the variation in dissolved organic carbon (DOC) concentrations and 70% of the variation in DON concentrations. These findings suggest that DON is an important vector for N loss in high-elevation ecosystems and that streamwater losses of DON are at least partially dependent on catchment soil organic matter stoichiometry. Received 26 July 2001; accepted 6 May 2002.  相似文献   

19.
Urbanization can potentially alter watershed nitrogen (N) retention via combined changes in N loading, water runoff, and N processing potential. We examined N export and retention for two headwater catchments (∼4 km2) of contrasting land use (16% vs. 79% urban) in the Plum Island Ecosystem (PIE-LTER) watershed, MA. The study period included a dry year (2001–2002 water year) and a wet year (2002–2003 water year). We generalized results by comparing dissolved inorganic nitrogen (DIN) concentrations from 16 additional headwater catchments (0.6–4.2 km2) across a range of urbanization (6–90%). Water runoff was 25–40% higher in the urban compared to the forested catchment, corresponding with an increased proportion of impervious surfaces (25% vs. 8%). Estimated N loading was 45% higher and N flux 6.5 times higher in the urban than in the forested catchment. N retention (1 − measured stream export / estimated loading) was 65–85% in the urban site and 93–97% in the forested site, with lower retention rates during the wetter year. The mechanisms by which N retention stays relatively high in urban systems are poorly known. We show that N retention is related to the amount of impervious surface in a catchment because of associated changes in N loading (maximized at moderate levels of imperviousness), runoff (which continues to increase with imperviousness), and biological processes that retain N. Continued declines in N retention due to urbanization have important negative implications for downstream aquatic systems including the coastal zone.  相似文献   

20.
为揭示大气湿沉降对胶州湾营养盐的输送通量及其生态效应,分别于2015年6—8月(夏季)、9—11月(秋季)采集胶州湾降水样品,测定了降水中不同形态N、P、Si的浓度。结果表明,降水中不同形态营养盐的浓度变化较大,且均与降水量呈负相关关系,其中NH4-N和NO3-N的浓度较高,溶解有机氮(DON)占溶解态总氮(DTN)含量的25.9%,而NO_2-N,PO_4-P和SiO_3-Si的浓度均很低。溶解无机氮(DIN)、DON、PO_4-P以及SiO_3-Si的湿沉降通量分别为141.7、61.87、0.35 mmol m~(-2)a~(-1)和0.12 mmol m~(-2)a~(-1)。受降水量和营养物质来源制约,各项营养盐湿沉降通量时间变化显著。农业活动导致的无机氮排放构成了胶州湾湿沉降DIN的主要来源。大气湿沉降DIN、DON、PO_4-P和SiO_3-Si分别占胶州湾总输入负荷的9.04%、10.24%、0.57%和0.17%,湿沉降输入的PO_4-P在夏、秋季分别可以支持0.575 mgC m~2d~(-1)和1.42 mg C m~2d~(-1)的新生产力;雨水中DIN/P比值高达1 617,突发性强降雨带来的营养盐输入会加剧表层水体的P限制和Si限制,对胶州湾浮游植物群落结构和粒级结构产生重要影响。大气湿沉降是胶州湾生源要素生物地球化学过程的重要一环,对营养物质收支的贡献及可能引发的生态效应不容忽视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号